
Verified Cryptographic Code for Everybody

Brett Boston1, Samuel Breese1, Joey Dodds1, Mike Dodds1, Brian Huffman1,
Adam Petcher2, and Andrei Stefanescu1

1 Galois, Inc.
2 Amazon Web Services

Abstract. We have completed machine-assisted proofs of two highly-
optimized cryptographic primitives, AES-256-GCM and SHA-384. We
have verified that the implementations of these primitives, written in a
mix of C and x86 assembly, are memory safe and functionally correct,
by which we mean input-output equivalent to their algorithmic specifica-
tions. Our proofs were completed using SAW, a bounded cryptographic
verification tool which we have extended to handle embedded x86. The
code we have verified comes from AWS LibCrypto. This code is identical
to BoringSSL and very similar to OpenSSL, from which it ultimately
derives. We believe we are the first to formally verify these implementa-
tions, which protect the security of nearly everybody on the internet.

Keywords: Cryptography · Automated reasoning · Verification

1 Introduction

Widely-used cryptographic libraries such as OpenSSL [20], BoringSSL [16], and
AWS LibCrypto [2] are an enticing target for formal verification. These libraries
are used, to a first approximation, by everybody—or at least the four billion
or so worldwide users of the internet. Each primitive in these libraries typically
consists of a modest amount of code, but these primitives loom large in both their
security and performance impact. Cryptographic primitives are also unusual in
that they have clearly defined specifications and very few dependencies, which
removes some major challenges from general-purpose verification. As a result, in
recent years many efforts have been made to verify cryptographic library code.

However, despite significant progress, widely-used cryptographic libraries have
resisted verification, at least for the versions of the primitives that are used in
practice. This is because these primitives are some of the most heavily optimized
pieces of code in existence. For a cloud service, every packet involves a call to
at least one cryptographic primitive, so even small optimizations will have large
performance and cost impacts. As a result, for AES and SHA there is an enor-
mous gap in complexity between simple and easily verified high-level reference
implementations, and the highly optimized implementations used in production.

Optimizations create several difficulties when verifying cryptographic prim-
itives. First, primitives are typically written in a mix of C and assembly. This
means that a verification tool must model both of these languages and the man-
ner in which they can interact. Furthermore, each optimization step inherently

2 Boston, Breese et al.

increases the difficulty of verification, because each requires one or more the-
orems showing that the optimization is sound. To add to this, many of these
optimizations break the abstractions used in algorithm specifications. For exam-
ple, the SHA-384 specification is defined using a function called Sigma0 that is
unfolded and rearranged during the optimisation process (see subsection 6.1).
Solver-based automation typically struggles to recover these abstractions.

The verification of cryptographic code has seen huge advances in recent years.
Purpose-built libraries such as EverCrypt [21] can now match the performance of
hand-tuned OpenSSL. These correct-by-construction libraries may be the future,
but as of 2021 they have not yet seen wide mainstream adoption. Our aim as
formal methods practitioners is to verify the cryptographic code on which users
depend. What has been missing until now is the ability to verify the legacy
cryptographic code that runs in production for hundreds of millions of users.
This is the problem we solve.

Approach and Results. We have formally verified the memory safety and func-
tional correctness of two key cryptographic primitives, AES-256-GCM and SHA-
384 as they currently appear in the new AWS LibCrypto library (AWS-LC) [2].
AWS-LC is a general-purpose library maintained by Amazon Web Services for
use with AWS applications. We targeted these algorithms in particular because
they are used within AWS and included in the Commercial National Security
Algorithms Suite [18]. We chose a block cipher and a hashing algorithm in order
to cover multiple algorithm types and to be representative of other algorithms
in AWS-LC.

Cryptographic algorithms have fixed specifications which permit a narrow
range of designs, and as a result, implementations change slowly. The AES-
256-GCM and SHA-384 implementations in AWS-LC are identical to those in
Google’s BoringSSL library, and as a result, our proofs apply to it as well.
For these primitives, there are only small differences between BoringSSL and
OpenSSL, and we are confident our proofs would also apply to OpenSSL with
minor modifications.

Our proofs show that the implementations of AES-256-GCM and SHA-384
are input-output equivalent to formal specifications of their expected behaviour.
We write our specifications in Cryptol [11], a pre-existing high-level language
designed for use by cryptographic experts. Cryptol specifications are executable,
so our proofs establish that for any input, the implementation and specifica-
tion produce exactly the same result. To boot, our proofs guarantee that the
code is free of undefined behaviour such as memory safety errors, meaning that
any remaining correctness errors are local to the code being proved and cannot
affect the calling context. We do not verify side-channel properties, nor do we
analyse cryptographic security properties of the AES-256-GCM and SHA-384
algorithms.

We performed these proofs using the Software Analysis Workbench (SAW) [14].
SAW is an industrial verification tool designed to prove equivalence properties
between abstract specifications and lower-level, more optimized implementa-
tions. SAW is a bounded verifier: loops must be verified under preconditions

Verified Cryptographic Code for Everybody 3

that guarantee termination, and data-structures must be statically allocated
with bounded sizes.

We have run our proofs on fixed sizes of input data, i.e. fixed numbers of
bytes to be hashed / encrypted / decrypted. The number of loop iterations
in these algorithms are strictly fixed by the input size so this also implicitly
bounds the execution length. We chose these sizes so as to exercise all branches
and boundary conditions in the code and specification (in this, we follow Galois
and AWS’s previous work: see Chudnov et al. [7]). We discuss the scope and
limitations of our proof in section 7.

Each proof of a cryptographic primitive in SAW has two stages. In the first,
the imperative input code is converted to a functional term using bounded sym-
bolic execution. This depends on a high-fidelity model of the input languages.
SAW already had an LLVM model used for C and C++ verification. For AES-
256-GCM and SHA-384 we developed a new SAW model of x86 assembly, along
with an interface with SAW’s existing LLVM model. As well as modeling core
x86, this also included modeling special-purpose instructions used to achieve high
performance. A successful conversion only occurs for well-defined programs, and
implies that the program is free of undefined behavior under the given precon-
ditions.

In the second stage of a SAW proof, the symbolic term is compared to a
specification term written in Cryptol. For many applications, SAW can discharge
these equivalences automatically, but this is where the optimizations in AES-256-
GCM and SHA-384 made verification much more challenging. The proof steps
involved cannot be discharged automatically by current solvers, so instead, our
proofs make careful use of rewriting logic to massage the terms into a form that
can be discharged. Some of these proof steps may be amenable to automated
solving in future.

Our proofs were developed collaboratively between a team of expert verifica-
tion engineers. As well as technical innovation, these proofs also required careful
proof engineering. By this, we mean the analog of software engineering—a com-
bination of proof design, tool design, and team working practices which makes it
possible to execute effectively on a verification goal. We found that to a degree,
proof engineering is software engineering; that is, successful proof engineering
has similarities to the practices needed when developing a challenging software
project.

Aside from proofs and tool capabilities, there is something else notable about
our project: we verify code that was never intended for formal verification. This
is in contrast to many other efforts, which target systems that were designed with
assurance in mind. For example, Galois and AWS previously verified an Amazon
TLS library that was purpose-built as a high-assurance alternative to OpenSSL’s
TLS support [7], while in the EverCrypt library, code and proof were developed
in parallel, and even the API was designed to simplify specifications [21]. We
verify legacy code because this is the code that is actually used in AWS-LC and
its predecessors.

Contributions. The key contributions of this paper are as follows:

4 Boston, Breese et al.

– Proofs of correctness for highly optimized versions of AES-256-GCM and
SHA-384, as they appear in AWS LibCrypto and BoringSSL.

– A verifier for mixed C and x86 code which allows precise reasoning about
functional correctness. This capability is built into the industrial verification
tool, SAW.

– A simple system of rewrite tactics which is powerful enough to allow verifi-
cation of highly optimised cryptographic algorithms.

– Lessons learned in proof engineering when applying an industry verification
tool to a challenging piece of legacy cryptographic code.

All proof scripts are available online3.

1.1 Related Work

There is a considerable amount of recent work in cryptographic verification,
representing a large space of application domains and design requirements. While
our work is widely applicable, we do not consider it a one-size-fits-all solution. We
discuss how a developer might choose between the many verified cryptography
efforts in subsection 7.2. Here we give an overview of projects that target C or
x86, or that are closely related technically. We do not review work on verifying
cryptographic security properties, which is orthogonal to the problem of verifying
that code matches algorithm.

The closest work to ours in terms of technical approach is Galois and AWS’s
previous work verifying the HMAC and DRBG primitives in the AWS s2n TLS
library [7]. Just as we do, they use SAW to verify production cryptographic code.
The main difference from our current project is the complexity of the primitives
verified. The HMAC and DRBG primitives are inherently simpler algorithms,
and are written in C, rather than x86. Furthermore, this code was designed
for verification, unlike the OpenSSL-derived code we target. In earlier work, Ye
et al. also verified C versions of HMAC and DRBG from OpenSSL using the
foundational Verified Software Toolchain (VST) [22].

The Everest project has developed verified C/x86 cryptographic library called
EverCrypt [5,10,23,21]. Recent results are extremely impressive, with perfor-
mance comparable to highly optimised OpenSSL code. However, EverCrypt
represent a different philosophy from ours, where the library and proof are co-
designed, and in some cases code is synthesized. This approach looks towards
a future where such libraries replace hand-written libraries like AWS-LC, Bor-
ingSSL, and OpenSSL. Our philosophy is complementary: we verify code as it
currently exists while we wait for the future to arrive.

EverCrypt also differs in that they use a proof-assistant style of reasoning
more similar to Coq or Isabelle. The advantage of this is that proofs are very
flexible—for example, they work for unbounded input sizes. However, the cost
is that proofs are relatively more verbose. Proof size is hard to estimate in Ev-
erCrypt, because the proof and implementation are mixed, but the earlier Vale

3 https://github.com/awslabs/aws-lc-verification

https://github.com/awslabs/aws-lc-verification

Verified Cryptographic Code for Everybody 5

paper [10] suggests that EverCrypt’s proof of AES-GCM uses 2000 lines of proof
library plus additional proof mixed in. In comparison, SAW is designed to auto-
mate reasoning where possible, and the proof of AES-256-GCM implementation
takes us less than 1000 lines of proof (including white-space and comments, for
attempted apples-to-apples comparison).

The CASM [17] project verifies x86-based cryptography taken from OpenSSL,
including SHA-256 (we verify SHA-384). CASM’s toolchain is similar to ours,
based on symbolic execution and SMT solvers. However, CASM only examines
functions over message blocks, rather than the whole SHA-256 algorithm. CASM
also does not verify the most highly optimised versions of this algorithm. For
example, it omits x86 EVP and vector operations, two of the main challenges.

Fiat Crypto [9] is a related approach, although it does not apply to the algo-
rithms proved in this paper. It foundationally generates portable C field arith-
metic implementations from a high level specification. Code synthesized by Fiat
Crypto has already been added to OpenSSL. Jasmin [1] is another foundational
synthesis approach. It generates high-performance vectorized x86 implementa-
tions. The Jasmin implementation of ChaCha20-Poly1305 outperforms similar
hand-optimized implementations. We have not seen Jasmin implementations of
SHA-2 or AES-GCM.

SAW’s approach has some similarities to model checking, in that it is a
bounded verification technique. However, proofs are based on symbolic execu-
tion, that is, construction of logical terms representing the program denotation,
and proofs are bounded on input buffer size, not program execution length per
se.

2 Project Design Constraints

Our objective in this project was to verify the cryptographic code which is ac-
tually deployed, and to ensure it stays verified as it changes over time4. To do
this, we used continuous reasoning, a term due to Peter O’Hearn [19]. In contin-
uous reasoning, there is a tight connection between code, software engineering
process, and verification tools. Several recent industry projects have success-
fully used continuous reasoning practices. It was also important that our tools
maintain the existing institutional trust in the original codebase—this ruled out
whole-code replacements such as EverCrypt. This resulted in the following design
constraints:

– Proofs had to run on the executed code, rather than a model / abstraction.
This was to minimize the trusted base, and ensure that our proofs stayed in
sync with the code as it evolved.

– Proofs had to run automatically with a low enough time budget to integrate
with continuous integration checking. This ensures that errors are detected
at the time code is changing, which increases the probability of fixes.

4 In fact, we do not expect AES-256-GCM and SHA-384 to change often in AWS-LC,
but this work takes place in the context of a larger AWS-LC assurance project.

6 Boston, Breese et al.

– Proofs had to avoid modifications to the original source code, and instead
exist as separate supporting files. Our experience is that teams are typi-
cally very reluctant to modify original source code, even with non-functional
annotations.

– The proof toolchain had to operate independently of the software build sys-
tem. This was to avoid introducing untrusted tools into critical development
pathways.

These constraints led us to use the SAW tool as our basis for verification [14].
Our project can be seen as a follow on to Galois and AWS’s prior verification
of AWS s2n which had many of the same design objectives [7]. Chudnov et al.
showed that SAW can be used for continuous reasoning for a relatively simple
piece of C cryptography. The difference in our current project is the inherent
difficulty of verifying the code.

3 AES-256-GCM and SHA-384 Proof Structure

Conceptually, SAW’s approach to proof works as follows. The tool symbolically
executes C and x86 code, resulting in a collection of functional terms. A term
describes every program output mathematically as a function of program inputs.
Once side conditions have been discharged, completion of symbolic execution also
implies that the program is safe: that is, memory safety errors cannot occur. In
the final step of the proof, these functional terms are compared to specifications
using a solver to determine whether they are equivalent.

Interfaces. At the top level of our proof, we verify the AWS LC primitives against
OpenSSL’s EVP interface5. OpenSSL and its descendants use this interface to
make it easy to swap out algorithms without exposing their implementations.
This complicates the verification task by hiding functions behind pointers and
union types. It has also attempted to remain largely backwards compatible for
years, resulting in an API that is not as clean as it might be otherwise. Perhaps
for these reasons, previous cryptographic verification projects have not verified
the EVP interface.

SAW-script specifications. The top-level EVP specifications are defined in SAW-
script, the high-level control language for SAW. Figure 1 shows part of the SAW-
script EVP interface for AES-256-GCM. In its form, this interface consists of a
series of instructions in SAW-script, but in its effect, it is a Hoare-style pre/post
specification. The interface sets up symbolic memory (the pre-condition), sym-
bolically executes the function (crucible_execute_func), and then checks that
the resulting symbolic memory contains the correct values (the post-condition).

For AES, the main purpose of the pre-condition is to define the layout of
memory that results from the AES initialization function. Because we define
post-condition for the initialization function that match the specification given

5 https://wiki.openssl.org/index.php/EVP

https://wiki.openssl.org/index.php/EVP

Verified Cryptographic Code for Everybody 7

let EVP_CipherUpdate_spec enc gcm_len len = do {

// ... some cipher set-up omitted (5 lines)

cipher_data_ptr <- crucible_alloc_aligned 16 (llvm_struct "struct.EVP_AES_GCM_CTX");

points_to_EVP_AES_GCM_CTX cipher_data_ptr ctx mres {{ 1 : [32] }} 0xffffffff;

ctx_ptr <- crucible_alloc_readonly (llvm_struct "struct.evp_cipher_ctx_st");

points_to_evp_cipher_ctx_st ctx_ptr cipher_ptr cipher_data_ptr enc;

(in_, in_ptr) <- ptr_to_fresh_readonly "in" (llvm_array len (llvm_int 8));

out_ptr <- crucible_alloc (llvm_array len (llvm_int 8));

out_len_ptr <- crucible_alloc (llvm_int 32);

crucible_execute_func [ctx_ptr, out_ptr, out_len_ptr, in_ptr,

(crucible_term {{ `len : [32] }})];

let ctx' = {{ cipher_update enc ctx in_ }};

// ... some cipher invariants omitted (3 lines)

crucible_points_to out_ptr (crucible_term {{ ctr32_encrypt ctx in_ }});

crucible_points_to out_len_ptr (crucible_term {{ `len : [32] }});

crucible_return (crucible_term {{ 1 : [32] }});

};

Fig. 1. Part of the EVP interface for AES-256-GCM.

here, we can end-to-end verify the common use case of initializing memory,
encrypting some input, and returning the result.

The script defines the memory pre- and post-conditions for the function using
points-to assertions. In SAW-script, we allocate symbolic memory at specific sizes
using the crucible_alloc commands. We can then use the points_to com-
mand to specify that a pointer points to symbolic memory. The ptr_to_fresh

command is a convenience function that allocates a pointer, and then initializes
it with symbolic memory.

SAW’s logic is less expressive than a full separation logic, but specifications
can naturally be interpreted in terms of separation, including the property that
memory cells do not overlap. To make the memory layout easier to understand,
consider the following separation logic triple, which roughly corresponds to the
layout defined in the SAW-script:

{cipher data ptr 7→ ctx... ∗ in ptr 7→ in ∗ out ptr 7→ (: [len])}
EVP_CipherUpdate(ctx_ptr, out_ptr, out_len_ptr, in_ptr, len){

cipher data ptr 7→ cipher update(ctx...) ∗
in ptr 7→ in ∗ out ptr 7→ ctr32 encrypt(ctx, in)

}

8 Boston, Breese et al.

Rather than syntactically divide the pre-condition and post-condition, as
in a Hoare triple, the two are divided by the call to crucible_execute_func,
which indicates symbolic execution of the target C or x86 function. Crucible
is the intermediate language for symbolic execution used by SAW. Internally,
the semantics of LLVM, x86, and other SAW input languages are defined by
translation to Crucible.

One reason for the complexity of these specification is that SAW differentiates
between data that is allocated and initialized and data that is just initialized.
Other verification tools tend to treat all allocated data as initialized (for example,
this is true of CBMC [8]). This is generally a sound approximation because C
compilers tend to behave predictably, but our approach is more accurate to the
specification of C.

Functional specifications. The other role of SAW-script is to verify the connec-
tion between the implementation and algorithmic specification. In SAW, speci-
fication are written in Cryptol, a domain-specific language designed for crypto-
graphic specifications [11]. In the postcondition of the script, we use references to
Cryptol functions to map the outputs of running the program to the outputs of
our specification programs, ctr32_encrypt and cipher_update. The final lines
of the specification assert that the memory cells resulting from the program
must match the required values, i.e. those that would result from executing the
Cryptol specification.

We show ctr32encrypt in Figure 2. This function defines the top-level be-
havior of the CTR mode of encryption, which repeatedly increments an initial-
ization vector, encrypts the incremented value with the secret key, and performs
an XOR of that encryption with the plaintext.

The first line of the specification defines the type of the function, parameter-
ized by type variable n. AES_GCM_Ctx is a structure used to maintain state for
the incremental interface to AES, which allows for data to be encrypted and de-
crypted as it becomes available, rather than all at once. The [n][8] arguments
are sequences of bytes with length n.

The function body consists of a sequence comprehension. This takes input
bytes one at a time, and labels them with i, which draws from the sequence
counting up from ctx.len. The separate function EKij performs the encryption
step using the initialization vector and the key contained in the context. The
take and drop functions are used to convert the 64-bit length contained in the
context to a 32-bit number required by the EKij function.

Another example of a functional specification is the following line describing
the Sigma0 function:

S0 x = (x >>> 28) ^ (x >>> 34) ^ (x >>> 39)

In the SHA-384 code, this function is implemented by the Perl code given
in Figure 3. This does not execute directly, but rather generates assembly code,
which is what we verify. The instructions ror and xor correspond to the cryptol
operations >>> and ^ respectively.

Verified Cryptographic Code for Everybody 9

1 ctr32_encrypt : {n} (fin n) => AES_GCM_Ctx -> [n][8] -> [n][8]

2 ctr32_encrypt ctx in = out

3 where

4 out = [byte ^ (EKij ctx ((take`{32} (drop`{28} i)) + 1) (drop`{60} i)) |

5 byte <- in | i <- [ctx.len ...]]

Fig. 2. Top-level Cryptol specification for AES update.

1 '&ror ($a1,39-34)',

2 '&xor ($a1,$a)',

3 '&ror ($a1,34-28)',

4 '&xor ($a1,$a)',

5 '&ror ($a1,28)', # Sigma0(a)

Fig. 3. Perl implementation of internal SHA computation.

In order to include the implementation here, some constants have been sub-
stituted, and we have extracted the relevant lines from around 20 other lines
calculating other parts of SHA. Those lines are mixed in with even more lines
of non-interfering SHA calculations, presumably in order to keep the processor
saturated. Symbolic execution allows us to reason just about these lines of code,
because interleaved instructions that don’t change the result of the computa-
tion in a relevant way will not be included when reasoning about the results of
individual computations.

Notice also that the shift amounts are different between the functional speci-
fication and the code. In Cryptol, the shift amounts are 28, 34, and 39, but in the
implementation, we see shifts by 39− 34, 34− 28, and 28. This is a performance
optimisation, but it makes the proof effort more difficult. To close this gap, we
use a system of verified rewrites (see section 6).

Verification process. Once a specification has been defined, it must be verified.
SAW divides verification into two phases: symbolic execution, and verification of
equivalence. Symbolic execution converts an imperative operation into a func-
tional term suitable for automated reasoning. Even without specifying the ex-
pected high-level behaviour of the AES function, the memory layout defined in
the pre-condition is enough for symbolic execution to complete, which has the
effect of proving the imperative code memory safe. We typically verify mem-
ory safety in this way before developing a specification. This lets us separate
concerns between functional and safety properties.

The final task once symbolic term has been generated is to compare it to
a specification term. SAW uses SMT solving to discharge these proofs, and in
most use cases, these can be completed automatically. However, the complexity of
the optimization stages in AES-256-GCM and SHA-384 makes the gap between
specification and implementation too large to be completely automated. SAW
solves this with a small tactic language embedded into SAW-script that supports

10 Boston, Breese et al.

term rewriting. Each of these rewrites is then verified by the solver. We discuss
rewriting further in section 6.

Modular reasoning. Symbolic execution is a precise technique with hard limits
on its scalability. The AES-256-GCM and SHA-384 functions are too large to be
symbolically executed in their entirety. SAW solves this problem through using
a modular reasoning system called overrides. SAW treats specifications as exe-
cutable code that can be freely substituted for implementation functions. When
a function is verified equivalent to a Cryptol specification, calls to that function
can be overridden (i.e replaced) during symbolic execution. As Cryptol speci-
fications are typically much less complex than implementations, this massively
increases the tractability of the verification task.

As a result, a typical SAW proof consists of a hierarchy of equivalence proofs.
The proof begins at the leaf functions, which are verified by symbolic execution.
The functions at the next level are then symbolically executed with the leaf
functions replaced by their specifications. These are then also added to the li-
brary of verified functions. This proceeds until the top-level function is verified.
One of the main tasks when developing a SAW proof is defining these internal
specifications (our proof is unusual in that we also needed a significant number
of rewrite rules).

We also use the override mechanism at the interface between C and x86
code. Functions in x86 are proved equivalent to Cryptol specifications, and these
specifications can then be used as overrides in the surrounding C context. This
approach works because we have defined a compatible memory model that works
for both C and x86 code—see section 5 for more.

Finally, the override functionality can be used to assume specifications for
functionality that has been assumed, not verified. This is useful for library calls
that might be out of scope for a particular project, but that might be veri-
fied in the future. For example, Chudnov et al.’s SAW proofs for s2n [7] use
this approach to parameterize the proofs of HMAC and DRBG over differ-
ent primitives6. In our proofs, the only assumptions we make are that that
OPENSSL_malloc and OPENSSL_free behave correctly.

4 SAW’s Verification Pipeline

SAW is structured as a pipeline of linked verification stages. The inputs to
the pipeline are, firstly, executable mathematical specifications for the top-level
function, and selected sub-functions; secondly, the compiled code, made up of
LLVM and embedded x86 binary code; and thirdly, a proof script which sets
up memory, identifies the mapping between Cryptol specifications and function
interfaces, and contains the rewrites that are applied to the resulting logical
terms. The verification pipeline then works as follows:

6 In fact, we have now verified some of the primitives that were only assumed in
this previous work, meaning it should be possible to stitch these proofs together
end-to-end

Verified Cryptographic Code for Everybody 11

1. The x86 binary is extracted from the LLVM and decompiled into a CFG
representation that recovers the x86 instructions and control-flow structure.
This relies on a SAW sibling project called Macaw [12].

2. The x86 control-flow graph and LLVM code are divided into functions at the
interfaces identified in the SAW-script file.

3. Beginning at the leaves of the call-graph, each x86 and LLVM function is
symbolically executed, resulting in a term written in a intermediate language
called SAW-core. At this stage, any already-verified functions are substituted
for Cryptol overrides.

4. If a function has an associated Cryptol specification, it too is symbolically
executed, resulting in a specification term in SAW-core.

5. The function term and specification term are rewritten using the rewrites
defined in SAW-script.

6. The rewritten function and specification terms are proved equivalent through
a generic solver interface library called What4 [15].

Verification proceeds with functions progressively higher on the call-graph, until
the top-level equivalence is proved between code and specification.

While the structure of this pipeline is simple, making it work for real code
requires a significant amount of tool sophistication. SAW is the product of many
years of refinement and development, and we used many of the components in
this pipeline without modification.

Our C support is based on SAW’s LLVM support, which is mature, and
has been used in many other industry and government verification projects—for
example, Chudnov et al. [7]. While we do not claim complete coverage of the
standard, in practice we rarely need to add new C language features to SAW.
Likewise, Cryptol support is built into SAW and is designed to be symbolically
executed, so this part of the tool required no modifications. The Macaw and
What4 tools similarly functioned without modification.

Therefore, in this paper we focus on the new capabilities of the tool: our
symbolic execution of x86 instructions, and verified rewrites. For a more de-
tailed treatment of the SAW suite as a whole, readers should look at the SAW
documentation and tutorial [14,13].

5 New Capability: x86 Semantics

The first SAW capability we developed for this project was symbolic execution
for x86 assembly code, including support for mixed C/x86 code. Doing this
required us to solve two problems. First, decompiling the binary into a series
of x86 instructions, and second, defining the semantics of instructions, which
mainly involves defining the model of memory.

To decompile we use Macaw, a SAW sibling project which is able to parse
Elf binaries and output a control-flow graph complete with the representation
of the x86 instructions [12]. We treat Macaw as a black box, and in fact any
decompiler with similar capabilities could serve in its place.

12 Boston, Breese et al.

Once the CFG has been constructed, we apply our x86 semantics. For the be-
haviour of individual instructions, we consulted the Intel manual. We note that
processor manuals contain errors, and hand-encoding the semantics could also
introduce errors. However, we have reasonable confidence in this encoding be-
cause, in practice, most conceivable errors would immediately cause the proof to
fail. This is because cryptographic functions are very sensitive to small changes:
most small value errors would result in a dramatically different output.

Much more important and subtle is the memory model, which describes under
what conditions reads and writes to memory can occur, as well as describing
how reads and writes can be combined to store and retrieve values. Unlike C,
there are almost no accepted memory usage rules for assembly programming,
aside from the conventions used in a particular program and the Application
Binary Interface (ABI) for functions that can be called externally. Fortunately,
AES and SHA implementations are designed to be called by C programs. They
therefore must follow C-like conventions and respect the ABI. Memory is used
to get inputs and define outputs, read global constants, and maintain a stack for
storing temporary results. Functions always respect the boundaries of data as
provided. Because of this, we were able to adapt SAW’s well-tested model used
for LLVM support.

In SAW’s memory model, addresses are represented by a pair of integers: the
first integer is a base address, identifying an allocated memory region, while the
second is an offset into the region. Memory operations, such as pointer arithmetic
and pointer comparisons, are only well-defined for addresses in the same region.

Even after defining this model, we had to decide how to apply it within the
proof. There were two options: (i) modeling the entire memory as a single region,
and (ii) representing different objects as separate regions. The former is the more
flexible because it does not enforce any invariants on the way that memory is
used. Any read or write within the entire memory region is valid at any time.
This comes at an increased cost of manually specifying necessary invariants. For
example, each function would have to manually encode the memory region it
might write to so that its calling function can predict all of the side effects of
calling it.

Instead, we take the second approach: automatically specifying such mem-
ory invariants as part of the way that memory can be used. This means that
some valid assembly will be impossible to verify. It could be completely safe
and correct, but because it violates the strict memory model we’ve chosen, our
tool will be unable to reason about it. On the other hand, the memory model
we chose works for all of the cryptographic assembly code we’ve run into, and
implementing the memory model in this way saves us a substantial amount of
specification and proof work.

It is not surprising that this approach works; The models and abstractions C
uses for memory are useful in assembly as well. Furthermore, the ABI and the C
memory model have heavily co-evolved, making the C memory model a natural
fit for assembly functions that match the ABI.

Verified Cryptographic Code for Everybody 13

The memory model is applied by symbolic execution of the CFG that results
from Macaw. This symbolic execution has two main functions: efficiently update
a symbolic representation of memory, and discharge side conditions that must
hold in order for symbolic execution to continue. The result is a SAW-core term
representing the input-output behaviour of the x86 binary code.

6 New Capability: Verified Rewrites

The second SAW capability we developed was a simple language of term rewrites
for use in proofs.

After symbolic terms have been constructed from C, x86, or Cryptol, we
must prove equivalences between these terms. The design goal with SAW is that
these proofs are completed mostly automatically using SMT solvers. While this
has worked well in previous, less-complicated proofs, the functional terms that
result from AES-256-GCM and SHA-384 often proved to be intractable for the
solvers without preprocessing. This is exactly because these algorithms are so
heavily optimised, as we have discussed above.

In order to solve this, we introduce a language of equivalences between terms
that are themselves verified by the solver. By applying these rewrites, we can
close the gap between the more abstract Cryptol term and the optimized C/x86
term. These rewrites serve as a small tactic language for controlling the proof,
while preserving the principle that SAW proofs are mostly automatic.

To illustrate how this works, we consider an example rewrite from our SHA-
384 proof. In the Cryptol portion of our proof, we define the following function,
S0 (shortened for convenience from Sigma0):

S0 x = (x >>> 28) ^ (x >>> 34) ^ (x >>> 39)

In Cryptol, >>> and <<< are right and left rotation respectively, while ^ is
XOR. In order to complete the proof, we need to be able to rewrite occurrences
of this function. To do this, we define the following rewrite, Sigma0_thm:

Sigma0_thm <- prove_folding_theorem

{{ \x -> (x ^ ((x ^ (x <<< 59)) <<< 58)) <<< 36 == S0 x }};

The left hand side of this equation is how symbolic execution interprets the
code in Figure 3. The rotate-rights have been swapped to rotate-lefts, which
allows our semantics to model both types of instruction by rotate-left. In order
to swap the rotates, we subtract the rotate amount from 64, which is why we
have a different set of constants than we see in either the specification or the
implementation.

The solver verifies this equivalence for all possible values of x and saves it
with the name Sigma0_thm. In this case, we verify the equality using the ABC
solver [6] through What4, but different solvers can be applied as needed to
provide different equivalences.

Consider the following SAWscript command, which verifies an x86 function
matches its specification:

14 Boston, Breese et al.

sha512_block_data_order_spec <-

crucible_llvm_verify_x86 m "<filename>" "sha512_block_data_order"

[("K512", 5120)] // Initialize global for round constants

true

sha512_block_data_order_spec

(do {

simplify (cryptol_ss ()); // std simplifications

simplify (addsimps thms empty_ss); // folding theorems

simplify (addsimp concat_assoc_thm empty_ss); // final theorem

w4_unint_yices ["S0", "S1", "s0", "s1", "Ch"]; // uninterpreted fns

});

Here, the do-block defines the order in which the simplification rewrite rules
are applied. The folding theorems thms contains 30 rewrite rules, including the
Sigma0_thm presented above. The concat_assoc_thm theorem normalizes the
concatenations that result from other proof rules. The final line of this script
instructs the Yices solver to treat certain functions as uninterpreted, including
the S0 function. This illustrates the usefulness of the rewriting support. Rather
than reasoning about the S0 function directly, we rely on the verified rewrites.
This allows us to abstract away from complexity that previously made the proof
infeasible for the solver.

Overall, the tactics we use for SAW proofs constitute a very simple decision
procedure, made up almost exclusively of user-supplied rewrites. The other main
mechanism we have for guiding proofs is the modular override system described
in section 3, which allows us to decompose proof tasks into lemmas, at least at
the granularity of functions. In practice, we have found that these capabilities are
sufficient to meet the needs of proving cryptographic implementations correct
with respect to specifications.

Ultimately, we may find ourselves limited by the tools available in SAW for
controlling the proof process, particularly if we attempt to prove higher degrees
of abstraction between specification and implementation. These more manual
proofs largely fall outside of the scope of what SAW aims to do well. An ideal
solution would be to export proof goals to Coq, Lean, or F*, all of which already
have highly-usable better tools for manual proof. Chudnov et al. have previously
demonstrated that SAW proofs about code and more abstract Coq proofs can
be connected in this way.

6.1 Role of Rewrites in AES-256-GCM and SHA-384 Proofs

Rewrites in SAW can be seen as a small tactic language, serving a similar purpose
to proof tactics in Coq or Isabelle. However, SAW occupies a very different point
in design space, because it is designed to maximize proof automation. Heavy use
of SMT-backed automation is the reason our proofs were feasible, but if the
automation makes poor choices, it can also obstruct the proofs. We use rewrites
along with appropriate choices of abstraction boundaries, to recover abstractions
that automation would not discover itself.

Verified Cryptographic Code for Everybody 15

For example, consider the Sigma0_thm rewrite defined above. The solver can
verify the rewrite when supplied in isolation. However in the context of SHA,
the solver fails to identify this as a valuable fact. One reason is that S0 is a
function that is present in the Cryptol specification, but this abstraction is lost
when we symbolically execute an x86 function. The rewrites replace occurrences
of S0 with an uninterpreted function, pruning the proof space dramatically.

However, there is the trade-off in reintroducing such an abstraction. Even if
the abstraction holds locally, the functionality that calls that abstraction might
depend on the internal functionality. In that case, swapping out the code for
an uninterpreted function could actually turn a solvable goal into an unsolvable
one. The answer is to choose these rewrites carefully: this is one of the main
intellectual challenges in completing a proof. In general, this problem is unde-
cidable. For example the rewrite rules inferred may not terminate, this means
that at best it might be a guided special-purpose mode of solvers, rather than a
general purpose approach.

Our rewrites plug into SAW late in the pipeline, after many of SAW’s opti-
mizations. This means that rewrites sometimes have to compensate for earlier
optimizations. SAW is designed to aggressively optimize terms into a form suit-
able for the solver, and in some cases, this means breaking up abstractions that
would be useful in completing the proof. In these cases, our rewrites must operate
on the post-optimization proof term.

For example, in one case, it would have been desirable for our proof to use
the term:

{{ \x -> (slice_59_5_0 x) # (slice_0_59_5 x) == x <<< 59 }};

However, SAW discovered that it could drop off the operation on the final
byte of x, but to do so, it had to break up x into its constituent bytes. This
is a desirable optimization if the term is passed to the solver directly, because
the solver itself will reason at the level of bytes. However, this made writing an
appropriate rewrite for our proof much more challenging. We include the eventual
rewrite rule in Figure 4. Again, a large amount of the intellectual challenge with
our proof rested in finding appropriate rewrites that integrated with SAW’s
existing automation.

7 Results and Lessons Learned

Our proofs run on the current version of AWS-LC [2] as of January 2021, built
using the default compiler flags. We verify the AVX implementation of SHA-384,
which is the current fastest implementation. Our AES-256-GCM proof uses the
code path for AESNI, CLMUL, and AVX instructions.

Proof size and composition. Our code can be broken down into top-level func-
tional specifications, top-level interface specifications, and proof scripts. The
top-level specifications are what must be understood in order to understand the
results of our proofs.

16 Boston, Breese et al.

rotate59_slice_add_thm <- prove_folding_theorem

{{ \x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34

x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 ->

(slice_59_5_0 (x0 + x2 + x3 + x4 + x5 + x6 + x7 +x8 + x9 + x10 + x11

+ x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20

+ x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29

+ x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38

+ x39 + x40 + x41 + x42 + x43 + x44 + x45 + x46 + x47

+ x48 + x49 + x50))

(slice_0_59_5 (x0 + (64 * x1) + x2 + x3 + x4 + x5 + x6 + x7 +x8

+ x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17

+ x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26

+ x27 + x28 + x29 + x30 + x31 + x32 + x33 + x34 + x35

+ x36 + x37 + x38 + x39 + x40 + x41 + x42 + x43 + x44

+ x45 + x46 + x47 + x48 + x49 + x50))

== (x0 + (64 * x1) + x2 + x3 + x4 + x5 + x6 + x7 +x8 + x9 + x10 + x11

+ x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22

+ x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33

+ x34 + x35 + x36 + x37 + x38 + x39 + x40 + x41 + x42 + x43 + x44

+ x45 + x46 + x47 + x48 + x49 + x50) <<< 59 }};

Fig. 4. Example rewrite rule. This rule is made much more complex by the fact it
happens after SAW’s existing term optimization phases.

We have 168 lines of top-level interface specifications, which define the 8
interface functions that we’ve proved correct. Those functions specify memory
layouts for the interface functions and link them to the top-level functional spec-
ification. We have 435 lines of top-level functional specifications, which were only
slightly modified from specifications that we and others have used in previous
cryptographic verification projects. These are almost completely free of imple-
mentation details, and live in a specifications only repository, separate from the
code. If the functional specifications were made any shorter, they would likely
also be less readable, so we believe they are close to optimal for their purpose.

The proof scripts consist of 1286 lines of intermediate function specifications,
rewrite rules, tactics, and proof running logic. These intermediate functions are
both proved and checked each time they’re called. As a result, they do not need
to be understood or trusted in order to believe the top level results.

Following continuous reasoning practice [19], our proofs are integrated into
the CI process for AWS-LC. We do not expect this code to change, but we have
adopted this practice as part of a larger AWS-LC assurance effort, including
code which does change more often. Quickcheck versions of our proofs run as
GitHub actions that take around 25 minutes7. The complete version runs on
private systems in 30 minutes, but using more cores and memory. A significant
part of our proof and tool development effort was dedicated to making sure

7 https://github.com/awslabs/aws-lc-verification/actions

https://github.com/awslabs/aws-lc-verification/actions

Verified Cryptographic Code for Everybody 17

proofs could run within a time budget acceptable for CI (typically 1 hour). For
example, this sometimes required introducing overrides to break the proof into
smaller segments.

Achieving trust in the proof. SAW is designed to increase confidence in software,
but it cannot supply total certainty. A key question is therefore what parts of
the toolchain and proof must be trusted. For our proofs, the Trusted Code Base
(TCB) consists of:

– The top-level functional and interface specifications in the proof scripts.
– Library behavior that is assumed and then used in overrides. In our case,

that OPENSSL_malloc and OPENSSL_free behave correctly.
– The SAW and Cryptol toolchain, the tools themselves, the language models

of x86 and LLVM, the back-end SMT solvers, and ultimately the Haskell
runtime and other downstream infrastructure.

– Correctness of the compilation chain from LLVM to executable (for C code),
and correct execution of compiled code by the hardware.

– Any behaviours of code not covered by proofs at the fixed sizes we have
verified.

Although this TCB is significant, it is comparable in scale to similar verifica-
tion projects like EverCrypt [21]. The highest impact improvement would likely
proving the algorithms at arbitrary sizes. While we could throw computation
at running the proofs at a wide range of fixed input sizes, this would spend
computation and developer wait time with fairly little benefit. We believe an
inductive approach is achievable in future work and would allow us to verify the
algorithms once and for all.

In the mean time, we have covered some of the most-used block sizes, as well
as all code paths. Given we have verified the algorithm at fixed sizes, and the
code does not branch on input size, the only place that bugs could remain is the
looping behaviour at other sizes. We have inspected the dynamically bounded
loops in the code carefully to mitigate this possibility.

We could also shrink the TCB by applying foundational techniques such as
used in the Verified Software Toolchain project [3]. This would remove much of
the need to trust the tool itself. However, we believe doing this would make it
infeasibly expensive to develop a tool as complex as SAW, at least given current
foundational techniques.

Another important question is whether a correctness failure in the toolchain
could result in a proof that does not establish the result we expect. We believe
the probability of this is quite low. Our current best defense against this failure
of TCB is thorough testing and code review. SAW itself is a well-tested tool that
has been used for many projects. The language models have also been tested,
and it is unlikely that a behavioural bug could cause an incorrect specification
to be verified. For this to occur, several failures would need to occur at once.

As an aside, the intent of the people doing the proof, and the precise nature
of any external review should be considered when answering this question. A tool
bug is unlikely to result in a proof that falsely appears correct, assuming that

18 Boston, Breese et al.

the proof effort is done in good faith. On the other hand, all tools have bugs,
and in most logic-based tools, bugs can allow the construction of false proofs
that appears superficially correct. In other words, for most current tools, trust
in verified code requires trust in the team and process producing the proof.

We believe the highest risk of accidental error lies in the specifications. It
is quite common for draft specifications to contain subtle discrepancies between
what users intends and the specification’s formal meaning. We mitigate this
with extensive manual audit. Every line of code we write is reviewed at least
once within the verification team, and once by AWS-LC domain experts. The
internal review ensures that our specifications are correct and that our style is
consistent with our guidelines. The external review allows us to ensure that we
have explained our proofs correctly, and that we have correctly specified the
functions in the context that they are being used.

Proof engineering process. The proofs were completed over six calendar months,
using approximately nine person-months engineering effort total. We consider
this to be an upper bound estimate as the proof effort was mixed in with tool
improvements, in particular for the less-mature x86 tooling. The core team con-
sisted of four engineers, with additional contributions from verification tooling
experts and AWS-LC domain experts. This project represented a significant en-
gineering effort, but for our project, this represented a good use of resources to
achieve a high level of confidence in the AWS-LC code. Proofs were completed
alongside more traditional assurance approaches, e.g. testing, fuzzing, and code
audits.

New proof techniques and tooling were a factor in our success, but there is no
single technical breakthrough that made these proofs possible. While combined
x86 and C verification is challenging, it would likely be possible (although not
easy) to add such a capability to a number of existing tools. Rather, a series of
tool extensions, design choices, and engineering working practices combined to
make the project feasible.

Using SAW, we automated most of the trivial reasoning, which meant that
a majority of proof engineering was spent on legitimately difficult verification
problems. These mainly involved understanding the code being verified and using
rewrites to manually rearrange verification terms to make them amenable to
automated proving. Many of these steps could in principle be automated, but
in practice engineers sometimes needed to resort to clunky debugging measures.
We find it unsurprising that highly specialized code such as AWS-LC would
generate edge cases that challenge generic proof automation. For proofs of this
type, for now we believe completely automated proving is out of reach.

We take several steps to try to minimise engineer effort when building proofs.
The most important of these is to lean on automation wherever possible. One
example is that we try to avoid internal specifications, which are often the most
challenging part of the proof. Because SAW is a bounded verifier, internal specifi-
cations are just a performance optimization—given sufficient compute resources,
we could in principle symbolically execute the entire code-base. Of course, in
practice, internal specifications are needed to make the proof tractable. Our

Verified Cryptographic Code for Everybody 19

practice is to prove functions at the largest scope which fits within our time
budget. By doing this, we are sometimes able to avoid specifying internal func-
tions that do relatively little computationally.

Another important strategy for us is to separate memory-safety proofs from
functional correctness proofs. We have found that much of the technical risk
in a verification project can be eliminated at the memory-safety stage. This is
where the verification tools are most likely to run into show-stopping bugs that
will put success of the project in jeopardy. Separating these concerns results
in proof terms that are smaller and easier to understand, so bugs are easier to
diagnose. Then, if we run into challenges during the correctness proving phase,
we can limit the cause to correctness properties, eliminating a large fraction of
the proof from consideration.

An important factor that enabled us to carry out these proofs is a team of
expert proof engineers who have built their skills over years. This project was
undertaken by a team which has worked continuously on verification projects for
four years. This expertise has given us a better understanding of what we can
attempt, and a far wider toolkit to dip into when things go wrong. We have seen,
anecdotally, similar evidence of improved verification capabilities from other
long-standing teams—for example, for the Project Everest, SeL4, and CompCert
projects. Long-standing teams of proof experts are still unusual, but we believe
they will be necessary to achieve the most ambitious proof engineering tasks,
just as they are in software and tool development.

A significant lesson that we have learned about proof engineering is that a
tool’s behaviour when it fails is more important than success. This is a critical
aspect of verification tools often overlooked in research papers. Many tools show a
demo where everything works, but in a proof engineering effort, the vast majority
of time is spent with a proof that does not work. In that sense, one of the most
critical aspects of a verification tool is what it does when the proofs are not
working. SAW provides some support for diagnosing errors, but there is a lot of
room for improvement. It lacks tooling to allow proof engineers to easily inspect
and modify proof terms that are not successfully proving. Furthermore, it has
inefficiencies that can make repeatedly running and modifying proofs slow and
painful, increasing the pain of developing proofs and reducing the time that
engineers can spend on the real challenges of verification.

7.1 Trade-Offs When Building on Existing Verification Tools

As we saw in section 6, rewriting is an example where SAW’s existing tooling
made some parts of our proof more awkward. It is reasonable to wonder whether
we could have modified SAW to allow more control of the rewriting pipeline.
This highlights an interesting trade-off that exists when developing proofs using
a more mature tool like SAW.

SAW has existed for a decade, and has been developed and improved itera-
tively over this time. Design decisions such as the order in which optimizations
occur can sometimes be baked deeply into the tool. This stands in contrast to
more experimental tools which often have short histories and a relatively clean

20 Boston, Breese et al.

design that can be torn down and refactored easily. SAW also has an active user
community which relies on it for different verification and assurance tasks. The
main users are at Galois, Amazon Web Services, and in the US government.
This means that tool changes need wider approval from a community. Again,
this stands in contrast to research tools which often have a single designer who
is also the main user. The effect of this is that changes such as the introduction
of rewriting must be carefully designed to fit with SAW’s existing architecture.

The pay-off for these restrictions is an enormous increase in the power and
scope of what we can achieve with the tool. In the large, we have benefited
from many features that were developed by independent research teams. For
example, we rely on the Macaw decompiler, which we used off-the-shelf without
modification. The SAW LLVM semantics is likewise a product of many years
of research, which did not require any further work from us. In the small, SAW
embodies many, many clever tricks and pieces of good design that together make
verification of challenging problems more feasible. Sometimes working with a
mature tool imposes costs, but overall we believe it raises the bar for our work
in a way that easily justifies the cost.

An open question for us is how we can make such collaboration possible
across the verification community. Boogie [4] is a good example of a verifica-
tion technology that has seen use across different teams and institutions. Proof
assistants and SMT solvers are also widely used as a basis for new tools. How-
ever, there are still very few software verification tools that have seen significant
adoption. We believe such tools will be necessary in the future if we collectively
are to tackle larger and more complex verification problems.

7.2 Verified Code Generation versus Verifying Existing Code

While the approach in this paper results in an artifact that may appear externally
similar to other state-of-the art verified cryptography efforts, there are some
engineering factors that might influence which approach is most appropriate for
a particular cryptographic use-case. The approach of EverCrypt, Jasmin, Fiat,
and similar efforts require the user to produce code or a model in a language
that is specific to the verification system. While these systems have demonstrated
ability to produce efficient verified implementations, they cannot directly verify
existing code. Our approach verifies existing code without modification, and
there are several engineering benefits to this.

The most significant reason to verify existing code is that producing new code
or modifying existing code introduces risk. Modifying optimized cryptographic
code is particularly risky because it is complex, and because an error could have
a devastating impact on the security of the system. A software project may be
unwilling to accept the risk of modifying mature code, even if the new code
is formally verified. For example, OpenSSL and its variants have been tested
and audited over more than a decade, and this maturity is appealing to many
software projects. In our approach, the code is verified without any modification.
Zero new risk is introduced, and the verification process only increases trust in

Verified Cryptographic Code for Everybody 21

the system. A related benefit is that the verified code maintains any existing
certifications, such as FIPS 140-2.

Another benefit of verifying existing code is that the verification works on
the programming languages that are already used in the project, and the build
pipeline does not require additional compilers or other tooling to support the
language of the verification system. Having the build depend on this tooling
can be risky because it is less familiar and less mature compared to the com-
pilers and build systems that are typically utilized. There is a risk that a build
pipeline could break or produce incorrect machine code due to a bug or lack of
understanding of the verification system. In contrast, our approach produces a
verification pipeline that is parallel to the build pipeline, and a failure in this
pipeline does not have any impact on the main build pipeline.

Many cryptographic applications do not have any legacy concerns and never
plan on maintaining or improving cryptographic code by hand. In those cases,
EverCrypt, Jasmin, and Fiat all produce trustworthy, high-performance imple-
mentations that might prove easier to use and understand than what is provided
by OpenSSL and its variants. Long-term support might be a concern, given these
are research tools. However the slow-moving nature of cryptographic code makes
it less likely that the implementations would need modification in the future.

8 Conclusion and Future Work

The purpose of formal verification is to allow users to be confident in the soft-
ware on which they depend. This is the reason that AWS-LC, BoringSSL, and
OpenSSL are excellent targets for formal verification. Nearly everyone who uses
the internet relies on this code for security, either through end-user software,
or through a cloud provider’s infrastructure. Our proofs show for the first time
that this kind of highly optimised, hand-written code matches its mathematical
specification. More importantly, we show that such code can be verified for a
reasonable amount of proof engineering effort.

We do not consider our proofs the last word on this code—there are several
ways in which our work can be improved. Most importantly, we have not yet
verified the OpenSSL version of AES-256-GCM and SHA-384. Based on inspec-
tion of the code, we believe the proofs would only need small changes to the
term rewrites, but this is currently not a high priority in comparison to further
AWS-LC assurance work.

There are also several ways we could improve the proofs themselves. We
have verified this code at fixed input sizes. We believe we have covered all edge
cases, so the probability that bugs remain is low, but a size-agnostic proof would
be more complete. Our proofs also rely on term rewriting tactics to close the
gap between implementation and specification. These rewrites are specialized to
our application and are therefore the most fragile part of the proof. We believe
that, with further research, automated solvers could solve many of these logical
queries without the need for manual tactics (this would also make our proofs
less fragile against code change). Finally, our proofs say nothing about non-

22 Boston, Breese et al.

functional security properties, such as timing or architectural side channels, nor
do they connect to cryptographic security proofs.

We are at an exciting moment for cryptographic verification. It is now possi-
ble to deploy verified cryptography without compromising on performance. We
are tantalisingly close to a world where most cryptographic traffic originates from
verified code, and where new cryptographic primitives are verified as a matter
of course. For our part, we consider AES-256-GCM and SHA-384 a stepping
stone to the real prize: a fully verified library of production-grade cryptographic
primitives. Stay tuned!

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V.,
Oliveira, T., Strub, P.: The last mile: High-assurance and high-speed crypto-
graphic implementations. In: 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. pp. 965–982. IEEE (2020).
https://doi.org/10.1109/SP40000.2020.00028

2. Amazon Web Services: AWS libcrypto (AWS-LC) public preview. https://github.
com/awslabs/aws-lc

3. Appel, A.W.: Verified software toolchain. In: Goodloe, A., Person, S. (eds.) NASA
Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA,
April 3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7226, p. 2.
Springer (2012). https://doi.org/10.1007/978-3-642-28891-3 2

4. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Nether-
lands, November 1-4, 2005, Revised Lectures. Lecture Notes in Computer Science,
vol. 4111, pp. 364–387. Springer (2005). https://doi.org/10.1007/11804192 17

5. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S., Thompson, L.: Vale: Verifying high-performance cryptographic
assembly code. In: 26th USENIX Security Symposium (USENIX Security 17). pp.
917–934. USENIX Association, Vancouver, BC (Aug 2017)

6. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer (2010).
https://doi.org/10.1007/978-3-642-14295-6 5

7. Chudnov, A., Collins, N., Cook, B., Dodds, J., Huffman, B., MacCárthaigh, C.,
Magill, S., Mertens, E., Mullen, E., Tasiran, S., Tomb, A., Westbrook, E.: Con-
tinuous formal verification of Amazon s2n. In: Chockler, H., Weissenbacher, G.
(eds.) Computer Aided Verification. pp. 430–446. Springer International Publish-
ing, Cham (2018)

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004). Lecture Notes in Computer Science, vol. 2988,
pp. 168–176. Springer (2004)

https://doi.org/10.1109/SP40000.2020.00028
https://github.com/awslabs/aws-lc
https://github.com/awslabs/aws-lc
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-14295-6_5

Verified Cryptographic Code for Everybody 23

9. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic – with proofs, without compromises. In: Proceedings
of the 40th IEEE Symposium on Security and Privacy (S&P’19) (May 2019)

10. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy,
N.: A verified, efficient embedding of a verifiable assembly language. Proc. ACM
Program. Lang. 3(POPL), 63:1–63:30 (2019). https://doi.org/10.1145/3290376

11. Galois Inc: Cryptol: The language of cryptography. https://cryptol.net/files/
ProgrammingCryptol.pdf

12. Galois Inc: Macaw binary analysis framework. https://github.com/GaloisInc/
macaw

13. Galois Inc: SAW tutorial. https://saw.galois.com/tutorial.html
14. Galois Inc: Software analysis workbench (SAW). https://saw.galois.com/
15. Galois Inc: What4 symbolic formula representation and solver interaction library.

https://github.com/GaloisInc/what4
16. Google: boringssl. https://boringssl.googlesource.com/boringssl
17. Lim, J.P., Nagarakatte, S.: Automatic equivalence checking for assembly implemen-

tations of cryptography libraries. In: Kandemir, M.T., Jimborean, A., Moseley, T.
(eds.) IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO 2019, Washington, DC, USA, February 16-20, 2019. pp. 37–49. IEEE
(2019). https://doi.org/10.1109/CGO.2019.8661180

18. National Security Agency: Commercial national security algorithm suite. https:
//apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

19. O’Hearn, P.W.: Continuous reasoning: Scaling the impact of formal methods. In:
Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp.
13–25. ACM (2018). https://doi.org/10.1145/3209108.3209109

20. OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org
21. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bharga-

van, K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova, N.,
Ramananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C.M., Béguelin, S.Z.:
Evercrypt: A fast, verified, cross-platform cryptographic provider. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020. pp. 983–1002. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00114

22. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:
Verified correctness and security of mbedtls HMAC-DRBG. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dal-
las, TX, USA, October 30 - November 03, 2017. pp. 2007–2020. ACM (2017).
https://doi.org/10.1145/3133956.3133974

23. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A veri-
fied modern cryptographic library. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. pp. 1789–1806. ACM (2017). https://doi.org/10.1145/3133956.3134043

https://www.ieee-security.org/TC/SP2019/
https://doi.org/10.1145/3290376
https://cryptol.net/files/ProgrammingCryptol.pdf
https://cryptol.net/files/ProgrammingCryptol.pdf
https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/macaw
https://saw.galois.com/tutorial.html
https://saw.galois.com/
https://github.com/GaloisInc/what4
https://boringssl.googlesource.com/boringssl
https://doi.org/10.1109/CGO.2019.8661180
https://apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://doi.org/10.1145/3209108.3209109
https://www.openssl.org
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3134043

	Verified Cryptographic Code for Everybody

