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Abstract. Modern program logics have made it feasible to verify the
most complex concurrent algorithms. However, many such logics are com-
plex, and most lack automated tool support. We propose Starling, a new
lightweight logic and automated tool for concurrency verification. Star-
ling takes a proof outline written in an abstracted Hoare-logic style, and
converts it into proof terms that can be discharged by a sequential solver.
Starling’s approach is generic in its structure, making it easy to target
different solvers. In this paper we verify shared-variable algorithms using
the Z3 SMT solver, and heap-based algorithms using the GRASShopper
solver. We have applied our approach to a range of concurrent algorithms,
including Rust’s atomic reference counter, the Linux ticketed lock, the
CLH queue-lock, and a fine-grained list algorithm.

1 Introduction

Shared-memory concurrent algorithms are critical components of many systems,
for example as locks, reference counters, work-queues, and garbage collectors [12].
These algorithms must achieve high performance, while also enforcing proper-
ties such as mutual exclusion and safe memory reclamation. In pursuit of per-
formance, modern algorithms have become increasingly complex. As a result,
by-hand correctness arguments are unreliable, and formal verification remains
very challenging.

Concurrent algorithms often depend on intangible concepts such as thread-
local ownership of resources, and protocols between threads. For example, a
thread that acquires a lock takes ownership of the guarded resource, and the
mutual exclusion protocol forbids other threads from accessing the lock at the
same time. Beginning with Concurrent Separation Logic (CSL) [18], program
logics have integrated these concepts directly in reasoning, which has enabled
the verification of many challenging algorithms (see Sect. 7, Related Work).

However, these logics derived from CSL are very complex, with auxiliary
proof constructs such as fractional permissions, shared regions, and labelled tran-
sition systems. Complexity makes these logics difficult to learn and difficult to
reason with, and non-standard proof constructs make tooling hard to develop,
and therefore rare. As a result, there are substantial barriers to applying these
logics in practice.
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We present Starling, a new program logic and verification tool for concurrent
algorithms. Our approach is inspired by CSL and its relatives, but we dispense
with heavyweight auxiliary proof concepts. Starling’s proofs are lightweight, easy
to read, and easy to automate – but powerful enough to verify challenging con-
current algorithms.

Starling’s approach is based on views – units of linear, invariant information
that can be held by a single thread. Proofs in Starling are written in a light-
weight proof-outline style, with views annotating program points and constraints
defining their meaning in the underlying domain. Notions such as ownership and
protocol can be expressed through interactions between views. For example, we
can have a view expressing that the thread holds a lock, then express mutual
exclusion by forbidding two threads from holding this view at the same time.

Starling’s reasoning is built on the pre-existing Views framework [6]: this
was designed as an off-the-shelf metatheory for encoding other logics, but we
instead instantiate it directly as a simple view-based logic. The Views framework
works by reducing a concurrent proof to multiple applications of a single core
proof rule. We use this to reduce a Starling proof to a collection of verification
conditions that can be discharged using a sequential solver. Building on the
Views framework means that Starling requires minimal extra metatheory and
can easily be automated.

Our approach is agnostic to the underlying data domain: we require only an
appropriate sequential solver. In this paper, we instantiate our approach with two
domains. First, for algorithms that use shared variables and linear arithmetic, we
generate SMT queries, which are discharged using Z3 [5]. For algorithms that use
dynamic linked data-structures, we generate queries written in separation logic,
which we discharge using GRASShopper [20]. In both cases, our approach lets us
map uniformly from concurrent reasoning into sequential verification conditions.

We have tested Starling on a collection of real-world concurrent algorithms.
Many of these are synchronisation algorithms, one of the most important class of
concurrent algorithm. Our running example is Rust’s Atomic Reference-Count
algorithm, which prevents reuse of an object after it has been freed. We also
verify several different lock algorithms including the CLH queue-lock algorithm,
Peterson’s algorithm, and a fine-grained list algorithm. As is often the case in
concurrency, these algorithms are small in size but exhibit killer subtleties that
make verification very challenging. Other approaches would require considerably
more proof annotations, or customised auxiliary proof constructs. We show that
these algorithms can be verified using a lightweight, automated approach.

Our tool is open source (MIT license) and available on GitHub:

https://github.com/septract/starling-tool

2 Motivating Example: ARC

The Atomic Reference-Count (ARC) algorithm is used to ensure that a shared
object is not disposed before all threads are finished with it. In Rust, the ARC

https://github.com/septract/starling-tool
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forms an important part of the concurrency model [23]. Our version of the ARC
has three operations:

clone: Clone the ARC reference and increment the counter.
access: Fetch or modify the object stored in the ARC.
drop: Destroy an ARC reference by decrementing the counter. If the count is

0, dispose the shared object.

2.1 Specification

To specify the ARC using our approach, we first declare the view atom arc(). A
view atom is a unit of linear, invariant information that can be held by a thread.
The atom arc() states the thread holds a single reference to the ARC object. We
do not specify the meaning of arc() in the program state yet (in this way view
atoms resemble the abstract predicates of Dinsdale-Young et al [8]).

View atoms can be conjoined into unboundedly large views using the compo-
sition operator, ∗. This operator is linear, not standard conjunction: for example
the view arc() ∗ arc() ∗ arc() asserts that the thread holds three separate refer-
ences to the ARC object. A thread could also hold zero references to the ARC,
represented by the special unit view emp. The ∗ operator is generalised from sep-
arating conjunction in separation logic, but views need not have disjoint heap
representations.

Using arc() and emp, we give the ARC operations Hoare-style specifications:

{arc()} clone() {arc() ∗ arc()}
{arc()} access() {arc()}
{arc()} drop() {emp}

The clone method creates a new reference, represented by a duplicate arc()
atom in its postcondition. The access method requires an ARC reference to
ensure the object has not been disposed: the arc() atom in its precondition
represents this. The drop method takes an ARC reference, represented by an
arc() atom, and destroys it leaving emp.

In our tool, specifications are implicitly framed with arbitrary views. The
frame represents other views held locally or by other threads. For example, the
thread might hold three ARC references, and then call drop():

{arc() ∗ arc() ∗ arc()} drop() {arc() ∗ arc()}
As can be seen, the frame arc() ∗ arc() is unaffected by calling drop(). Like-

wise, if some other thread held arc() ∗ arc() it would be unaffected by the call.
Framing means that every view must continue to hold irrespective of the

behaviour of other threads. However, arc() atoms are not independent in their
underlying representation, nor between each other. In their representation, all
the arc() views refer to the same shared variables. Also, the reference count
must not be smaller than the total number of arc() atoms across all threads –
otherwise a thread could access the object after it has been disposed. Reasoning
about this combination of thread-local views and inter-thread interaction is the
core problem that our approach solves.
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1 // View atom declarations

2 view iter arc();

3 view countCopy(int c);

4

5 // Create a new reference to the ARC

6 method clone() {

7 {| arc() |}

8 <| count++; |>

9 {| arc() * arc() |}

10 }

11

12 // Remove an ARC reference and dispose if possible

13 method drop() {

14 {| arc() |}

15 <| c = count--; |>

16 {| countCopy(c) |}

17 if (c == 1) {

18 {| countCopy(1) |}

19 <| free = true; |>

20 {| emp |}

21 }

22 {| emp |}

23 }

24

25 // Access the ARC contents - Model with a test of free

26 method access() {

27 {| arc() |}

28 <| f = free; |>

29 {| if (f) { false } else { arc() } |}

30 if (f) {

31 {| false |}

32 <| error; |> // Models a bad dereference.

33 {| false |}

34 }

35 {| arc() |}

36 }

37

38 // Constraints on countCopy()

39 constraint countCopy(c) -> c == 1 => (!free && count == 0);

40 constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

41

42 // Iterated constraint on arc()

43 constraint iter[n] arc() -> n > 0 => (!free && n <= count);

Fig. 1. Shared-variable version of ARC, and proof.

2.2 Proof

Figure 1 shows an ARC implementation, and a proof that it satisfies our specifi-
cation. (Here, and elsewhere, we elide some details such as variable declarations.)



548 M. Windsor et al.

In this implementation we model a single ARC instance by shared variables.
The integer variable count holds the reference count, while disposal is modelled
by the boolean variable free. This simplification to variables means we can
discharge the proof using an SMT solver. Below, we verify a heap-allocated
ARC using the GRASShopper separation-logic solver.

Our programming language is a standard while-language, with atomic com-
mands written with angle-brackets, <| |>. The proof itself consists of Hoare-
style assertions, written in views, that are interleaved into the program. These
assertions are written using assertion brackets {| |} As well as plain views,
views can hold conditional on local variables: for example, in Fig. 1 we write
{| if (f) { false } else { arc() } |}. The complete syntax for Starling’s
input language is given in AppendixA.

In addition to the arc() atom discussed above, the proof uses the additional
atom countCopy(c), which represents the fact that c was previously observed as
the value of count. (It does not mean that count is currently c, as count can
change through the action of other threads).

The meaning of the views in the underlying program state is given by con-
straints. There are unboundedly many possible composite views, but we need
only give meanings for a minimal set of defining views – meanings for others are
derived from these. Section 3 explains how this derivation works.

In Fig. 1, the meaning of a single countCopy(c) atom is given by the following
constraint:

constraint countCopy(c) -> c == 1 => (!free && count == 0);

Once a thread observes count as 1 in a fetch-and-decrement, the ARC cannot
be disposed by any other thread, and the value of count will always be zero. This
depends on count accurately recording the number of references to the ARC:
once count is 1, the only thread with access is the current one.

Constraints can also specify interactions between views. Interactions can be
between views on the same or multiple different threads – we make no distinction
between the two. In Fig. 1, two countCopy(c) atoms have the following meaning:

constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

If two threads take copies of count, only one of them can equal 1: again, this
depends on the counter accurately recording the number of references.

The final important properties represented in the proof are, first, that the
ARC is not disposed until all references are removed; and, second, that count
accurately records the number of references. Each arc() atom represents a refer-
ence, so we need the following:

n > 0 atoms
︷ ︸︸ ︷

arc() ∗ arc() ∗ · · · ∗ arc() =⇒ ¬disposed ∧ n ≤ ref-count.
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In the proof, this is expressed directly by the following constraint on views:

constraint iter[n] arc() -> n > 0 => (!free && n <= count);

The iter[n] keyword indicates that we have n instances of the arc() atom
on the same thread or across different threads.

2.3 Heap-Allocated ARC

The implementation in Fig. 1 modelled a single ARC by shared variables – as
a result, we can discharge this proof using an SMT back-end. In Fig. 2, we
give a more realistic implementation where ARCs are heap-allocated structs.
To discharge this proof, we use GRASShopper, a solver for separation logic [20].

The most important implementation change is a new method init which
allocates a new ARC. This method has the following specification:

{emp} init() {arc(ret)}
A further difference is that heap commands are written in GRASShopper’s

input language. We embed these using the special brackets %� �, and allow
variables to be referenced using the inner brackets [| |]. For example, in clone,
we write the following for an atomic increment:

<| %{[|x|].count := [|x|].count + 1}; |>

By combining heap commands we can build complex atomic operations – for
example an atomic fetch-and-decrement operation, as used in drop:

<| c = %{ [|x|].count }; %{ [|x|].count := [|x|].count - 1 }; |>

Despite the fact that this implementation targets a much richer domain than
shared variables, we can apply the same proof strategy as Fig. 1. The same
views are needed, though they are now parameterised by the address of the
ARC. Likewise, the same constraints are needed, modified to use GRASShopper’s
constraint language. As with commands, we embed GRASShopper assertions
using the special brackets %� �. For example, this is the constraint on a single
countCopy(x, c) atom:

constraint countCopy(x, c) ->

c == 1 => %{ [|x|] in ArcFoot && [|x|].count == 0};

Here, [|x|] in ArcFoot requires that x is in the set of allocated ARCs
– this corresponds to the requirement that free is false in Fig. 1. Likewise,
[|x|].count == 0 corresponds to the constraint on the value of count.

With both the variable-based and heap-based versions of the ARC, our app-
roach gives a simple proof that captures the algorithm’s linear nature. Our app-
roach lets us convert these lightweight proofs into verification conditions that
can be discharged by either SMT or GRASShopper as appropriate. We next
explain how this translation works.



550 M. Windsor et al.

1 struct ArcNode {

2 var count: Int;

3 var val: Int;

4 }

5

6 view iter arc(ArcNode x);

7 view countCopy(ArcNode x, Int c);

8

9 method init() {

10 {| emp |}

11 <| ret = %{new ArcNode};

12 %{ [|ret|].count := 1 }; |>

13 {| arc(ret) |}

14 }

15

16 method clone(ArcNode x) {

17 {| arc(x) |}

18 <| %{ [|x|].count := [|x|].count + 1 }; |> // Atomic increment

19 {| arc(x) * arc(x) |}

20 }

21

22 method drop(ArcNode x) {

23 {| arc(x) |}

24 <| c = %{ [|x|].count }; // Atomic fetch-and-decrement

25 %{ [|x|].count := [|x|].count - 1 }; |>

26 {| countCopy(x, c) |}

27 if (c == 1) {

28 {| countCopy(x, 1) |}

29 <| %{ free([|x|]) }; |>

30 {| emp |}

31 }

32 {| emp |}

33 }

34

35 method access(ArcNode x) {

36 {| arc(x) |}

37 <| pval = %{ [|x|].val }; |>

38 {| arc(x) |}

39 }

40

41 constraint countCopy(x, c) ->

42 c == 1 => %{ [|x|] in ArcFoot && [|x|].count == 0 };

43 constraint countCopy(x, m) * countCopy(y, n) ->

44 x == y => ((m != 1) || (n != 1));

45

46 constraint iter[n] arc(x) ->

47 n > 0 => %{ [|x|] in ArcFoot && [|n|] <= [|x|].count };

Fig. 2. Heap-allocated version of ARC, and proof.
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3 Theory

Starling’s theory works by recasting the pre-existing Views framework [6] into a
form suitable for automation. As the Views framework has been proved sound
in Coq, this gives us a simple way of justifying the soundness of our translation
into a set of verification conditions.

3.1 Owicki-Gries

For comparison, we first consider the Owicki-Gries method [19], one of
the simplest approaches to Hoare-style verification of a concurrent program.
Owicki-Gries presents us with a single core rule for validating a proof outline.1

Let Axioms be the set of atomic Hoare triples of the proof; Formula the set of
all formulas used in the outline; and |=Hoare the entailment rule for Hoare logic.
Then, the Owicki-Gries proof rule is written as:

∀ {P} c {Q} ∈ Axioms. ∀F ∈ Formula. |=Hoare {P ∧ F} c {Q ∧ F}

This rule expresses two key correctness properties for a concurrent system.
First, each command behaves correctly in a sequential setting – the post-state
Q is established from the pre-state P . Second, no command interferes with any
properties needed by other threads – the frame F is preserved by c.

To achieve completeness, Owicki-Gries needs auxiliary variables: additional
variables that capture key aspects of the local state of each thread. To encode
Starling into Owicki-Gries, we would need to use auxiliary variables to encode the
more rich interactions our constraint system permits. However, these variables
can hide the details of the verification and make proof discovery harder. We need
a different approach.

3.2 Views

We eliminate the need for auxiliary variables, while keeping much of the shape
and simplicity of Owicki-Gries, by building on the Views framework [6]. Views
was originally an off-the-shelf metatheory for proving the soundness of concurrent
reasoning systems; we recast it as an Owicki-Gries-style proof rule. In this paper,
we introduce just enough of the Views framework to support Starling’s theory –
this fits with the framework’s purpose as reusable metatheory.

The Views framework is designed to allow a broad range of reasoning systems
to be encoded into a small set of parameters. If these parameters satisfy a few
key properties, the encoded reasoning system is sound.

The parameters that must be instantiated include the sets Views, from which
all assertions in the logic are derived; Cmds, containing atomic commands; and
Axioms, containing the atomic Hoare triples over views and commands. The
reasoning system must also define a view composition operator ∗ and unit view

1 We simplify Owicki-Gries to a setting where all threads execute the same code.
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emp, which together must form a monoid with Views; a reification function � 	
mapping Views to their representation in the underlying state; and a semantic
function � � mapping atomic commands to state transformers.

Taken together, these parameters must satisfy the key property of axiom
soundness:

∀ {P} c {Q} ∈ Axioms. ∀V ∈ Views. �c��P ∗ V 	 ⊆ �Q ∗ V 	 (1)

This rule requires that every atomic Hoare triple generated by the reasoning
system upholds sequential correctness, and inter-thread non-interference, just as
we saw in Owicki-Gries. As the Views approach makes no distinction between
contexts that on the same thread or other threads, it captures both Concurrent
Separation Logic’s Frame and Parallel rules:

{P} C {Q}
{P ∗ F} C {Q ∗ F} Frame

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗ Q2}

Parallel

In Starling, we recast Rule (1) to generate verification conditions from proofs.
In comparison to Owicki-Gries, the Views proof rule allows us to avoid auxiliary
variables in most cases. In Owicki-Gries, assertions and contexts are joined by
conjunction, but in the Views rule they are joined by view composition, ∗, and
their reification is defined separately. This means that we can define interac-
tions between views that go beyond their individual reifications – for example to
enforce mutual exclusion between views. This gives our proof system its power.

3.3 Instantiating the Views Rule

We first instantiate the Views framework parameters in a way that is suitable for
Starling’s reasoning. For Starling, view atoms consist of a name and a sequence
of value arguments, and views are multisets of view atoms. More formally, we
define Views as:

ViewAtoms � String × seq Value

Views � multiset ViewAtoms

(Below we sometimes call these plain views to distinguish them from constructs
such as view patterns.)

Starling Views form a monoid with the multiset union ∪m as the view com-
position ∗, and the empty multiset ∅ as the unit view emp.

We first change Rule (1) by making the state accessed by a command explicit.
We model the state as a pair (l, s) of thread-local and shared components. The
command semantics �c� is then a relation over these states. We write �P 	(s) to
say that state s is in the representation of P , and (for now) ignore the local
state. The resulting rule is:

∀ {P} c {Q} ∈ Axioms.
∀((l, s), (l′, s′)) ∈ �c�.∀V ∈ Views. �P ∗ V 	(s) ⇒ �Q ∗ V 	(s′) (2)
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For example, in Fig. 1, of the atomic triples in Axioms is:

{arc()} <|count++;|> {arc() ∗ arc()}

Rule (2) yields a proof term with the following shape for each combination of
this triple and frame V :

∀((l, s), (l′, s′)) ∈ �count++�.∀V ∈ Views. �arc() ∗ V 	(s) ⇒ �arc() ∗ arc() ∗ V 	(s′)

3.4 Integrating Local State

Rule (2) is not sufficient for the ARC proof in Fig. 1. First, the view atom
countCopy(c) refers to a local variable c, not a value. Second, the view arc()
is defined using the iterator variable n. Finally, we need the ability to choose
whether atoms appear in a view based on local conditions to encode assertions
such as {| if (f) { false } else { arc() } |}.

To incorporate these local-state properties into the rule, we introduce syn-
tactic view expressions, with the following syntax:

P :: = emp | (B → a[n](e)) ∗ P

View expressions are used to encode Starling’s assertion syntax. Each view
expression P is a ∗-composition of atom expressions. These have a name a, a list e
of integer or boolean argument expressions, an integer iterator expression n, and
a boolean guard expression B. The argument, iterator, and guard expressions
are all interpreted in the local state.

To map a view expression to a view, we must interpret its local-state expres-
sions. Given a local state l and expression X, we write l(X) for the value of X in
l. Using this, we define a function �−�l which maps from view expressions into
views:2

�emp�l � ∅
�B → a[n](e) ∗ P �l � �P �l ∪m

{

{a(l(e)) �→ l(n)} if l(B)
∅ otherwise

Here, the empty view expression maps to an empty multiset, i.e. the unit
plain view. Other view expressions map to the appropriate view atoms, dictated
by the values of the local-state expressions. The argument expressions dictate
the values of the view atom’s arguments. The guard expression controls whether
any view atoms are created, and the iterator expression dictates the number of
instances of the view atom.

2 Note that we have a composition operator ∗ and unit emp in both view expressions
and plain views. This definition links the two levels: to avoid confusion here, for
plain views we use their semantic definitions ∪m and ∅.
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To integrate this into our core proof rule, we amend Axioms so that pre- and
post-conditions are view expressions, not plain views. This means that they must
be interpreted by the semantic function �−�l. Our modified rule is as follows:

∀ {P} c {Q} ∈ Axioms.
∀((l, s), (l′, s′)) ∈ �c�.∀V ∈ Views. ��P �l ∗ V 	(s) ⇒ ��Q�l′ ∗ V 	(s′) (3)

3.5 Context Reduction

The quantification ∀V over context views means that Rule (3) cannot be used
directly for automated verification. As two smaller views can be composed into
a larger one, there are arbitrarily many possible values of V , and by default we
must consider them all.

Other logics allow a degree of context reduction here. For example, in
Owicki-Gries, if two threads separately assert F1 and F2, and each is preserved,
we need not consider the context F1 ∧F2. This means we can validate our proof
outline for an unbounded number of threads by considering a finite set of entail-
ments.

We cannot use this simple context reduction, because in Views any context
may contribute information not represented in its sub-views. This generality is
desirable – it is what gives our proof system its power. We can preserve it while
gaining context reduction by defining reification in a particular way.

Defining Function. The first restriction on reification is we only consider func-
tions where the reification of a composite view implies the conjunction of its
sub-view reifications. In other words, view composition cannot lose information,
which lets us avoid considering sub-views of composite views. More formally, we
require that for all views, �P ∗ Q	 ⇒ �P 	 ∧ �Q	.

The second restriction is that we bound the set of views that can contribute
information to the reification. Intuitively, this means that we only need to con-
sider these defining sub-views in our proof rule. To enforce this, we require that
the reification function is derived from a syntactic defining function.

In a Starling proof, the defining function is given precisely by the constraints.
For example, in Fig. 1 we have:

constraint countCopy(m) * countCopy(n) -> (m != 1) || (n != 1);

On the left we have a view pattern countCopy(m) * countCopy(n), while
on the right we have a formula giving the meaning for this pattern.

View patterns allow a definition to match many different views with similar
shapes. A view pattern r has the syntax:

r :: = emp | a[n](x) ∗ r

A pattern is either emp, or a ∗-composition of pattern atoms. Each atom has
a name a, variable arguments x which bind to the arguments of a view atom,
and an iterator variable n which records the number of view atoms matched.
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A definition is then a tuple (y, r, p) where, r is a view pattern, p is a formula
of the underlying theory, and y is a set of free variables used in the definition.
In the example constraint above, y is the set of variables {m,n}, the pattern r
is countCopy[1](m) ∗ countCopy[1](n), and the formula p is (m �= 1) ∨ (n �= 1).

A defining function D is then a finite set of definitions (derived from the
constraints in the proof). Using such a D, we can then induce a reification
function where only definitions contribute information. The reification of a view-
expression V , for a shared state s, is the conjunction of all the definitions that
match some sub-view of V .

�V 	(s) �
∧

(y,r,p)∈D

∀̂y. r ⊆m V =⇒ p(s)

We write r ⊆m V (using multiset subset) to indicate that r is a sub-view of
V , meaning there is a pattern match.

A pattern may be matched under any instantiations of its free variables y. We
express this using the special quantification ∀̂y. Given a formula X that includes
r and p, ∀̂y.X is shorthand for quantifying over all possible assignments to y,
and substituting in r and p. This has the effect of converting r into a plain view.
Many theories, such as SMT, can natively handle the ∀̂y construction without
further expansion.

Fig. 3. Derivation of Rule (4), with outer quantifiers elided.

Rule Context Reduction. Using this definition, we can modify Rule (3) to reduce
the contexts we consider to just those in the defining function.
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First we introduce two lemmas. The first lemma (reification monotone) states
that the reifications of larger views are more restrictive than those of smaller
views. This justifies us considering only defining views in the premise of the
proof rule, because any larger context will be more restrictive.

Lemma 1. (Reification monotone). V1 ⊆m V2 =⇒ (∀s.�V2	(s) ⇒ �V1	(s))
The second lemma (view adjoint) defines the relationship between multiset

union ∪m, multiset subset ⊆m, and multiset minus \m. We use \m in our new
rule to construct a ‘weakest context’, analogous to a weakest precondition.

Lemma 2. (View adjoint). (V1 \m V2) ⊆m V3 =⇒ V1 ⊆m (V2 ∪m V3)

Now we take Rule (3) and (eliding the two outer quantifiers) rewrite it as
shown in Fig. 3. This at last gives us Starling’s core proof rule:

∀ {P} c {Q} ∈ Axioms.∀((l, s), (l′, s′)) ∈ �c�.

∀(y, r, p) ∈ D. ∀̂y. ��P �l ∪m (r \m �Q�l′)	(s) ⇒ p(s′)
(4)

This is the rule that we use to generate verification conditions from Starling
input proofs such as Fig. 1. The atomic steps of the program form the set Axioms;
the built-in semantics of commands specify �c�; and the constraints specify the
defining function D and the reification �−	. The significant advantage of this rule
is that, rather than quantify over an infinite set of context views, it quantifies
only over finite sets, and therefore generates a finite set of proof terms.

Consider the arc() proof term we examined in Sect. 3.3. If rather than using
Rule (2), we apply our new rule, we get the following outcome:

∀((l, s), (l′, s′)) ∈ �count++�.

∀(y, r, p) ∈ D. ∀̂y.��arc()�l ∪m (r \m �arc() ∗ arc()�l′)	(s) ⇒ p(s′)

3.6 Finite Pattern Matching

Rule (4) gives us a finite set of proof terms. However, we must also translate
each term into finitely many verification conditions. The key issue is ensuring
that the number of pattern matches in each reification is finite.

Most cases of pattern matching are trivially finite, but iterated views require
careful treatment. An iterated view expression B → a[n](y) can produce n many
subviews. As a result, if a view pattern r and view V are both iterated, there
may be unboundedly many valid distinct matches (for i = 1, 2, . . .).

To solve this, a definition (y, r, p) where p is dependent on an iterator n must
satisfy the following downclosure properties:

�emp	(s) =⇒ p[0/n](s) (base downclosure)

∀x ∈ Z
+.p[x/n](s) =⇒ p[x − 1/n](s) (inductive downclosure)



Starling: Lightweight Concurrency Verification with Views 557

These properties let us just consider the largest iterator value when construct-
ing pattern matches. Our tool checks downclosure as an extra proof obligation.

A further subtlety is that iterated definitions can match against combinations
of atoms when they can be made equal through parameter equality. For example,
A[n](x) matches (B1 → A[i](y)) ∗ (B2 → A[j](z)) to form ((B1 ∧ B2 ∧ y = z) →
A[i + j](y)). We can solve this by expanding out the equalities as if they are
separate view atoms before matching – this does not change the view’s meaning.

4 SMT Back-End

We now have a proof outline for the ARC (Sect. 2) and a proof rule to convert it
into verification conditions (Sect. 3). We now show how to verify these conditions
using an SMT solver – in our case, Z3 [5]. To do this, we must convert the defining
function, multiset minus, and command semantics into forms supported by Z3.

Definition Quantification. We begin by eliminating the defining function. Con-
sider the following term we generated from our running example at the end of
Sect. 3.5:

∀((l, s), (l′, s′)) ∈ �count++�.

∀(y, r, p) ∈ D. ∀̂y.��arc()�l ∪m (r \m �arc() ∗ arc()�l′)	(s) ⇒ p(s′)

As the defining function D is bounded, we can expand the quantification into
a finite set of terms. For example, for the pattern arc[n](), we get the following
term:

∀((l, s), (l′, s′)) ∈ �count++�.∀n.
��arc()�l ∪m (�arc[n]()�l′ \m �arc() ∗ arc()�l′)	(s)

⇒ (n > 0 ⇒ ¬free ∧ n ≤ count)(s′)

We get this by substituting the view pattern into the left of the implication
in place of r, and the corresponding formula into the right in place of p. We also
eliminate the ∀̂y by quantifying over the single variable n that is bound in y.
For simplicity later, we treat r as a view expression over l′.

Multiset Minus. We next eliminate multiset minus. We can easily reduce our
proof term so that all instances of \m have the following shape:

�B1 → a[n1](y1)) ∗ P �l′ \m �B2 → a[n2](y2)�l′

We eliminate this shape by case-splitting on the relationship between B1

and B2, n1 and n2, and y1 and y2. The main subtlety is that some, but not all
instances in the iterator a[n1] may be subtracted, i.e. we may be left with the
iterator a[n1 − n2]. If we are left with anything on the right of the \m, we then
apply the simplification step to the remainder formula P .
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In our example, subtracting �arc()∗arc()�l′ from �arc[n]()�l′ leaves n−2 copies
of arc(). If n ≤ 2, nothing is left: we express this as a guarded view. The multiset
minus rewrite yields the following term:

∀((l, s), (l′, s′)) ∈ �count++�.∀n.
��arc()�l ∪m �(n > 2 → arc[n − 2]())�l′	 ⇒ (n > 0 ⇒ ¬free ∧ n ≤ count)(s′)

Commands as Predicates. To eliminate the command, we recast it as a boolean
predicate over pre- and post-states. To do so, we instantiate two copies of each
variable: one set for (l, s), and another (primed) set for (l′, s′). We conjoin this
command predicate into the proof term, replacing the outer quantification with
implicit ones over the variable sets. Expanding out the reification and the local-
state interpretations, and ensuring we handle the subtleties in Sect. 3.6, we get:

⎛

⎜

⎜

⎝

count′ = count + 1 ∧ free′ = free ∧ c′ = c
∧ (1 > 0 ⇒ ¬free ∧ 1 ≤ count)
∧ (n > 2 ⇒ (n − 1 > 0 ⇒ ¬free ∧ n − 1 ≤ count))
∧ (n > 2 ⇒ (n − 2 > 0 ⇒ ¬free ∧ n − 2 ≤ count))

⎞

⎟

⎟

⎠

=⇒ (n > 0 ⇒ ¬free′ ∧ n ≤ count′)

SMT Term. Finally, we negate the outer implication for each condition, so Z3
tries to find counter-example instantiations for the condition’s variables. We can
also simplify the term. For example, we remove the n − 2 case, as it is implied
by the n−1 case. The resulting term, in the SMT-LIB language accepted by Z3,
is:

(and (= count’ (+ count 1)) (= free’ free) (= c’ c) (not free) (<= 1 count)

(=> (> n 2) (<= (- n 1) count))

(not (=> (> n 0) (and (not free’) (<= n count’)))))

5 GRASShopper Back-End

For heap-based programs like the ARC in Fig. 2, we target the GRASShopper
solver [20] rather than Z3. GRASShopper is a separation-logic solver, but its
underlying model is based on sets of heap locations and reachability properties
over sets. For example, the following GRASShopper predicate asserts that the
set of locations Footprint contains a list with head x and tail y:

predicate list_segment(Footprint: Set<Node>, x: Node, y: Node) {

acc(Footprint) &*&

Footprint = {z: Node :: Btwn(next,x,z,y)}

}

Here, acc(Footprint) is a spatial assertion claiming ownership of the
locations in Footprint. The Btwn(next,x,z,y) predicate asserts that z is
reachable between x and y by following the next field – in other words,



Starling: Lightweight Concurrency Verification with Views 559

z is in the list starting at x and ending at y. The set comprehension
{z: Node:: Btwn(next,x,z,y)} therefore contains the set of locations in the
list.

Most of the pipeline for producing GRASShopper proofs is similar to the
SMT case. However, the presence of a heap model causes some differences. Sup-
pose we try to model the allocated ARC equivalent of our previous working
example,

{arc(x)} <| count++; |> {arc(x) ∗ arc(x)}

Given a context of arc(x) ∗ arc(x) (that is, the same x as in the local state of
the thread), our translation would give the following in pseudo-SMT format:

(and %{ [|x|].count := [|x|].count + 1; }

%{ [|x|] in ArcFoot && 1 <= [|x|].count }

(=> (> n 2) (and %{ [|x|] in ArcFoot } (<= (- n 1) %{ [|x|].count })))

(not (=> (> n 0) (and %{ [|x|] in ArcFoot } (<= n %{ [|x|].count })))))

As we cannot discharge this term using SMT, we convert it into a
GRASShopper procedure. Input and output variables are represented by argu-
ments to the procedure. The command becomes the procedure body, and the
left- and right-hand sides of the proof rule body become requires and ensures
clauses.

Both the requires and ensures clause existentially quantify over a footprint
set representing the whole heap – in the ARC, this is the ArcFoot set. This allows
predicates to require access to the footprint, represented by acc(ArcFoot), and
to conjoin constraints on this shared footprint arising from the views.

In general, it would not be sound to introduce an arbitrary existential to
the consequent side of the term. The problem is that existential might be wit-
nessed differently across different terms (see the derivation in Sect. 3). However,
our encoding into GRASShopper is sound, because GRASShopper will always
witness the footprint the same way, as the set of all available heap locations.

With this translation, the above pseudo-SMT query becomes:

procedure Example (n: Int, x: ArcNode)

requires exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&

((x in ArcFoot && 1 <= x.count) &&

(n <= 2 || (x in ArcFoot && n <= x.count)))

)

ensures exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&

(n <= 0 || (x in ArcFoot && n <= x.count))

)

{ x.count := x.count + 1; }
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In some cases we need to model the mutation of variables. To do this, we
declare fresh GRASShopper variables in the procedure body, and connect them
to the input and output variables by assertion.

5.1 Example: CLH Queue Lock

GRASShopper’s support for dynamic data-structures allows us to target much
more complex algorithms than the ARC. In this section we verify the queue-
based CLH lock [16], which also demonstrates a subtle ownership-transfer pat-
tern between threads. For space reasons, we give the main proof in AppendixB,
and here only explain the key details.

The code and inline views are given in Fig. 4. In the CLH lock, each partic-
ipating thread owns a single node. To contend for the lock, a thread adds its
own node to the queue, and waits on its predecessor. Releasing the lock means
setting the node’s lock flag to false. Once the predecessor is released, the thread
can take hold of the lock.

This protocol is reflected in the views in Fig. 4. A node starts life dormant,
i.e. not on the queue. It is then made active when its lock flag is set, and then
is queued. Once the algorithm establishes that the node is at the end of the
queue, it becomes locked. Finally, once the lock is released the node leaves the
queue, and it becomes dormant again.

1 method lock() {

2 {| dormant(mynode) |}

3 <| %{ [|mynode|].lock := true }; |>

4 {| active(mynode) |}

5 <| mypred = tail; tail = mynode;

6 %{[|tail|].pred := [|mypred|]}; |>

7 {| queued(mynode, mypred) |}

8 do {

9 {| queued(mynode, mypred) |}

10 <| test = %{ [|mypred|].lock }; |>

11 {| if (test) {queued(mynode, mypred)}

12 else {locked(mynode, mypred)} |}

13 } while (test);

14 {| locked(mynode, mypred) |}

15 }

1 method unlock() {

2 {| locked(mynode, mypred) |}

3 <| %{ [|mynode|].lock := false };

4 %{ [|mynode|].pred := null };

5 head = mynode; |>

6 {| dormant(mypred) |}

7 mynode = mypred;

8 {| dormant(mynode) |}

9 }

Fig. 4. CLH queue-based lock algorithm. Note that the head pointer and pred field
are ghost code necessary to verify the algorithm.

The key property of the CLH lock (and any lock) is mutual exclusion: each
node is held exclusively, and the lock as a whole can only be held by one thread.
In our approach, we can specify this using constraints, for example:

constraint queued(a, ap) * queued(b, bp) -> a != b;

constraint locked(a, ap) * locked(b, bp) -> false;
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The queue data-structure is similarly defined by constraints. For exam-
ple the locked() atom is defined using GRASShopper assertions similar to the
list segment predicate above.

constraint locked(node, pred) -> %{

[|node|] in Foot && [|pred|] in Foot

&& Btwn(pred, [|tail|], [|node|], [|head|])

&& [|node|].pred == [|pred|] && [|pred|] == [|head|] };

The most subtle reasoning step happens in lines 2–6 of unlock in Fig. 4, when
the thread releases the lock. As some other thread may be waiting on its current
node, it cannot be reused immediately. Instead the thread takes ownership of its
dormant predecessor. Thus threads always have a single exclusively-held node,
but the exact node held varies over time.

This ownership transfer is reflected in the proof in Fig. 4 and the mutual
exclusion constraints above. The terms passed to GRASShopper precisely encode
the required properties, even though GRASShopper itself cannot reason about
ownership transfer. Other reasoning approaches would capture this through
regions or shared protocols: we encode it through views.

6 Examples and Performance Results

We have tested Starling on a range of examples: the ARC algorithm discussed
in Sect. 2; a standard compare-and-swap spinlock; a ticket-based FIFO lock, as
used in Linux [2]; a reader-writer lock which combines the classic Courtois et al.
algorithm [3] with tickets; Peterson’s algorithm; the CLH queue-lock discussed in
Sect. 5 [16]; and a lock-coupling list algorithm previously verified by Vafeiadis [26]
(note we verify memory safety, not linearizability). For several of these we have
verified both a static version encoded in shared variables (using SMT) and a
version allocated on the heap (using GRASShopper).

These algorithm are small in size, but all are challenging to verify, and
each demonstrates an aspect of Starling’s reasoning. Verifying the ARC example
would typically require a primitive notion of “permissions” in separation logic –
Starling can directly handle it without resorting to new metatheory. The CLH
lock has an implied protocol between threads that performs ownership transfer
of the node from one thread to the next, again handled directly by the theory.
The other synchronisation algorithms similarly involve subtle protocols between
threads that, in other reasoning systems, would need auxiliary proof constructs.
The lock-coupling example shows that we can reason about complex fine-grained
data-structures where the protocol is entwined with the list nodes.

Figure 5 gives performance statistics for our examples. From left to right
we give statistics for: the total lines of input code and proof (including auxil-
iary GRASShopper code); the approximate number of which are proof annota-
tions; the lines of generated GRASShopper output; the total number of proof
terms generated; the number of those successfully discharged using SMT/Z3
(the remainder are sent to GRASShopper); the total proof time (excluding
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SMT/Z3:

ARC (static) 52 - 19 - 40 40 1.62 1.55 0.08 - 118 -
Ticket lock (static) 47 - 16 - 18 18 1.49 1.44 0.05 - 94 -
Spinlock (static) 35 - 10 - 12 12 1.51 1.47 0.04 - 87 -
Reader/writer lock 109 - 45 - 160 160 1.85 1.67 0.19 - 192 -
Peterson’s algo. 94 - 27 - 72 72 2.35 2.05 0.30 - 136 -

GRASShopper:

ARC (alloc) 59 13 32 482 20 5 1.55 1.54 0.02 1.56 92 10.2
Ticket lock (alloc) 59 80 104 1054 66 30 1.48 1.46 0.02 3.64 87 10.8
Spin lock (alloc) 54 18 38 689 56 31 1.57 1.56 0.02 2.45 88 10.6
CLH queue-lock 124 10 58 1407 50 21 1.47 1.45 0.02 3.87 84 11.3
Lock-coupling list 79 118 154 5019 240 116 1.96 1.94 0.02 35.31 96 30.2

Fig. 5. Benchmarks for example algorithms.

GRASShopper); of that time, the total spent on the tool itself, and on SMT/Z3;
the total memory in the .NET runtime working set at the end of the proof,
in mebibytes; and the average maximum resident set size over 3 runs of
GRASShopper on the output from Starling, in mebibytes (these loosely approx-
imate the total memory used).

Times reported are the average of 3 runs. Benchmarks were run on a 2016
series MacBook Pro, with 8 GB RAM and a 2.9 GHz dual-core Intel Core i5.

7 Related Work

Our approach builds on Views [6], and thus is part of the family of logics
descended from Concurrent Separation Logic [18]. These logics all use separat-
ing conjunction to reason about distinct threads, and many of these logics have
introduced auxiliary constructs to assist with reasoning. For example, Svendsen
and Birkedal’s iCAP [24] combines reasoning about interference (derived from
Rely-Guarantee [14]), abstraction through abstract predicates, a rich system of
protocols based on capabilities, and higher-order propositions. Other significant
logics include CaReSL [25], TaDA [22], FCSL [17], and others – each comes with
a different collection of auxiliary constructs.

As discussed in Sect. 3, our approach also has similarities to Owicki-Gries
reasoning [19]. In Owicki-Gries, many kinds of interaction between threads need
to be encoded through auxiliary variables. Views allow us to capture these inter-
actions directly in a more intuitive style.
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Starling inherits much of the generality of the Views framework – see [6]
for encodings of multiple previous logics. We can encode many of the auxiliary
proof constructs used in other logics. For example, Boyland-style fractional per-
missions [1] can be encoded by a view with a permission-value argument, which
can then be split and joined by entailment. iCAP-style protocols can be encoded
by making each protocol state into a view, and using constraints to enforce
mutual exclusion between these state-views.

A few CSL-style logics have automated tool support. FCSL [17] and Ver-
ifast [13] both support automated proof-checking, albeit with a considerable
annotation burden as all steps must be given explicitly. SmallfootRG [26] sup-
ports proof-checking for the RGsep logic, but requires annotations of invariants
and rely-conditions – in our system these are defined implicitly by the con-
straints.

Caper [7] is the tool most similar to ours. It supports reasoning about func-
tional specifications that our tool cannot presently handle – for example that an
element is correctly inserted into a bag. However, Caper’s logic is built on auxil-
iary guard algebras, shared regions, and actions. It is therefore significantly more
complex than our approach both in reasoning and in metatheory. Caper uses Z3,
as do we, but its heap reasoning is custom-built, and we are uncertain whether
it could verify an example of the complexity of the CLH lock or lock-coupling
list. We handle these examples using the GRASShopper heap solver [20], and
our approach is designed to be generic in the choice of back-end solver.

We have not undertaken a precise comparison, but we believe for our heap-
based examples, all competing tools would require significantly more annota-
tions. For example, the CLH lock is our most challenging algorithm: in Verifast,
its code and proof require 343 lines, while Starling requires 134 lines.3

Several other tools share similarities with our approach. VCC [4] is a verifier
based on Z3 which has been used to verify large-scale concurrent C programs. In
VCC, concepts such as permission and ownership are encoded through auxiliary
state. Our approach encodes these properties through view interactions.

QED [9] is a refinement-based approach to verification: concurrent programs
are related to their atomic specifications by a series of sound refinement steps.
We are hopeful that our approach could be combined with this style of reasoning
as well as CSL-style program logic.

Our SMT/Z3 back-end has similarities to Threader [11], and unlike our tool,
Threader can infer invariants using a Horn-clause solver. However, it only targets
shared-variable algorithms – we can handle heap-based algorithms. Invariant
inference in our approach is a topic of future work.

There is a lot of work on model-checking concurrent systems – e.g. [21,27]. In
model-checking terms we require significant annotation, but our context reduc-
tion means that our proofs apply to an unbounded number of threads, context
switches and unrolling of loops.

3 https://github.com/verifast/verifast/blob/master/examples/clhlock/clhlock.c,
accessed May 2017.

https://github.com/verifast/verifast/blob/master/examples/clhlock/clhlock.c
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8 Conclusions

We have presented a new logic-based approach to verifying concurrent programs.
Our approach is lightweight, automated, and based on a sound bedrock of exist-
ing theory. Because we build on the generic Views framework, we believe our
approach could be reused by other concurrent logics as a way to target sequen-
tial solvers.

One next step will be invariant inference for Starling. Our proof terms are
already in quasi-Horn clause form, and preliminary experiments suggest we can
infer view definitions using an off-the-shelf solver such as HSF [10]. We also plan
to extend Starling with modular reasoning, meaning that proofs of libraries and
clients can be performed separately, as in iCAP [24]. Finally, we plan to extend
Starling to prove algorithm linearizability rather than pre-post specifications, as
in Vafeiadis [26] and Liang and Feng [15].

A Starling Assertion and Command Languages

We define the syntax of the Starling assertion and command languages using the
grammars below. We assume the existence of grammars for <lvalue> (assignable
locations), <expr> (expressions), and <identifier> (valid identifiers).

A.1 Assertions

<assertion> ::= <assertion-item>

| <assertion-item> "*" <assertion>

<assertion-item> ::= "emp"

| "false"

| <identifier> "(" <arglist> ")"

| "local" "{" <expr> "}"

| "if" "(" <expr> ")" "{" <assertion> "}" <assertion-else>

| "(" <assertion> ")"

<assertion-else> ::= "" | "else" "{" <assertion> "}"

<arglist> ::= "" | <arglist-1>

<arglist-1> ::= <expr> | <expr> "," <arglist-1>

A.2 Commands

Atomic commands, i.e. those within <| angle braces |>, are described by
<atomic-cmds>, and may refer to thread-local and shared state variables in
their expressions. Local commands are described by <local-cmds>, and may
only refer to thread-local variables.
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<atomic-cmds> ::= "" | <atomic-cmd> <atomic-cmds>

<atomic-cmd> ::= <primitive-cmd> ";"

| "assert" "(" <expr> ")" ";"

| "if" "(" <expr> ")" "{" <atomic-cmds> "}" <atomic-else>

| "CAS" "(" <lvalue> "," <lvalue> ","<expr> ")" ";"

<atomic-else> ::= "" | "else" "{" <atomic-cmds> "}"

<local-cmds> ::= "" | <primitive-cmd> <local-cmds>

<primitive-cmd> ::= <lvalue> "=" <expr>

| <lvalue> "=" <lvalue> <postfix>

| "havoc" <lvalue>

| <lvalue> <postfix>

| "assume" "(" <expr> ")"

| ""

<postfix> ::= "++" | "--"

B The CLH Lock Proof

1 typedef int Node;

2

3 // Shared pointers to nodes

4 shared Node tail;

5 shared Node head; // (Ghost code)

6

7 // Thread-local pointers to nodes

8 thread Node mynode, mypred;

9 thread bool test; // Used when trying to take the lock.

10

11 // Views

12 view dormant(Node node);

13 view active(Node node);

14 view queued(Node node, Node pred);

15 view locked(Node node, Node pred);

16

17 // Goal constraint

18 constraint locked(a, ap) * locked(b, bp) -> false;

19

20 // Other constraints

21 constraint emp -> %{

22 [|head|] in Foot

23 && [|tail|] in Foot

24 && Reach(pred, [|tail|], [|head|])

25 && ![|head|].lock

26 && (forall x : Node ::
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27 (x in Foot && x.pred != null) ==> x.lock)

28 && (forall x : Node ::

29 (x in Foot && Reach(pred, [|tail|], x) && !x.lock)

30 ==> x == [|head|])

31 };

32

33 constraint dormant(node) -> %{

34 [|node|] in Foot && [|node|] != [|head|] && [|node|].pred == null

35 && [|node|].lock == false

36 };

37 constraint active(node) -> %{

38 [|node|] in Foot && [|node|] != [|head|] && [|node|].pred == null

39 && [|node|].lock == true

40 };

41

42 constraint queued(node, pred) -> %{

43 [|node|] in Foot

44 && [|pred|] in Foot

45 && [|node|].pred == [|pred|]

46 && [|node|].lock

47 && Btwn(pred, [|tail|], [|node|], [|head|])

48 };

49 constraint locked(node, pred) -> %{

50 [|node|] in Foot

51 && [|pred|] in Foot

52 && [|node|].pred == [|pred|]

53 && Btwn(pred, [|tail|], [|node|], [|head|])

54 && [|pred|] == [|head|]

55 };

56

57 constraint dormant(a) * dormant(b) -> a != b;

58 constraint active(a) * active(b) -> a != b;

59 constraint queued(a, ap) * queued(b, bp) -> a != b;

60 constraint queued(a, ap) * locked(b, bp) -> a != b;

61

62 // Proof outline

63 method lock() {

64 {| dormant(mynode) |}

65 <| %{ [|mynode|].lock := true }; |>

66 {| active(mynode) |}

67 <| mypred = tail; tail = mynode;

68 %{[|tail|].pred := [|mypred|]}; /* Ghost code */ |>

69 {| queued(mynode, mypred) |}

70 do {

71 {| queued(mynode, mypred) |}

72 <| test = %{ [|mypred|].lock }; |>

73 {| if (test) { queued(mynode, mypred) }

74 else { locked(mynode, mypred) } |}

75 } while (test);

76 {| locked(mynode, mypred) |}
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77 }

78

79 method unlock() {

80 {| locked(mynode, mypred) |}

81 <| %{ [|mynode|].lock := false };

82 %{ [|mynode|].pred := null }; head = mynode; /* Ghost code */ |>

83 {| dormant(mypred) |}

84 mynode = mypred;

85 {| dormant(mynode) |}

86 }

The CLH lock proof depends on the following auxiliary definition written in
GRASShopper’s assertion language:

1 struct Node {

2 var lock: Bool;

3 var pred: Node; // Ghost field

4 }
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