
�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
�
�
�
�
�

��
������

�
�
�
�

A Scalable, Correct Time-Stamped Stack

Mike Dodds
University of York

mike.dodds@york.ac.uk

Andreas Haas
University of Salzburg
ahaas@cs.uni-salzburg.at

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

Abstract

Concurrent data-structures, such as stacks, queues, and de-
ques, often implicitly enforce a total order over elements in
their underlying memory layout. However, much of this or-
der is unnecessary: linearizability only requires that elements
are ordered if the insert methods ran in sequence. We pro-
pose a new approach which uses timestamping to avoid un-
necessary ordering. Pairs of elements can be left unordered
if their associated insert operations ran concurrently, and
order imposed as necessary at the eventual removal.

We realise our approach in a new non-blocking data-
structure, the TS (timestamped) stack. Using the same ap-
proach, we can define corresponding queue and deque data-
structures. In experiments on x86, the TS stack outperforms
and outscales all its competitors – for example, it outper-
forms the elimination-backo� stack by factor of two. In our
approach, more concurrency translates into less ordering,
giving less-contended removal and thus higher performance
and scalability. Despite this, the TS stack is linearizable with
respect to stack semantics.

The weak internal ordering in the TS stack presents a
challenge when establishing linearizability: standard tech-
niques such as linearization points work well when there
exists a total internal order. We present a new stack theo-
rem, mechanised in Isabelle, which characterises the order-
ings su�cient to establish stack semantics. By applying our
stack theorem, we show that the TS stack is indeed lineariz-
able. Our theorem constitutes a new, generic proof technique
for concurrent stacks, and it paves the way for future weakly
ordered data-structure designs.

Categories and Subject Descriptors D.1.3 [Program-
ming languages]: Programming techniques – concurrent pro-
graming; E.1 [Data Structures]: Lists, stacks, and queues;
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords concurrent stack; linearizability; timestamps;
verification

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

POPL ’15, January 15–17, 2015, Mumbai, India.

Copyright

c• 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.

http://dx.doi.org/10.1145/2676726.2676963

TS stackb 2

a 1

TS stack

c 3

b 2

a 1

push(c): insert an element
with a timestamp

TS stackb 2

a 1

TS stack

c 3

b 2

a 1

pop()�c: find and remove the
element with the latest timestamp

Figure 1: TS stack push and pop operations.

1. Introduction

This paper presents a new approach to building ordered
concurrent data-structures, a realisation of this approach
in a high-performance stack, and a new proof technique
required to show that this algorithm is linearizable with
respect to sequential stack semantics.

Our general approach is aimed at pool-like data-structures,
e.g. stacks, queues and deques. The key idea is for insertion
to attach timestamps to elements, and for these timestamps
to determine the order in which elements should be removed.
This idea can be instantiated as a stack by removing the
element with the youngest timestamp, or as a queue by re-
moving the element with the oldest timestamp. Both kinds
of operation can be combined to give a deque. For most of
this paper we will focus on the TS (timestamped) stack vari-
ant (the TS queue / deque variants are discussed briefly in
§7). The TS stack push and pop are illustrated in Figure 1.

One might assume that generating a timestamp and
adding an element to the data-structure has to be done
together, atomically. This intuition is wrong: linearizabil-
ity allows concurrent operations to take e�ect in any or-
der within method boundaries – only sequential operations
have to keep their order [14]. Therefore we need only or-
der inserted elements if the methods inserting them execute
sequentially. We exploit this fact by splitting timestamp gen-
eration from element insertion, and by allowing unordered
timestamps. Two elements may be timestamped in a di�er-
ent order than they were inserted, or they may be unordered,
but only when the surrounding methods overlap, meaning
the elements could legitimately be removed in either order.
The only constraint is that elements of sequentially executed
insert operations receive ordered timestamps.

By separating timestamp creation from adding the ele-
ment to the data-structure, our insert method can avoids two
expensive synchronisation patterns – atomic-write-after-
read (AWAR) and read-after-write (RAW). We take these
patterns from [2], and refer to them collectively as strong
synchronisation. Timestamping can be done by a stuttering
counter or a hardware instruction like the x86 RDTSCP in-

233

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2676726.2676963&domain=pdf&date_stamp=2015-01-14

struction, neither of which require strong synchronization.
Timestamped elements can be stored in per-thread single-
producer multiple-consumer pools. Such pools also do not
require strong synchronization in the insert operation. Thus
stack insertion avoids strong synchronization, radically re-
ducing its cost.

The lack of synchronization in the insert operation comes
at the cost of contention in the remove operation. Indeed,
[2] proves that stacks, queues, and deques cannot be imple-
mented without some strong synchronisation. Perhaps sur-
prisingly, this problem can be mitigated by reducing the
ordering between timestamps: intuitively, less ordering re-
sults in more opportunities for parallel removal, and thus
less contention. To weaken the element order, we associate
elements with intervals represented by pairs of timestamps.
Interval timestamps allow our TS stack to achieve perfor-
mance and scalability better than state-of-the-art concur-
rent stacks. For example, we believe the elimination-backo�
stack is the current world leader; in our experiments on x86,
the TS stack outperforms it by a factor of two.

Establishing correctness for the TS stack presents a chal-
lenge for existing proof methods. The standard approach
would be to locate linearization points, syntactic points in
the code which fix the order that methods take e�ect. This
simply does not work for timestamped structures, because
the order of overlapping push operations is fixed by the or-
der of future pop operations. In the absence of pop opera-
tions, elements can remain entirely unordered. We solve this
with a new theorem, mechanised in the Isabelle proof assis-
tant, which builds on Henzinger et al.’s aspect-oriented tech-
nique [12]. Rather than a total order, we need only generate
an order from push to pop operations, and vice versa, which
avoids certain violations. This order can be generated from
syntactic points in the TS stack code, allowing us to show
that it is correct. Our stack theorem is generic, not tied to
the TS stack. By generalising away from linearization points,
it paves the way for future concurrent data-structures which
weaken internal ordering.

Contribution. To summarise, our contributions are:
• A new class of data-structure based on timestamping,

realised as a stack, queue, and deque.
• A new optimisation strategy, interval timestamping,

which exploits the weak ordering permitted by time-
stamped data-structures.

• A new proof technique for establishing the linearizability
of concurrent stacks, and a mechanisation of the core
theorem in Isabelle.

• A detailed application of this proof technique to show
that the TS stack is linearizable with respect to its
sequential specification.

• An experimental evaluation showing our TS stack out-
performs the best existing concurrent stacks.

Artifacts. We have produced two research artifacts:
• The TS stack itself, implemented in C, along with queue

and deque variants, and benchmark code used to test it.
• The Isabelle mechanisation of our stack theorem.

Both artifacts are included with the supplementary material
on the ACM digital library, and are also available from the
TS stack webpage:

http://scal.cs.uni-salzburg.at/tsstack/

TS stack

T3 d 8
taken
e 6 f 1

..
.

top next next next next

T2 c 8
top next

T1 a T b 2
top next next

Tn
top

. . .

spPools

Figure 2: The TS stack data-structure.

Paper structure. §2 describes the key ideas behind the
TS stack, then in §3 we describe the algorithm in detail. In
§4 we describe our proof technique, while in §5 we use it to
establish that the TS stack is linearizable. In §6 we discuss
our experiments. §7 discusses TS queue and deque variants.
§8 surveys the related work. §9 concludes.

Longer proofs and other auxiliary material are included
in supplementary appendices, available on the ACM digital
library. Appendix A discusses the Isabelle proof of our core
stack theorem. Appendix B gives further details about our
TS stack linearizability proof. Appendix C gives a proof of
correctness for our intermediate TS bu�er data-structure.

2. Key Ideas

Algorithm structure. The TS stack marks elements with
timestamps recording the order they were pushed. Ele-
ments are popped according to this timestamp order. Fig-
ure 2 shows the stack’s internal structure. Each thread T

1

–
Tn which is accessing the stack has an associated single-
producer multi-consumer pool, implemented as a linked list
(we call these SP pools). These are linked from a common
array spPools. Every element on the stack is stored in the
SP pool of the thread that pushed it.

Pushing to the TS stack involves (1) adding a node to
the head of the thread’s SP pool, (2) generating a new
timestamp, and (3) attaching the timestamp to the node.
Thus un-timestamped nodes are visible to other threads –
we write these in Figure 2 as the maximal value, €. As nodes
are only added by one thread to each SP pool, elements
in a single pool are totally ordered by timestamp, and no
synchronisation is needed when pushing.

Popping from the TS stack involves (1) searching all the
SP pools for an element with a maximal timestamp, and
(2) attempting to remove it. This process repeats until an
element is removed successfully. As each SP pool is ordered,
searching only requires reading the head of each pool in turn.
Timestamps in di�erent pools may be mutually unordered
– for example when two timestamps are equal. Thus more
than one element may be maximal, and in this case, either
can be chosen. To remove a node, the thread writes to a flag
in the node marking it as taken. Multiple threads may try
to remove the same node, so an atomic compare-and-swap
(CAS) instruction ensures at most one thread succeeds.

Accessing the heads of multiple per-thread pools imposes
a cost through cache contention. However, our experiments
show that this can be less expensive than contention on
a single location with an opportunistic compare-and-swap
approach. In our experiments, we mitigate contention and
thereby improve performance by introducing a small NOP

234

delay to the pop search loop. However, even without this
optimisation, the TS stack outperforms the EB stack by a
factor of two.

We have experimented with various implementations for
timestamping itself. Most straightforwardly, we can use a
strongly-synchronised fetch-and-increment counter. We can
avoid unnecessary increments by using a compare-and-swap
to detect when the counter has already been incremented.
We can avoid strong synchronisation entirely by using a
vector of thread-local counters, meaning the counter may
stutter (many elements get the same timestamp). We can
also use a hardware timestamping operation – for exam-
ple the RDTSCP instruction which is available on all modern
x86 hardware. Our benchmarks show that hardware time-
stamping provides the best push performance. However, the
picture is more complicated in the presence of optimisation.
See §6 for our experiments.

Optimisations. Timestamping enables several optimisa-
tions of the TS stack, most importantly elimination (a stan-
dard strategy in the literature), and interval timestamping
(a contribution of this paper).

In a stack, a concurrent push and pop can always soundly
eliminate each other, irrespective of the state of the stack [9].
Therefore a thread can remove any concurrently inserted
element, not just the stack top. Unlike [9], our mechanism for
detecting elimination exploits the existence of timestamps.
We read the current time at the start of a pop; any element
with a later timestamp has been pushed during the current
pop, and can be eliminated.

Surprisingly, it is not optimal to insert elements as
quickly as possible. The reason is that removal is quicker
when there are many unordered maximal elements, reduc-
ing contention and avoiding failed CASes. To exploit this,
we define timestamps as intervals, represented by a pair
of start and end times. Overlapping interval timestamps
are considered unordered, and thus there can be many top
elements in the stack. To implement this, the algorithm in-
cludes a delay for a predetermined interval after generating
a start timestamp, then generates an end timestamp.

Pausing allows us to trade o� the performance of push
and pop: an increasing delay in insertion can reduce the
number of retries in pop (for evidence see §6.2). Though
pausing may appear as an unnecessary overhead to a push,
our experiments show that optimal delay times (4 µs - 8 µs)
are actually shorter than e.g. an atomic fetch-and-inc on
a contended memory location. By weakening the order of
stored elements, interval timestamping can substantially
increase overall throughput and decrease the latency of pops.

Similarly, although interval timestamping increases the
non-determinism of removal (i.e. the variance in the or-
der in which pushed elements are popped), this need not
translate into greater overall non-determinism compared
to other high-performance stacks. A major source of non-
determinism in existing concurrent data-structures is in fact
contention [7]. While interval timestamping increases the po-
tential for non-determinism in one respect, it decreases it in
another.

Performance vs. Elimination-Backo� stack. To the
best of our knowledge the Elimination-Backo� (EB) stack [9]
is the fastest stack previously proposed. In our experiments
(§6.1) the TS stack configured with elimination and interval
timestamping outperforms the EB stack by a factor of two.
Several design decisions contribute to this success. The lack
of insert-contention and mitigation of contention in the

push(a)

push(b)

pop()�a

pop()�b

ins

val

ir

val

rem

pr �
transitive ir

pr �
transitive ir

Figure 3: Non-LIFO behaviour forbidden by stack theorem.

remove makes our stack fast even without elimination. Also,
timestamping allows us to integrate elimination into normal
stack code, rather than in separate back-o� code.
Algorithm correctness. Intuitively, the TS stack is cor-
rect because any two push operations that run sequentially
receive ordered timestamps, and are therefore removed in
LIFO order. Elements arising from concurrent push oper-
ations may recieve unordered timestamps, and may be re-
moved in either order, but this does not a�ect correctness.

To formally prove that a stack is correct, i.e. linearizable
with respect to stack semantics, we need to show that for
any execution there exists a total linearization order. How-
ever, proving this directly is challenging, because the order
between parallel push operations can be fixed by the order
on later pop operations, while the order between parallel
pop operations can likewise be fixed by earlier pushes.

Instead, we use a new stack theorem which removes the
need to find a total linearization order. Intuitively, our
theorem requires that if two elements are on the stack, then
the younger element is popped first (i.e. LIFO ordering).

It is important that all operations take a consistent view
on which elements are on the stack. To express this, our
stack theorem require a relation which states whether a push
takes logical e�ect before or after a pop. We call this ir, for
‘insert-remove’. The ir relation is the crux of the linearization
order: surprisingly, our theorem shows that it is the only
part that matters. Thus, the stack theorem relieves us of
the need to resolve problematic ordering between parallel
push or parallel pop operations.

The stack theorem also uses two other relations: prece-
dence, pr, which relates methods that run in sequence; and
value, val, which relates a push to the pop removing the as-
sociated value. Loosely, the theorem has the following form:

If for every execution there exist ir, pr, val relations
that are order-correct, then the algorithm is lineariz-
able with respect to sequential stack semantics.1

Order-correctness rules out non-LIFO behaviour. Intu-
itively, the situation shown in Figure 3 is forbidden: if
push(a) and push(b) are ordered, and push(b) is related
to pop()�a in ir, then the two pops cannot also be ordered
pop()�a before pop()�b – this would violate LIFO ordering.

As pr and val can easily be extracted from an execution,
establishing linearizability amounts to showing the existence
of a consistent ir. This is analogous to finding the lineariza-
tion order, but ir can be constructed much more easily for
the TS stack. We use a modified version of the linearization
point method, but rather than a single order, we identify
two and combine them to build ir.

•
vis (for ‘visibility’). A push(a) and pop are ordered by vis

if the value a inserted by push was in a SP pool when
the pop started, and so could have been visible to it.

1 Additionally, the full theorem requires the algorithm is lineariz-
able with respect to sequential set semantics. This guarantees
non-LIFO properties such as absence of duplication.

235

•
rr (for ‘remove-remove’). Two operations pop()�a and
pop()�b are ordered in rr if elements a and b are removed
in order from the underlying SP pools.

Building ir is more than just merging these two relations
because they may contradict one another. Instead, ir is built
by taking vis as a core, and using rr to correct cases that
contradict LIFO order. Our proof of correctness (§5) shows
that this is always possible, which establishes that the TS
stack is linearizable.

3. The TS Stack in Detail

We now present our TS stack algorithm in detail. Listing 1
shows the TS stack code. This code manages the collection
of thread-specific SP pools linked from the array spPools.
We factor the SP pool out as a separate data-structure
supporting the following operations:

• insert – insert an element without attaching a time-
stamp, and return a reference to the new node.

• getYoungest – return a reference to the node in the
pool with the youngest timestamp, together with the top
pointer of the pool.

• remove – tries to remove the given node from the pool.
Return true and the element of the node or false and
NULL depending whether it succeeds.

We describe our implementation of the SP pool in §3.1. List-
ing 1 also assumes the timestamping function newTimestamp
– various implementations are discussed in §3.2.

We can now describe Listing 1. To push an element, the
TS stack inserts an un-timestamped element into the current
thread’s pool (line 13), generates a fresh timestamp (line 14),
and sets the new element’s timestamp (line 15).

A pop iteratively scans over all SP pools (line 35-54)
and searches for the node with the youngest timestamp
in all SP pools (line 48-53). The binary operator <TS is
timestamp comparison. This is just integer comparison for
non-interval timestamps – see §3.2. If removing the identified
node succeeds (line 63) then its element is returned (line 26).
Otherwise the iteration restarts.

For simplicity, in Listing 1 threads are associated stati-
cally with slots in the array spPools. To support a dynamic
number of threads, this array can be replaced by a linked
list for iteration in pop, and by a hashtable or thread-local
storage for fast access in push.

Elimination and emptiness checking. Code in gray in
Listing 1 handles elimination and emptiness checking.

Elimination [9] is an essential optimisation in making our
stack e�cient. It is permitted whenever a push and pop ex-
ecute concurrently. To detect opportunities for elimination,
a pop reads the current time when it starts (line 20). When
searching through the SP pools, any element with a later
timestamp must have been pushed during the current pop,
and can be eliminated immediately (lines 46-47).

To check whether the stack is empty, we reuse an ap-
proach from [8]. When scanning the SP pools, if a pool in-
dicates that it is empty, then its top pointer is recorded
(lines 40-43). If no candidate for removal is found then the
SP pools are scanned again to check whether their top point-
ers have changed (lines 56-60). If not, the pools must have
been empty between the first and second scan. The lineariz-
ability of this emptiness check has been proved in [8].

Listing 1: TS stack algorithm. The SP pool is defined in
Listing 2 and described in §3.1, timestamps are discussed
in §3.2. The gray highlighted code deals with the emptiness
check and elimination.

1 TSStack {

2 Node{

3 Element element ,

4 Timestamp timestamp ,

5 Node next ,

6 Bool taken

7 };

8

9 SPPool [maxThreads] spPools ;

10

11 void push(Element element){

12 SPPool pool= spPools [threadID];

13 Node node=pool. insert (element);

14 Timestamp timestamp = newTimestamp ();

15 node. timestamp = timestamp ;

16 }

17

18 Element pop (){

19 // Elimination

20 Timestamp startTime = newTimestamp ();

21 Bool success ;

22 Element element ;

23 do{

24 <success ,element >= tryRem (startTime);

25 } w h i l e (! success);

26 r e t u r n element ;

27 }

28

29 <Bool ,Element > tryRem (Timestamp startTime){

30 Node youngest =NULL;

31 Timestamp timestamp = -1;

32 SPPool pool;

33 Node top;

34 Node[maxThreads] empty ;

35 f o r each(SPPool current in spPools){

36 Node node;

37 Node poolTop ;

38 <node ,poolTop >= current . getYoungest ();

39 // Emptiness check

40 i f (node == NULL){

41 empty [current .ID]= poolTop ;

42 c o n t i n u e ;

43 }

44 Timestamp nodeTimestamp =node. timestamp ;

45 // Elimination

46 i f (startTime <TS nodeTimestamp)

47 r e t u r n current . remove (poolTop ,node);

48 i f (timestamp <TS nodeTimestamp){

49 youngest =node;

50 timestamp = nodeTimestamp ;

51 pool= current ;

52 top= poolTop ;

53 }

54 }

55 // Emptiness check

56 i f (youngest == NULL){

57 f o r each(SPPool current in spPools){

58 i f (current .top != empty [current .ID])

59 r e t u r n <false ,NULL >;

60 }

61 r e t u r n <true ,EMPTY >;

62 }

63 r e t u r n pool. remove (top , youngest);

64 }

65 }

236

Listing 2: SP pool algorithm. The gray highlighted code
deals with the unlinking of taken nodes.

66 SPPool {

67 Node top;

68 Int ID; // The ID of the owner thread .

69

70 init (){

71 Node sentinel =

72 createNode (element =NULL , taken =true);

73 sentinel .next= sentinel ;

74 top= sentinel ;

75 }

76

77 Node insert (Element element){

78 Node newNode =

79 createNode (element =element , taken = false);

80 newNode .next=top;

81 top= newNode ;

82 Node next= newNode .next; // Unlinking

83 w h i l e (next ->next != next && next. taken)

84 next=next ->next;

85 newNode .next=next;

86 r e t u r n newNode ;

87 }

88

89 <Node ,Node > getYoungest (){

90 Node oldTop =top;

91 Node result = oldTop ;

92 w h i l e (true){

93 i f (! result . taken)

94 r e t u r n <result ,oldTop >;

95 e l s e i f (result .next == result)

96 r e t u r n <NULL ,oldTop >;

97 result = result .next;

98 }

99 }

100

101 <Bool ,Element > remove (Node oldTop , Node node){

102 i f (CAS(node.taken ,false ,true)){

103 CAS(top ,oldTop ,node); // Unlinking

104 // Unlink nodes before node in the list.

105 i f (oldTop != node)

106 oldTop .next=node;

107 // Unlink nodes after node in the list.

108 Node next=node.next;

109 w h i l e (next ->next != next && next. taken)

110 next=next ->next;

111 node.next=next;

112 r e t u r n <true ,node.element >;

113 }

114 r e t u r n <false ,NULL >;

115 }

116 }

3.1 SP Pool

The SP pool (Listing 2) is a singly linked list of nodes
accessed by a top pointer. A node consists of a next pointer
for the linked list, the element it stores, the timestamp
assigned to the element, and a taken flag. The singly linked
list is closed at its end by a sentinel node pointing to itself
(line 73). Initially the list contains only the sentinel node.
The taken flag of the sentinel is set to true indicating
that the sentinel does not contain an element. The top
pointer is annotated with an ABA-counter to avoid the
ABA-problem [13].

Elements are inserted into the SP pool by adding a new
node (line 78) at the head of the linked list (line 80-81).

To remove an element the taken flag of its node is set
atomically with a CAS instruction (line 102). getYoungest
iterates over the list (line 90-98) and returns the first node
which is not marked as taken (line 94). If no such node is
found, getYoungest returns <NULL,oldTop> (line 96).
Unlinking taken nodes. Nodes marked as taken are con-
sidered removed from the SP pool and are therefore ignored
by getYoungest and remove. However, to reclaim memory
and to reduce the overhead of iterating over taken nodes,
nodes marked as taken are eventually unlinked either in
insert (line 82-85) or in remove (line 103-111).

To unlink we redirect the next pointer from a node a

to a node b previously connected by a sequence of taken
nodes (line 85, line 106, and line 111). In insert the nodes
between the new node and the next un-taken node are
unlinked, and in remove the nodes between the old top node
and the removed node, and between the removed node and
the next un-taken node are unlinked. Additionally remove
tries to unlink all nodes between top and the removed node
(line 103). By using CAS, we guarantee that no new node has
been inserted between the top and the removed node.

3.2 Timestamping Algorithms

TS-atomic: This algorithm takes a timestamp from a
global counter using an atomic fetch-and-increment instruc-
tion. Such instructions are available on most modern pro-
cessors – for example the LOCK XADD instruction on x86.
TS-hardware: This algorithm uses the x86 RDTSCP in-
struction [16] to read the current value of the TSC regis-
ter. The TSC register counts the number of processor cycles
since the last reset.

TSC was not originally intended for timestamping, so
an obvious concern is that it might not be synchronised
across cores. In this case, relaxed-memory e�ects could lead
to stack-order violations. We believe this is not a problem
for modern CPUs. Ruan et al. [20] have tested RDTSCP on
various x86 systems as part of their transactional memory
system. Our understanding of [20] and the Intel x86 archi-
tecture guide [16] is that RDTSCP should provide su�cient
synchronisation on recent multi-core and multi-socket ma-
chines. We have also observed no violations of stack seman-
tics in our experiments across di�erent machines. Aside from
RDTSCP, we use C11 sequentially consistent atomics through-
out, forbidding all other relaxed behaviours.

However, we have anecdotal reports that RDTSCP is not
synchronised on older x86 systems. Furthermore, memory
order guarantees o�ered by multi-processors are often under-
specified and inaccurately documented – see e.g. Sewell et.
al.’s work on a formalized x86 model [21] (which does not
cover RDTSCP). Implementors should test RDTSCP thoroughly
before using it to generate timestamps on substantially
di�erent hardware. We hope the TS stack will motivate
further research into TSC, RDTSCP, and hardware timestamp
generation more generally.
TS-stutter: This algorithm uses thread-local counters
which are synchronized by Lamport’s algorithm [17]. To
generate a new timestamp a thread first reads the values of
all thread-local counters. It then takes the maximum value,
increments it by one, stores it in its thread-local counter,
and returns the stored value as the new timestamp. Note
that the TS-stutter algorithm does not require strong syn-
chronization. TS-stutter timestamping may return the same
timestamp multiple times, but only if these timestamps were
generated concurrently.

237

Listing 3: TS-CAS algorithm. The gray highlighted code is
an optimisation to avoid unnecessary CAS.

117 TS_cas {

118 i n t counter =1;

119

120 Timestamp newTimestamp (){

121 i n t timestamp = counter ;

122 pause (); // delay optimisation .

123 i n t timestamp2 = counter ;

124 i f (timestamp != timestamp2)

125 r e t u r n [timestamp , timestamp2 -1];

126 i f (CAS(counter , timestamp , timestamp +1))

127 r e t u r n [timestamp , timestamp];

128 r e t u r n [timestamp ,counter -1];

129 }

130 }

TS-interval: This algorithm does not return one time-
stamp value, but rather an interval consisting of a pair of
timestamps generated by one of the algorithms above. Let
[a, b] and [c, d] be two such interval timestamps. They are
ordered [a, b] <TS [c, d] if and only if b < c. That is, if the
two intervals overlap, the timestamps are unordered. The
TS-interval algorithm is correct because for any two interval
timestamps [a, b] and [c, d], if these intervals are generated
sequentially, then b is generated before c and therefore b < c,
as discussed above.

In our experiments we use the TS-hardware algorithm
(i.e. the x86 RDTSCP instruction) to generate the start and
end of the interval, because it is faster than TS-atomic and
TS-stutter. Adding a delay between the generation of the
two timestamps increases the size of the interval, allowing
more timestamps to overlap and thereby reducing contention
during element removal. The e�ect of adding a delay on
overall performance is analyzed in Section 6.2.

TS-CAS: This algorithm is an optimisation of TS-atomic
combined with interval timestamps. It exploits the insight
that the shared counter needs only be incremented by some
thread, not necessarily the current thread. In a highly con-
current situation, many threads using TS-atomic will incre-
ment the counter unnecessarily. The TS-CAS algorithm in-
stead uses CAS failure to detect when the counter has been
incremented. CAS failure without retrying is comparatively
inexpensive, so this scheme is fast despite using strong syn-
chronisation.

Source-code for TS-CAS is given in Listing 3. The al-
gorithm begins by reading the counter value (line 121). If
the CAS in line 126 succeeds, then the timestamp takes the
counter’s original value as its start and end (line 127). If
the CAS fails, then another concurrent call must have incre-
mented the counter, and TS-CAS does not have to. Instead
it returns an interval starting at the original counter value
and ending at the new value minus one (line 128). This in-
terval will overlap with concurrent calls to newTimestamp,
but will not overlap with any intervals created later.

Similar to TS-interval, adding a small delay between
reading the counter value and attempting the CAS can im-
prove performance. Here this not only increases the number
of overlapping intervals, but also reduces contention on the
global counter. Contention is reduced further by line 123-
125, a standard CAS optimisation. If the value of counter
changed during the delay, then the CAS in line 126 is guar-
anteed to fail. Instead of executing the CAS we can im-

mediately return an interval timestamp. Our experiments
show that in high-contention scenarios the performance of
TS-CAS with a delay is up to 3x faster than without a delay.

4. Correctness Theorem for Stacks

Linearizability [14] is the de facto standard correctness con-
dition for concurrent algorithms.2 It ensures that every be-
haviour observed by an algorithm’s calling context could also
have been produced by a sequential (i.e. atomic) version of
the same algorithm. We call the ideal sequential version of
the algorithm the specification, e.g. below we define a se-
quential stack specification.

Interactions between the algorithm and calling context
in a given execution are expressed as a history. Note that
our formulation is specialised to pool-like data-structures,
because the val relation embeds the connection between
an operation which inserts a value, and the operation that
receives it (e.g. a push and corresponding pop).
Definition 1. A history H is a tuple ÈA, pr, valÍ where A
is a finite set of operations (for example, push(5)), and
pr, val ™ A ◊ A are the precedence and value relations,
respectively. A history is sequential if pr is a total order.

A history is extracted from a trace, T , the interleaved
sequence of events that took place during an execution of
the algorithm. To extract the history, we first generate the
set A of executed operations in the trace (as is standard
in linearizability, assume that all calls have corresponding
returns). A pair (x, y) is in pr if the return event of operation
x is ordered before the call event of y in T . A pair (x, y) is
in val if x is an insert, y a remove, and the value inserted by
x was removed by y. Note that we assume that values are
unique.

Linearizability requires that algorithms only interact
with their calling context through call and return events.
Therefore, a history captures all interactions between algo-
rithm and context. We thus define a data-structure speci-
fication as just a set of histories (e.g. Stack is the set of
histories produced by an ideal sequential stack). Lineariz-
ability is defined by relating implementation and specifica-
tion histories.
Definition 2. A history ÈA, pr, valÍ is linearizable with
respect to some specification S if there exists a linearization
order pr

T such that pr ™ pr

T , and ÈA, pr

T
, valÍ œ S.

An implementation C is linearizable with respect to S if
any history H arising from the algorithm is linearizable with
respect to S.

The problem with linearization points. Proving that
a concurrent algorithm is linearizable with respect to a se-
quential specification amounts to showing that, for every
possible execution, there exists a total linearization order.
The standard strategy is a simulation-style proof where the
implementation and specification histories are constructed
in lock-step. The points where the specification ‘takes e�ect’
are known as linearization points – to simplify the proof,

2 Our formulation of linearizability di�ers from the classic
one [14]. Rather than have a history record the total order on
calls and returns, we convert this information into a strict par-
tial order pr. Likewise, linearizability between histories is defined
by inclusion on orders, rather than by reordering call and return
events. This approach, taken from [4], is convenient for us because
our stack theorem is defined by constraints on orders. However,
the two formulations are equivalent.

238

these are often associated with points in the implementa-
tion’s syntax. Conceptually, when a linearization point is
reached, the method is appended to the linearization order.

It has long been understood that linearization points are
a limited approach. Simulation arguments work poorly for
many non-blocking algorithms because the specification his-
tory is not precisely determined by the implementation. Al-
gorithms may have linearization points dictated by complex
interactions between methods, or by non-deterministic fu-
ture behaviour. The TS stack is a particularly acute example
of this problem. Two push methods that run concurrently
may insert elements with unordered timestamps, giving no
information to choose a linearization order. However, if the
elements are later popped sequentially, an order is imposed
on the earlier pushes. Worse, ordering two pushes can im-
plicitly order other methods, leading to a cascade of lin-
earizations back in time.

Consider the following history. Horizontal lines represent
execution time, H| represents calls, and N| returns.

push(b) pop()�apush(a)

pop()�bpush(c) pop()�c

This history induces the precedence order pr represented by
solid lines in the following graph.

push(b) pop()�apush(a)

pop()�bpush(c) pop()�c (1)

(2)
(3) (4)

pr pr

pr

pr

pr

pr

First consider the history immediately before the return of
pop()�c (i.e. without order (1) in the graph). As push(b)
and push(c) run concurrently, elements b and c may have
unordered timestamps. At this point, there are several con-
sistent ways that the history might linearize, even given ac-
cess to the TS stack’s internal state.

Now consider the history after pop()�b. Dotted edges
represent linearization orders forced by this operation. As c

is popped before b, LIFO order requires that push(b) has
to be linearized before push(c) – order (2). Transitivity
then implies that push(a) has to be ordered before push(c)
– order (3). Furthermore, ordering push(a) before push(c)
requires that pop()�c is ordered before pop()�a – order (4).
Thus a method’s linearization order may be fixed long after
it returns, frustrating any attempt to identify linearization
points.

Specification-specific conditions (AKA aspects). For
a given sequential specification, it may not be necessary to
find the entire linearization order to show that an algorithm
is linearizable. A degenerate example is the specification
which contains all possible sequential histories; in this case,
we need not find a linearization order, because any order
consistent with pr will do. One alternative to linearization
points is thus to invent special-purpose conditions for par-
ticular sequential specifications.

Henzinger et al. [12] have just such a set of conditions
for queues. They call this approach aspect-oriented. One
attractive property of their approach is that their queue
conditions are mostly expressed using precedence order, pr.
In other words, most features of queue behaviour can be
checked without locating linearization points at all. (The
exception is emptiness checking, which also requires special
treatment in our approach – see below.)

Stack and set specifications. Our theorem makes use of
two sequential specifications: Stack, and a weaker speci-
fication Set that does not respect LIFO order. We define
the set of permitted histories by defining updates over ab-
stract states. Assume a set of values Val. Abstract states
are finite sequences in Val

ú. Let ‡ œ Val

ú be an arbitrary
state. In Stack, push and pop have the following sequential
behaviour (‘·’ means sequence concatenation):

• push(v) – Update the abstract state to ‡ · [v].
• pop() – If ‡ = [], return EMPTY. Otherwise, ‡ must be

of the form ‡

Õ · [vÕ]. Update the state to ‡

Õ, return v

Õ.
In Set, push is the same, but pop behaves as follows:

• pop() – If ‡ = [], return EMPTY. Otherwise, ‡ must be of
the form ‡

Õ ·[vÕ]·‡ÕÕ. Update the state to ‡

Õ ·‡ÕÕ, return v

Õ.

4.1 The Stack Theorem

We have developed stack conditions su�cient to ensure lin-
earizability with respect to Stack. Unlike [12], our condi-
tions are not expressed using only pr (indeed, we believe this
would be impossible – see §4.2). Rather we require an aux-
iliary insert-remove relation ir which relates pushes to pops
and vice versa, but that does not relate pairs of pushes or
pairs of pops. In other words, our theorem shows that for
stacks it is su�cient to identify just part of the linearization
order.

We begin by defining the helper orders ins and rem over
push operations and pop operations, respectively. Infor-
mally, ins and rem are fragments of the linearization order
that are imposed by the combination of ir and the precedence
order pr. In all the definitions in this section, assume that
H = ÈA, pr, valÍ is a history. Below we write +a, +b, +c etc.
for push operations, and ≠a, ≠b, ≠c etc. for pop operations.
Definition 3 (derived orders ins and rem). Assume an
insert-remove relation ir.

• For all +a, +b œ A, +a

ins≠æ +b if either +a

pr≠æ +b or
there exists an operation ≠c œ A with +a

pr≠æ ≠c

ir≠æ +b.
• For all ≠a, ≠b œ A, ≠a

rem≠≠æ ≠b if either ≠a

pr≠æ ≠b or
there exists an operation +c œ A with ≠a

ir≠æ +c

ir≠æ ≠b.
The order ins expresses ordering between pushes imposed

either by precedence, or transitively by insert-remove. Like-
wise rem expresses ordering between pops. Using ins and
rem, we can define order-correctness, which expresses the
conditions necessary to achieve LIFO ordering in a stack.

In our formulation ins is weaker than rem – note the pr

rather than ir in the final clause. However, our stack theorem
also holds if the definitions are inverted, with rem weaker
than ins. The version above is more convenient in verifying
the TS stack.
Definition 4 (alternating). We call a relation r on A
alternating if every pair +a, ≠b œ A consisting of one push
and one non-empty pop is ordered, and no other pairs are
ordered.
Definition 5 (order-correct). We call H order-correct if
there exists an alternating relation ir on A, and derived
orders ins and rem, such that:
1. ir fi pr is cycle-free; and
2. Let +a, ≠a, +b œ A with +a

val≠æ ≠a and +a

pr≠æ ≠a.
If +a

ins≠æ +b

ir≠æ ≠a, then there exists ≠b œ A with
+b

val≠æ ≠b and ≠a ”rem≠≠æ ≠b;

239

Condition (2) is at the heart of our proof approach. It
forbids the non-LIFO behaviour illustrated in Figure 3.

Order-correctness only imposes LIFO ordering; it does
not guarantee non-LIFO correctness properties. For a stack
these are (1) elements should not be lost; (2) elements should
not be duplicated; (3) popped elements should come from
a corresponding push; and (4) pop should report EMPTY

correctly. The last is subtle, as it is a global rather than
pairwise property: pop should return EMPTY only at a point
in the linearization order where the abstract stack is empty.

Fortunately, these properties are also orthogonal to LIFO
ordering: we just require that the algorithm is linearizable
with respect to Set (simple to prove for the TS stack).
For properties (1)-(3) it is trivial why this is su�cient. For
emptiness checking, any history satisfying Set can be split
into sub-histories free of pop-empty. As a pop-empty can
only occur when no elements are in the data-structure, any
such partitioning is also valid in Stack. Thus, the correct-
ness of emptiness checking can be established separately
from LIFO ordering.

Theorem 1 (stack correctness). Let C be a concurrent al-
gorithm. If every history arising from C is order-correct, and
C is linearizable with respect to Set, then C is linearizable
with respect to Stack.

Proof. Here we only sketch five stages of the proof. For full
details see supplementary Appendix A. (1) Order all pop
operations which do not return empty and which are ordered
with their matching push operation in the precedence order.
(2) Adjust the ir relation to deal with the definition of ins

discussed above. Again we ignore all push-pop pairs with
overlapping execution times. (3) Order all push operations
which remain unordered after the first two stages and show
that the resulting order is within Stack. (4) Show that
push-pop pairs with overlapping execution times can always
be added to a correct linearization order without violating
Stack. (5) Show that also pop operations which return
EMPTY can always be added to a correct linearization order
as long as they are correct with respect to Set.

For the TS stack, the advantage of Theorem 1 is that
problematic orderings need not be resolved. In the example
discussed above, push(a) and push(c) can be left unordered
in ir, removing the need to decide their eventual linearization
order; likewise pop()�a and pop()�c. As we show in the next
section, the ir relation can be extracted from the TS stack
using an adapted version of the linearization point method.

Our stack theorem is generic, not tied to the TS stack. It
characterises the internal ordering su�cient for an algorithm
to achieve stack semantics. As well as sound, it is complete
– for any linearizable stack, ir can be trivially projected
from the linearization order. For CAS-based stacks such
as Treiber’s famous non-blocking stack [22] it is simple to
see intuitively why the theorem applies. If two pushes are
ordered, then their CASes are ordered. As a result their
elements will be ordered in the stack representation and
removed in order.

Intuitively, our theorem seems close to the lower bound
for stack ordering. The next section (§4.2) provides evidence
for this by ruling out the class of weaker formulations with-
out ir. Intuitively, we would expect any concurrent stack to
enforce orders as strong as the ones in our theorem. Thus,
Theorem 1 points towards fundamental constraints on the
structure of concurrent stacks.

pop()�d

pop()�apush(a)

pop()�b

pop()�c

push(b)

push(c)

push(d)

push(a)

pop()�a

val

pop()�dpop()�b

push(b)

pop()�c

push(c)

val

push(d)

val val
lin

pr

pr

lin

pr

pr

lin

pr

pr

pr

Figure 4: Top: example non-linearizable execution exhibiting
non-local behaviour. Bottom: corresponding graph project-
ing out pr, val, and lin relations.

Mechanisation. We have mechanised Theorem 1 in the
Isabelle theorem prover. The source files for this proof are
provided in supplementary file stackthm.tgz. Supplemen-
tary Appendix A discusses the structure of our mechanisa-
tion alongside with an informal proof of the theorem.

4.2 Why the Insert-Remove Relation is Necessary

Theorem 1 builds on a similar theorem for queues proved by
Henzinger et al. [12]. As in our definition of order-correctness
(Definition 5), their theorem forbids certain bad orderings
between operations. However, their conditions are defined
purely in terms of precedence, pr, and value, val – they do
not require the auxiliary insert-remove relation ir.

We believe that any stack theorem similar in structure
to ours must require some additional information like ir

(and as a corollary, that checking linearizability for stacks
is fundamentally harder than for queues). By ‘similar’, we
mean a local theorem defined by forbidding a finite number
of finite-size bad orderings. It is this locality that makes
our theorem and Henzinger’s so appealing. It reduces data-
structure correctness from global ordering to ruling out a
number of specific bad cases.

Our key evidence that the insert-remove relation is
needed is the execution shown in Figure 4 (top). This exe-
cution as a whole is not linearizable – this can be seen more
clearly in corresponding graph in Figure 4 (bottom), which
projects out the pr and val relations. Here lin is the lineariza-
tion order forced by LIFO ordering. The prfi lin edges form a
cycle, contradicting the requirement that linearization order
is acyclic and includes pr.

However, if for any i œ {a, b, c, d} the corresponding
push(i)–pop(i) pair is deleted, the execution becomes lin-
earizable. Intuitively, doing this breaks the cycle in lin fi pr

that appears above. Thus, any condition based on prece-
dence that is smaller than this whole execution cannot forbid
it – otherwise it would forbid legitimate executions. Worse,
we can make arbitrarily large bad executions of this form.
Thus no theorem based on finite-size condition can define
linearizability for stacks. Our insert-remove relation intro-
duces just enough extra structure to let us define a local
stack theorem.

This kind of execution is not a problem for queues be-
cause ordering an insert-remove pair cannot constrain the
insert-insert or remove-remove order of any other pair.

240

5. Proving the TS Stack Correct

We now prove the TS Stack correct. We use a two-level
argument to separate concerns in the proof. By verifying a
lower-level structure first, we hide the complexities of the
data-structure from the higher-level proof.
1. Prove the linearizability of an intermediate structure

called the TS bu�er. This shows that the SP pools
combine to form a single consistent pool, but does not
enforce LIFO ordering.

2. Use our stack theorem (Theorem 1) to prove the TS stack
is linearizable with respect to LIFO stack semantics.
Linearizability lets us use the lower-level TS bu�er in
terms of its sequential specification.

5.1 TS Bu�er Linearizability

The TS bu�er is a ‘virtual’ intermediate data-structure, i.e.
a proof convenience that does not exist in the algorithm
syntax. (It would be easy to add, but would make our code
more complex). The TS bu�er methods are the lines in push
and pop which modify the spPools array and thread-specific
pools. Proving the TS bu�er linearizable means these lines
can be treated as atomic. We name the TS bu�er operations
as follows – line numbers refer to Listing 1. Note that where
possible these names coincide with names in Listing 1.

• ins – inserts an element into an SP pool (line 13).
• newTimestamp – generates a new timestamp (line 14).
• setTimestamp – assign a timestamp to a SP pool element

(line 15).
• getStart – record the current time at the beginning of

a pop (line 20).
• tryRem – search through the SP pools and try to remove

the element with the youngest timestamp (line 24).
Note that newTimestamp and getStart have the same under-
lying implementation, but di�erent abstract specifications.
This is because they play di�erent roles in the TS stack:
respectively, generating timestamps for elements, and con-
trolling elmination.

The abstract state of the TS bu�er hides individual
SP pools by merging all the elements into a single pool.
As elements may be eliminated depending on when the
method started, the abstract state also records snapshots
representing particular points in the bu�er’s history.

As with Stack and Set, we define the sequential speci-
fication TSbuf by tracking updates to abstract states. For-
mally, we assume a set of bu�er identifiers, ID, representing
individual bu�er elements; and a set of timestamps, TS, with
strict partial order <TS and top element €. A TSbuf ab-
stract state is a tuple (B, S). B œ Buf is a partial map from
identifiers to value-timestamp tuples, representing the cur-
rent values stored in the bu�er. S œ Snapshots is a partial
map from timestamps to Buf, representing snapshots of the
bu�er at particular timestamps.

Buf : ID Ô (Val ◊ TS) Snapshots : TS Ô Buf

We implicitly assume that all timestamps in the bu�er were
previously generated by newTimestamp.

Snapshots are used to support globally consistent re-
moval. To remove from the bu�er, pop first calls getStart
to generate a timestamp t – abstractly, [t ‘æ B] is added
to the library of snapshots. When pop calls tryRem(t), ele-
ments that were present when t was generated may be re-

moved normally, while elements added or timestamped more
recently than t may be eliminated out of order. The stored
snapshot S(t) determines which element should be removed
or eliminated.

The TS bu�er functions have the following specifications,
assuming (B, S) is the abstract state before the operation:

• newTimestamp() – pick a timestamp t ”= € such that for
all t

Õ ”= € already in B, t

Õ
<TS t. Return t.

Note that this means many elements can be issued the
same timestamp if the thread is preempted before writing
it into the bu�er.

• ins(v) – Pick an ID i /œ dom(B). Update the state to
(B[i ‘æ (v, €)], S) and return i.

• setTimestamp(i,t) – assume that t was generated by
newTimestamp(). If B(i) = (v, €), then update the
abstract state to (B[i ‘æ (v, t)], S). If B(i) = ‹, do
nothing.

• getStart() – pick a timestamp t ”= € such that t /œ
dom(S) or t œ dom(S) and S(t) = B. If t /œ dom(S),
update the state to (B, S[t ‘æ B]). Return t.

• tryRem(t) – Assume t œ dom(S). There are four possible
behaviours:
1. failure. Non-deterministically fail and return Èfalse, nullÍ.

This corresponds to a failed SP pool remove pre-
empted by another thread.

2. emptiness check. If the map is empty (i.e. dom(B) =
ÿ) then return Ètrue, EMPTYÍ.

3. normal removal. Pick an ID i with i œ dom(S(t)) fl
dom(B) and B(i) ‘æ (vi, ti) such that ti is maximal
with respect to other unremoved elements from the
snapshot, i.e.
@i

Õ
, t

Õ
. i

Õ œ (dom(S(t)) fl dom(B)) · B(iÕ) = (, t

Õ)
· ti <TS t

Õ

Update the abstract state to (B[i ‘æ ‹], S) and return
Ètrue, viÍ. Note that there may be many maximal
elements that could be returned.

4. elimination. Pick an ID i such that i œ dom(B), and
either i /œ dom(S(t)) and B(i) ‘æ (v,); or S(t)(i) ‘æ
(v, €). Update the abstract state to (B[i ‘æ ‹], S)
and return Ètrue, vÍ.
This corresponds to the case where v was inserted or
timestamped after pop called getStart, and v can
therefore be removed using elimination.

Theorem 2. TS bu�er operations are linearizable with
respect to the specification TSbuf.

Proof. The concrete state of the TS bu�er consists of the
array spPools, where each slot points to a SP pool, i.e. a
linked list of nodes. For the abstract state, the mapping Buf

is easily built by erasing taken nodes. We build Snapshots

by examining the preceding trace. Snapshots are generated
from the state of the bu�er at any point getStart is called.

ins and setTimestamp are SP pool operations which take
e�ect atomically because they build on atomic operations,
i.e. the assignment to top in line 81, and to timestamp in
line 15, respectively.

newTimestamp and getStart both build on the same
timestamping operation. Only concurrent timestamp re-
quests can generate overlapping timestamps. As timestamps
have to be generated and then added to the bu�er separately,

241

at the call of newTimestamp and getStart an overlapping
timestamp cannot be in the bu�er. For getStart, the snap-
shot is correctly constructed automatically as a consequence
of the mapping from concrete to abstract state.

The most complex proof is for tryRem, where the lin-
earization point is in the call to remove. tryRem always re-
moves a valid element because any element in the snapshot
is guaranteed to be contained in one of the SP pools before
tryRem starts its search for the youngest element. Any re-
moved element not in the snapshot must have been added
since the start of the search, and thus satisfies the elimina-
tion case of the specification. Further details are given in
supplementary Appendix C.

5.2 TS Stack Linearizability

We now prove that the TS stack is correct. We first define
two orders vis and rr on push and pop operations. These
orders are extracted from executions using a method anal-
ogous to linearization points, except that we generate two,
possibly conflicting orders. The points chosen correspond to
TS bu�er operations. In §5.1 we proved that the TS bu�er
is linearizable, so we can treat these points as atomic.

•
vis (‘visibility’ – the element inserted by a push was
visible to a pop). A push and non-empty pop are ordered
in vis if SP pool insertion in the push (line 13) is ordered
before recording the current time in the pop (line 20).

•
rr (‘remove-remove’ – two pops removed elements in
order). Two non-empty pop operations are ordered in
rr if their final successful tryRem operations (line 24) are
similarly ordered in the execution.

As with ins / rem in the stack theorem, it is useful to define a
helper order ts (‘timestamp’) on push operations. This order
is imposed by precedence and vis transitivity. Informally, if
two push operations are ordered in ts their elements are
ordered in <TS.
Definition 6 (derived order ts). Assume a history H =
ÈA, pr, valÍ and order vis on A. Two operations +a, +b œ A
are related +a

ts≠æ +b if: +a

pr≠æ +b; or +a

pr≠æ ≠c

vis≠æ +b

for some ≠c œ A; or +a

pr≠æ +d

vis≠æ ≠c

vis≠æ ≠b for some
≠c, +d œ A.

To apply Theorem 1 and to show that the TS stack is
correct we need to show that any history arising from the
TS stack is order-correct (Definition 5). The following lemma
connects vis, rr and ts to this notion of order-correctness.
Lemma 3. Let H = ÈA, pr, valÍ be a history. Assume vis, an
alternating order on A, and rr, a total order on non-empty
pop operations in A. Assume the derived order ts. If:
1. pr fi vis and pr fi rr are cycle-free; and
2. for all +a, ≠a, +b œ A such that +a

val≠æ ≠a, +a

pr≠æ ≠a,
and +a

ts≠æ +b

vis≠æ ≠a, there exists ≠b œ A such that
+b

val≠æ ≠b and ≠b

rr≠æ ≠a;
then H is order-correct according to Definition 5.

Proof. The proof works by using vis, rr and ts to construct
a relation ir witnessing that H is order-correct. Either vis is
such a witness, or vis can be adjusted locally such that it
becomes a witness. Adjustment works iteratively by identi-
fying triples of operations which violate order-correctness,
then pushing one of the operations earlier or later in the re-
lation to remove the violation. The detail of the proof con-

sists of a case analysis showing that for any execution, such
adjustments are always possible and eventually terminate.
Further details are given in supplementary Appendix B.

Lemma 4. TS stack is linearizable with respect to Set.

Proof. Straightforward from the fact that the TS bu�er is
linearizable with respect to TSbuf. We take the lineariza-
tion point for push as the call to ins and the linearization
point for pop as the call to tryRem. Correctness follows from
the specification of TSbuf.

Theorem 5. TS stack is linearizable with respect to Stack.

Proof. Follows by applying our stack theorem. Lemma 4
deals with the first clause of Theorem 1. The other clause
requires the existence of an ir relation that satisfies order-
correctness. It su�ces to show that vis, rr, and ts satisfy
the preconditions of Lemma 3. The first requirement that
prfivis and prfirr are cycle-free, follows from the fact that the
instructions used to define vis and rr are linearization points
of the TS bu�er. The second requirement for the lemma
follows from the fact that ordering in ts implies ordering
in <TS, and the fact that the TS stack removes elements
in an order that respects <TS. Further details are given in
supplementary Appendix B.

Theorem 6. The TS stack is lock-free.

Proof. Straightforward from the structure of tryRem: re-
moval can only fail when another thread succeeds.

6. Performance Analysis

Our experiments compare the performance and scalability of
the TS stack with two high-performance concurrent stacks:
the Treiber stack [22] because it is the de-facto standard
lock-free stack implementation; and the elimination-backo�
(EB) stack [9] because it is the fastest concurrent stack we
are aware of.3 We configured the Treiber and EB stacks to
perform as well as possible on our test machines: see below
for the parameters used.

We ran our experiments on two x86 machines:
• an Intel-based server with four 10-core 2GHz Intel Xeon

processors (40 cores, 2 hyperthreads per core), 24MB
shared L3-cache, and 128GB of UMA memory running
Linux 3.8.0-36; and

• an AMD-based server with four 16-core 2.3GHz AMD
Opteron processors (64 cores), 16MB shared L3-cache,
and 512GB of cc-NUMA memory running Linux 3.5.0-
49.
Measurements were done in the Scal Benchmarking

Framework [5]. To avoid measurement artifacts the frame-
work uses a custom memory allocator which performs cyclic
allocation [19] in preallocated thread-local bu�ers for ob-
jects smaller than 4096 bytes. Larger objects are allocated
with the standard allocator of glibc. All memory is allocated
cache-aligned when it is beneficial to avoid cache artifacts.

3 Of course, other high-performance stacks exist. We decided
against benchmarking the DECS stack [3] because (1) no imple-
mentation is available for our platform and (2) according to their
experiments, in peak performance it is no better than a Flat Com-
bining stack. We decided against benchmarking the Flat Combin-
ing stack because the EB stack outperforms it when configured
to access the backo� array before the stack itself.

242

40-core machine 64-core machine
high-contention:
TS-interval stack 7 µs 6 µs
TS-CAS stack 6 µs 10.5 µs
low-contention:
TS-interval stack 4.5 µs 4.5 µs
TS-CAS stack 3 µs 9 µs

Table 1: Benchmark delay times for TS-interval / TS-CAS.

The framework is written in C/C++ and compiled with
gcc 4.8.1 and -O3 optimizations.

Scal provides implementations of the Treiber stack and
of the EB stack. Unlike the description of the EB stack
in [9] we access the elimination array before the stack –
this improves scalability in our experiments. We configured
the EB stack such that the performance is optimal in our
benchmarks when exercised with 80 threads on the 40-
core machine, or with 64 threads on the 64-core machine.
These configurations may be suboptimal for lower numbers
of threads. Similarly, the TS stack configurations we discuss
later are selected to be optimal for 80 and 64 threads on the
40-core and 64-core machine, respectively. On the 40-core
machine the elimination array is of size 16 with a delay of
18 µs in the high-contention benchmark, and of size 12 with
a delay of 18 µs in the low contention benchmark. On the 64-
core machine the elimination array is of size 32 with a delay
of 21 µs in the high-contention benchmark, and of size 16
with a delay of 18 µs in the low contention benchmark.

On the 64-core machine the Treiber stack benefits from
a backo� strategy which delays the retry of a failed CAS.
On this machine, we configured the Treiber stack with a
constant delay of 300 µs in the high-contention experiments
and a constant delay of 200 µs in the low-contention exper-
iments, which is optimal for the benchmark when exercised
with 64 threads. On the 40-core machine performance de-
creases when a backo� delay is added, so we disable it.

We compare the data-structures in producer-consumer
microbenchmarks where threads are split between dedicated
producers which insert 1,000,000 elements into the data-
structure, and dedicated consumers which remove 1,000,000
elements from the data-structure. We measure performance
as total execution time of the benchmark. Figures show the
total execution time in successful operations per millisecond
to make scalability more visible. All numbers are averaged
over 5 executions. To avoid measuring empty removal, op-
erations that do not return an element are not counted.

The contention on the data-structure is controlled by a
computational load which is calculated between two opera-
tions of a thread. In the high-contention scenario the com-
putational load is a fi-calculation in 250 iterations, in the
low-contention scenario fi is calculated in 2000 iterations.
On average a computational load of 1000 iterations corre-
sponds to a delay of 2.3 µs on the 40-core machine.

6.1 Performance and Scalability Results

Figures 5a and 5b show performance and scalability in a
producer-consumer benchmark where half of the threads are
producers and half of the threads are consumers. These fig-
ures show results for the high-contention scenario. Results
for the low-contention scenario are similar, but less pro-
nounced – see Figure 7 in the supplementary material.

For TS-interval timestamping and TS-CAS timestamping
we use the optimal delay when exercised with 80 threads
on the 40-core machine, and with 64 threads on the 64-
core machine, derived from the experiments in Section 6.2.
The delay thus depends on the machine and benchmark.
The delay times we use in the benchmarks are listed in
Table 1. The impact of di�erent delay times on performance
is discussed in Section 6.2.
Comparison between implementations. TS-interval
is faster than the other timestamping algorithms in the
producer-consumer benchmarks with an increasing number
of threads. Interestingly the TS-atomic stack is faster than
the TS-hardware stack in the high-contention producer-
consumer benchmark. The reason is that since the push op-
erations of the TS-hardware stack are so much faster than
the push operations of the TS-atomic stack, elimination is
possible for more pop operations of the TS-atomic stack (e.g.
41% more elimination on the 64-core machine, see Table 2
in the supplementary appendix), which results in a factor of
3 less retries of tryRem operations than in the TS-hardware
stack. On the 40-core machine the TS-stutter stack is sig-
nificantly slower than the TS-atomic stack, while on the
64-core machine the TS-stutter stack is faster. The reason
is that on the 40-core machine TS-stutter timestamping is
significantly slower than TS-atomic timestamping (see Fig-
ure 5c). On the 40-core machine the TS-CAS stack is much
faster than the TS-hardware stack, TS-atomic stack, and
TS-stutter stack, on the 64-core machine it is slightly faster.
The reason is that on the 64-core machine a CAS is slower
in comparison to other instructions than on the 40-core
machine.
Comparison with other data-structures. With more
than 16 threads all TS stacks are faster than the Treiber
stack. On both machines the TS-interval stack and the TS-
CAS stack outperform the EB stack in the high-contention
producer-consumer benchmark with a maximum number of
threads, on the 64-core machine also the TS-stutter stack
and the TS-atomic stack are sightly faster than the EB stack.

We believe TS-interval’s and TS-CAS’s performance in-
crease with respect to the EB stack comes from three
sources: (a) more elimination; (b) faster elimination; (c)
higher performance without elimination. As shown in producer-
only and consumer-only experiments, the lack of push-
contention and mitigation of contention in pop makes our
stack fast even without elimination. Additional experiments
show that for example the TS-interval stack eliminates
7% and 23% more elements than the EB stack in high-
contention scenarios on the 40-core and on the 64-core ma-
chine, respectively. Thus we improve on EB in both (a)
and (c). (b) is di�cult to measure, but we suspect integrat-
ing elimination into the normal code path introduces less
overhead than an elimination array, and is thus faster.
Push performance. We measure the performance of push
operations of all data-structures in a producer-only bench-
mark where each thread pushes 1,000,000 element into the
stack. The TS-interval stack and the TS-CAS stack use
the same delay as in the high-contention producer-consumer
benchmark, see Table 1:

Figure 5c and Figure 5d show the performance and scala-
bility of the data-structures in the high-contention producer-
only benchmark. The push performance of the TS-hardware
stack is significantly better than the push of the other stack
implementations. With an increasing number of threads the
push operation of the TS-interval stack is faster than the

243

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(a) Producer-consumer benchmark, 40-core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(b) Producer-consumer benchmark, 64-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(c) Producer-only benchmark, 40-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 8 16 24 32 40 48 56 64

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(d) Producer-only benchmark, 64-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(e) Consumer-only benchmark, 40-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 8 16 24 32 40 48 56 64

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).

244

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 3000 6000 9000 12000 15000
 0

 1

 2

 3

 4

 5

 6

 7

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt
e

r)

n
u

m
b

e
r

o
f
re

tr
ie

s
 (

le
s
s
 i
s
 b

e
tt
e

r)

delay in ns

Performance TS-interval Stack
Retries TS-interval Stack

Performance TS-CAS Stack
Retries TS-CAS Stack

Figure 6: High-contention producer-consumer benchmark
using TS-interval and TS-CAS timestamping with increas-
ing delay on the 40-core machine, exercising 40 producers
and 40 consumers.

6.2 Analysis of Interval Timestamping

Figure 6 shows the performance of the TS-interval stack
and the TS-CAS stack along with the average number of
tryRem calls needed in each pop (one call is optimal, but
contention may cause retries). These figures were collected
with an increasing interval length in the high contention
producer-consumer benchmark on the 40-core machine. We
used these results to determine the delays for the bench-
marks in Section 6.1.

Initially the performance of the TS-interval stack in-
creases with an increasing delay time, but beyond 7.5 µs the
performance decreases again. After that point an average
push operation is slower than an average pop operation and
the number of pop operations which return EMPTY increases.

For the TS-interval stack the high performance correlates
strongly with a drop in tryRem retries. We conclude from this
that the impressive performance we achieve with interval
timestamping arises from reduced contention in tryRem. For
the optimal delay time we have 1.009 calls to tryRem per
pop, i.e. less than 1% of pop calls need to scan the SP
pools array more than once. In contrast, without a delay
the average number of retries per pop call is more than 6.

The performance of the TS-CAS stack increases initially
with an increasing delay time. However this does not de-
crease the number of tryRem retries significantly. The rea-
son is that without a delay there is more contention on the
global counter. Therefore the performance of TS-CAS with
a delay is actually better than the performance without a
delay. However, similar to TS-interval timestamping, with
a delay time beyond 6 µs the performance decreases again.
This is the point where an average push operation becomes
slower than an average pop operations.

7. TS Queue and TS Deque Variants

In this paper, we have focussed on the stack variant of our
algorithm. However, stored timestamps can be removed in
any order, meaning it is simple to change our TS stack into
a queue / deque. Doing this requires three main changes:

1. Change the timestamp comparison operator in tryRem.
2. Change the SP pool such that getYoungest returns the

oldest / right-most / left-most element.
3. For the TS queue, remove elimination in tryRem. For the

TS deque, enable it only for stack-like removal.

The TS queue is the second fastest queue we know of. In our
experiments the TS-interval queue outperforms the Michael-
Scott queue [18] and the flat-combining queue [10] but the
lack of elimination means it is not as fast as the LCRQ [1].

The TS-interval deque is the fastest deque we know of,
although it is slower than the corresponding stack / queue.
However, it still outperforms the Michael-Scott and flat-
combining queues, and the Treiber and EB stacks.

8. Related Work

Timestamping. Our approach was initially inspired by
Attiya et al.’s Laws of Order paper [2], which proves that
any linearizable stack, queue, or deque necessarily uses the
RAW or AWAR patterns in its remove operation. While
attempting to extend this result to insert operations, we
were surprised to discover a counter-example: the TS stack.
We believe the Basket Queue [15] was the first algorithm to
exploit the fact that enqueues need not take e�ect in order
of their atomic operations, although unlike the TS stack it
does not avoid strong synchronisation when inserting.

Gorelik and Hendler use timestamping in their AFC
queue [6]. As in our stack, enqueued elements are time-
stamped and stored in single-producer bu�ers. Aside from
the obvious di�erence in kind, our TS stack di�ers in several
respects. The AFC dequeue uses flat-combining-style con-
solidation – that is, a combiner thread merges timestamps
into a total order. As a result, the AFC queue is block-
ing. The TS stack avoids enforcing an internal total order,
and instead allows non-blocking parallel removal. Removal
in the AFC queue depends on the expensive consolidation
process, and as a result their producer-consumer benchmark
shows remove performance significantly worse than other
flat-combining queues. Interval timestamping lets the TS
stack trade insertion and removal cost, avoiding this prob-
lem. Timestamps in the AFC queue are Lamport clocks [17],
not hardware-generated intervals. (We also experiment with
Lamport clocks – see TS-stutter in §3.2). Finally, AFC queue
elements are timestamped before being inserted – in the TS
stack, this is reversed. This seemingly trivial di�erence en-
ables timestamp-based elimination, which is important to
the TS stack’s performance.

The LCRQ queue [1] and the SP queue [11] both index
elements using an atomic counter. However, dequeue opera-
tions do not look for one of the youngest elements as in our
TS stack, but rather for the element with the enqueue index
that matches the dequeue index exactly. Both approaches
fall back to a slow path when the dequeue counter becomes
higher than the enqueue counter. In contrast to indices,
timestamps in the TS stack need not be unique or even or-
dered, and the performance of the TS stack does not depend
on a fast path and a slow path, but only on the number of
elements which share the same timestamp.

Our use of the x86 RDTSCP instruction to generate hard-
ware timestamps is inspired by work on testing FIFO
queues [7]. There the RDTSC instruction is used to deter-
mine the order of operation calls. (Note the distinction be-
tween the synchronised RDTSCP and unsynchronised RDTSC).
RDTSCP has since been used in the design of an STM by Ruan
et al. [20], who investigate the instruction’s multi-processor
synchronisation behaviour.

Correctness. Our stack theorem lets us prove that the
TS stack is linearizable with respect to sequential stack
semantics. This theorem builds on Henzinger et al. who
have a similar theorem for queues [12]. Their theorem is

245

defined (almost) entirely in terms of the sequential order on
methods – what we call precedence, pr. That is, they need
not generate a linearization order. In contrast, our stack
theorem requires a relation between inserts and removes. We
suspect it is impossible to define such a theorem for stacks
without an auxiliary insert-remove relation (see §4.2).

A stack must respect several non-LIFO correctness prop-
erties: elements should not be lost or duplicated, and pop
should correctly report when the stack is empty. Henzinger
et al. build these properties into their theorem, making it
more complex and arguably harder to use. Furthermore,
each dequeue that returns EMPTY requires a partition ‘be-
fore’ and ‘after’ the operation, e�ectively reintroducing a
partial linearization order. However, these correctness prop-
erties are orthogonal to LIFO ordering, and so we simply
require that the algorithm also respects set semantics.

Implementation features. Our TS stack implementation
reuses concepts from several previous data-structures.

Storing elements in multiple partial data-structures is
used in the distributed queue [8], where insert and remove
operations are distributed between partial queues using a
load balancer. One can view the SP pools as partial queues
and the TS stack itself as the load balancer. The TS stack
emptiness check also originates from the distributed queues.
However, the TS stack leverages the performance of dis-
tributed queues while preserving sequential stack semantics.

Elimination originates in the elimination-backo� stack [9].
However, in the TS stack, elimination works by comparing
timestamps rather than by accessing a collision array. As
a result, in the TS stack a pop which eliminates a concur-
rent push is faster than a normal uncontended pop. In the
elimination-backo� stack such an eliminating pop is slower,
as synchronization on the collision array requires at least
three successful CAS operations instead of just one.

9. Conclusions and Future Work

We present a novel approach to implementing ordered con-
current data-structures like queues, stacks, and deques; a
high-performance concurrent algorithm, the TS stack; and
a new proof technique required to show the TS stack is cor-
rect. The broad messages that we draw from our work are:

• In concurrent data-structures, total ordering on internal
data imposes a performance cost and is unnecessary for
linearizability.

• However, weakened internal ordering makes establishing
correctness more challenging. Specification-specific theo-
rems such as our stack theorem can solve this problem.

Our work represents an initial step in designing and verifying
timestamped data-structures. In future work, we plan to ex-
periment with relaxing other internal ordering constraints;
with dynamically adjusting the level of order in response to
contention; with correctness conditions weaker than lineariz-
ability; and with relaxing the underlying memory model.

Acknowledgments

We thank Ana Sokolova for feedback, Frank Zeyda for help
with the Isabelle formalization, and Michael Lippautz for
help with Scal. We also thank the POPL referees for their
thoughtful comments. This work has been supported by
the National Research Network RiSE on Rigorous Systems
Engineering (Austrian Science Fund (FWF): S11404-N23).

References

[1] Y. Afek and A. Morrison. Fast concurrent queues for x86
processors. In PPoPP. ACM, 2013.

[2] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov,
M. Michael, and M. Vechev. Laws of order: expensive syn-
chronization in concurrent algorithms cannot be eliminated.
In POPL, 2011.

[3] G. Bar-Nissan, D. Hendler, and A. Suissa. A dynamic
elimination-combining stack algorithm. In OPODIS, 2011.

[4] M. Batty, M. Dodds, and A. Gotsman. Library abstraction
for C/C++ concurrency. In POPL, 2013.

[5] Computational Systems Group, University of Salzburg. Scal
framework. URL http://scal.cs.uni-salzburg.at.

[6] M. Gorelik and D. Hendler. Brief announcement: an asym-
metric flat-combining based queue algorithm. In PODC,
2013.

[7] A. Haas, C. Kirsch, M. Lippautz, and H. Payer. How FIFO
is your concurrent FIFO queue? In RACES. ACM, 2012.

[8] A. Haas, T. Henzinger, C. Kirsch, M. Lippautz, H. Payer,
A. Sezgin, and A. Sokolova. Distributed queues in shared
memory—multicore performance and scalability through
quantitative relaxation. In CF. ACM, 2013.

[9] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-
free stack algorithm. In SPAA. ACM, 2004.

[10] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combin-
ing and the synchronization-parallelism tradeo�. In SPAA,
2010.

[11] T. Henzinger, H. Payer, and A. Sezgin. Replacing compe-
tition with cooperation to achieve scalable lock-free FIFO
queues. Technical Report IST-2013-124-v1+1, IST Austria,
2013.

[12] T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-
oriented linearizability proofs. In CONCUR, 2013.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., 2008.

[14] M. Herlihy and J. Wing. Linearizability: a correctness con-
dition for concurrent objects. TOPLAS, 12(3), 1990.

[15] M. Ho�man, O. Shalev, and N. Shavit. The baskets queue.
In OPODIS. Springer, 2007.

[16] Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual, volume 3b: System programming guide,
part 2, 2013. URL http://download.intel.com/products/

processor/manual/253669.pdf.
[17] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications ACM, 21, July 1978.
[18] M. Michael and M. Scott. Simple, fast, and practical non-

blocking and blocking concurrent queue algorithms. In
PODC. ACM, 1996.

[19] H. H. Nguyen and M. Rinard. Detecting and eliminating
memory leaks using cyclic memory allocation. In ISMM.
ACM, 2007.

[20] W. Ruan, Y. Liu, and M. Spear. Boosting timestamp-based
transactional memory by exploiting hardware cycle counters.
In TRANSACT, 2013.

[21] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. x86-TSO: a rigorous and usable programmer’s
model for x86 multiprocessors. Commun. ACM, 53(7), 2010.

[22] R. Treiber. Systems programming: Coping with parallelism.
Technical Report RJ5118, IBM Almaden Research Center,
April 1986.

246

