
Research Report: An Optim(l) Approach to Parsing
Random-Access Formats

Mark Tullsen, Sam Cowger, Mike Dodds
Galois, Inc.

{tullsen,sam,miked}@galois.com

Peter Wyatt
PDF Association

peter.wyatt@pdfa.org

Abstract—We introduce a Domain Specific Language (DSL) that
allows for the declarative specification of random access formats
(formats that include offsets or require out of order parsing,
e.g., zip, ICC, and PDF). Our DSL is composed by layering
three distinct computational languages: first, we have the base
layer of primitive parsers (these could use various “off the
shelf” parsing technology). Second, upon this base we layer
our XRP (eXplicit Region Parser) DSL, a pure functional lan-
guage for declaratively specifying random-access formats. XRP,
although similar to parser combinators, gives greater control
and expressiveness by making parsing regions explicit. Third, we
embed XRP into Optim(l), a novel DSL that describes Directed
Acyclic Graphs (DAGs) of computations. A node represents a
computation in XRP, an edge represents a dependency between
the computations. From a declarative Optim(l) program we can
generate an imperative module that provides an API for on-
demand and incremental parsing of the random access format.

I. INTRODUCTION

A. PDF Applications: Not Your Traditional Parser

In the DARPA SafeDocs project, much effort—by Galois and
other teams—was spent researching and developing methods
for writing safe, secure PDF parsers. Parsing PDFs (Portable
Document Format) [9] is challenging on many fronts: the lan-
guage has been evolving over many decades; the specification
is informal, even ambiguous in places; PDF includes dozens
of embedded formats; PDF has elements which are binary-
formats, elements which are textual grammar-based languages;
PDF has features that support incremental parsing. (We have
previously addressed some of these difficulties in [16].)

It is understandable that one might view the problem of writing
safe, secure PDF parsers as diagrammed in Fig. 1 and ask,
What kind of parsing technology is required to write a
secure PDF parser? With our “parsing tool” hammers in
hand, PDF applications certainly look like nails. But, is the
lack of better parsing technology the primary impediment to
PDF security? We think not. In fact, there are many factors.
Two that stand out are poor software engineering practices
and the inadequacies of the PDF specification (changing,
informal, ambiguous in places, etc.). But in this paper, we call
attention to another major factor: the mismatch between format
description tools and the actual needs of PDF applications.
The problem needs to be viewed differently, see Fig. 2, and
the question we now ask is, What should a multi-entry
point parser look like and how do we build one to be

Fig. 1. PDF Application, viewed as "Transformational" system

Fig. 2. PDF Application, viewed as "Reactive" system

correct and performant? It turns out that actual PDF tools are
implemented primarily like Fig. 2 and much less like Fig. 1 :
where the application code reads and parses the file on demand
and incrementally. In other words—to use the terminology of
Harel and Pneuli [4]—PDF tools are Reactive systems, not
Transformational systems. “Shotgun parsers”1 in the LangSec
community have a bad reputation, but when the problem looks
like Fig. 2, a correct, well-structured solution is not at all
obvious; it turns out the many “shotgun parsers” in the wild
are a reflection of an unsolved software engineering problem.

Fig. 1 works for most parsing applications (e.g., the parsing of
programming languages, most binary formats, etc.); so, why
do all the PDF applications look like Fig. 2? It is because PDF
is a random access format, which by design allows for both
partial and incremental parsing.

1A shotgun parser is a parser in which the parsing code is scattered across
the application code.

B. Random Access Formats: Opportunities and Problems

A random access format is a format that involves parsing
which need not be sequential over the input, e.g., the format
may include offsets or locations which are used by the parser
to “jump” to new locations to parse. Examples of random
access formats are ICC, ELF, Zip, and PDF. Random access
formats are often binary, but could be textual (e.g., PDF). We
use the term region to refer to a sub-range of the input that
can—or must—be parsed out of sequence. A region’s start
could be defined by an absolute address, a relative address, or
be known statically. A region often has a known length (either
statically or known at the time of region parsing). We can view
a sequential format as the degenerate case of a single region
format.

A simple example of a random access format is ICC [6], see
the diagram in Fig. 3. Note the “Tag Table” where entries
contain byte offsets to various “Tag element data” (TED)
regions later in the file.

Partiality and Parallelism
The presence of regions in a random access format can allow
for partial, incremental, or on-demand parsing of sub-regions
of the format. This is usually the point of having sub-regions
in the format. Regions can also provide the possibility of
parallel parsing. For example, note, in Fig. 3, the multiple
"Tag element data" regions. An application could either parse
just one needed TED region, or parse all the TED regions in
parallel.

Partiality: Parsing Projections and Demand-Functions
We’ve mentioned “partial parsing,” but what precisely do we
mean? We use the term parsing projection to signify a program
which implements the function of “parsing” and then (on
success) projecting a subset of the resulting value. E.g., getCnt
will parse an ICC file then extract the length of the TEDs data
from the fully parsed ICC value (the same as the “Tag count”
field).

Fig. 3. ICC File Structure.

But the more useful concept is what we term a demand-
function, which

• returns the same value as the equivalent parsing projec-
tion,

• may be defined on more inputs than the parsing projec-
tion, as it can be non-strict on the input; e.g., the getCnt

demand-function could simply parse the “Tag count” in
the ICC file but ignore the TEDS values (and is thus
“robust” with respect to failures in the parsing of TED
values).

When we have a set of demand-functions as part of a multi-
entry point parser, the following would be ideal

• the minimal amount of computation is done;
• the computation is fully shared among the different

demand-functions; and
• optimizations will preserve correctness with respect to the

original parsing projection: i.e., if the parsing projection
returns a value, then the demand-function must return
with the same value.

So, demand-functions are both more efficient and “more
defined”. One might be a little nervous using parsers that
ignore parts of their inputs, but in what follows we’ll show
how we can write multi-entry point parsers that provide both
efficiency, and when desired, provide full validation. Note that
this is how most PDF tools work and is the desired behavior in
most cases: e.g., (1) we don’t want the pdftotext tool to fail
when there is a minor error in the color meta-data, (2) we want
to display page one, even if there is an error in the independent
definition of page two, and (3) we want to extract meta-data
from the file even if the rest of the file is highly corrupted.

Regions and Cavities: Security Issues
When a random access format is fully parsed, the parser will
generally “seek to” and parse various regions of the input;
but what about the bytes that are not in any of these regions?
We refer to such “negative space” regions as cavities, such
byte ranges are not in any possibly parsed region, and thus
should not be parsed. Cavities waste space, can indicate a
format error, or even indicate malicious behavior. Regarding
malicious behavior, a cavity might

• hold latent data for further ‘exploits’ such as a PDF
shadow attack, see [13], or

• be the means for creating a ‘polyglot’, a document that
is a member of two formats considered to be disjoint.

Another problem with regions is that when regions partially
overlap, the proper behavior is unclear2: Are overlaps an error?
If so, is a parser required to detect and reject them3? When
lack of clarity exists as to what is in the format and what
is not, we now have the possibility of “parser differentials”:

2We are not aware of random access formats where this is specified.
3Ideally, format specifications should not merely state what is “in the

format,” they should indicate what is required of the format producer and
what is required of the format consumer.

where multiple implementations of the same standard can vary
one from one another; this is yet another security problem.

C. Our Approach

Note the problem statement from Sec. I-A: What should a
multi-entry point parser look like and how do we build one
to be correct and performant? Our approach is as follows:

1) Use a declarative DSL LoCo to describe the random
access format.

2) From the LoCo specification, generate a stateful multi-
entry point parser which provides all desired demand-
functions for the format. This multi-entry point parser
will be ‘optimal’ in the sense that it caches all sub-
results and no parse or computation will be computed
more than once.

The LoCo4 DSL is composed by layering three distinct compu-
tational languages: (1) the base layer of primitive parsers; (2)
the XRP (eXplicit Region Parser) layer invokes the primitive
parsers. XRP is a pure functional language DSL that works
similar to parser combinators but it makes the regions explicit
to which parsers are applied, for random access formats
this provides needed control and expressiveness; and last,
(3) the Optim(l) layer, a novel DSL that describes Directed
Acyclic Graphs (DAGs) of computations (in our case, XRP
computations). When viewing Optim(l) as a DAG, a node
represents a computation—in XRP—and an edge represents
a dependency between XRP computations.

D. Scope and Summary

At this point in our development, we consider LoCo to be
at the “concept language” stage. It is currently implemented
as DSLs in Haskell and we have found it elegantly useful5.
Our focus in this paper is to communicate the primary ideas,
applicability, and benefits of our approach. The creation of a
more robust tool-set is future work; a more formal semantics
is also, alas, future work.

In the following section Sec. II we explain LoCo using
examples; in Sec. III we go into further details of LoCo’s
multiple layers (base layer, XRP, and Optim(l)); and in Sec. IV
we assess and conclude.

II. LoCo BY EXAMPLE

The current section attempts to describe by example the main
features of LoCo. While further details of the layers of LoCo
will be discussed in the following section (Sec. III), in this
section, for the sake of preciseness, we may distinguish the
layers of the LoCo code into Optim(l) constructs and into XRP
constructs.

We have implemented a LoCo parser, compiler, and interpreter
inside Haskell[10] via Template Haskell[15]. This has allowed

4LoCo adds “Location Constraints” to sequential primitive parsers.
5LoCo can be downloaded from [8]

pICC : Parser [TED]
pICC= do
cnt ← pInt4Bytes
tbl ← pMany cnt pTblEntry -- parse cnt Table Entries
rsTeds ← except $ mapM getSubRegion tbl
teds ← mapM applyPTED rsTeds
return teds

-- parse a Tagged Element Data (TED):
applyPTED :: Parser TED
applyPTED (sig,offset,size)=

withParseRegion offset size (pTED sig)

Fig. 4. ICC: The Traditional Approach

[optimal|
icc : Region → ICC
icc rFile=

{ (cnt,rRest)=<| pInt4Bytes @! rFile |>
, tbl =<| pManySRPs (v cnt) pTblEntry @!- rRest |>
, rsTeds =<| except $ mapM (getSubRegion rFile) (v tbl) |>
, teds =<| mapM applyPTED rsTeds |>
}
|]

applyPTED r= pTED (region_width r) ‘appSRP‘ r

Fig. 5. ICC: Using LoCo

[optimal|
icc_lazyVectors : Region → ICC
icc_lazyVectors rFile=

{ (cnt,rRest)=<| pInt4Bytes @! rFile |>
, rsTbl = generate (v cnt)

<| λi→ regionIntoNRegions
(v cnt) rRest (width pTblEntry) i |>

, tbl = map rsTbl<| λr→ pTblEntry @$$ r |>
, rsTeds = map tbl <| λr→ except $ getSubRegion rFile r |>
, teds = map rsTeds <| applyPTED |>
}
|]

Fig. 6. ICC: Using LoCo with Lazy Vectors

icc rFile= {
...
, crsFile =<| makeCanonicalRegions (r cnt : r tbl : rsTeds) |>
, isCavityFree=<| hasNoCavities $ R.complementCRs rFile crsFile |>
, teds_safe =<| if isCavityFree

then return teds
else throwE ["teds not safe"] |>

}

Fig. 7. ICC: Extending With Constraints

us to quickly get LoCo working and type-checking, so we can
focus on exploring and developing the features and concepts
of LoCo.

Compare Fig. 4—where ICC is implemented in Haskell as a
traditional parser—to Fig. 5 where ICC is implemented using
LoCo “inside the Haskell.”

A. A Quick Introduction to LoCo Syntax

In the LoCo (Fig. 5) there are a few syntactic matters to cover.

Primitive parsers, and other code, are defined in Haskell as top
level definitions. The LoCo code is defined inside a Template

Haskell quasi-quote [12] like this:

[optimal|
-- The Optim(l) layer of LoCo is here:
module1 ..= { ... }
module2 ..= { ... }
...
|]

An Optim(l) module is defined in Haskell-like syntax as a set
of bindings

[optimal|
icc rFile=

{ pat1=<| Haskell XRP code here |>
, pat2=<| Haskell XRP code here |>
, ...
}
|]

The right hand side of a binding is where we see the XRP
layer of LoCo, this Haskell XRP code must be surrounded by
delimiters. An individual binding is written thus:

(var1,var2,...)= <| YOUR HASKELL XRP CODE HERE |>

The left hand side of the binding (var1,var2,...), is similar
to a Haskell irrefutable pattern.

The Haskell code on the right hand side (RHS) of Optim(l)
bindings can refer to any Haskell definition in scope at the
top level as well as all Optim(l) bindings in the same Optim(l)
module: one needs no extra syntax or programming construct
to refer to these bindings. Note that Optim(l) bindings cannot
be defined recursively.

B. ICC Traditionally and “Optimally”

The reader, hopefully armed sufficiently to read the LoCo,
can now observe three key differences between the sequential
Haskell and the LoCo:

• In the sequential Haskell, the ordering is top to bottom
and is strict.
In LoCo, we have a set of bindings in which there is no
ordering implied, any sequencing is only that implied by
the data dependencies between bindings.

• In the sequential Haskell, we have a single parser function
pICC which returns the final result of type [TED].
In LoCo, we define a module icc which has no designated
or main result, any of the bindings could be demanded,
e.g., icc.teds or icc.cnt.

• In the sequential Haskell, the point at which parsing starts
is implicit, a parser starts where the previous one ended.
When there is a "seek" (jump, or change of location),
this implicit location needs to be overridden; in Fig. 4,
the withParseRegion primitive is used for this: it changes
the "point of parse" and also limits the extent of the parse.
In LoCo, the regions are always explicit, e.g., rFile,
rRest. One must have a region in order to apply a
primitive parser to the input.

C. Compiling LoCo to Multi-Entry Point Modules

The icc module is compiled to a stateful multi-entry point
module with the following API:
Monad m ⇒
applyICC :: String → M -- no computation done, never fails
get_cnt :: M → m Int
get_tbl :: M → m [TblEntry]
get_teds :: M → m [TED]

(If so desired, we could also export the region variables and
have these added: get_rRest,get_rsTeds, . . .)

Each of the demand functions in the API will only execute
the computation required to evaluate its associated binding.
For instance, the get_tbl demand will

1) force all dependent bindings of tbl; thus forcing the
(cnt,rRest) binding (thus evaluated and cached).

2) evaluate the RHS of the tbl binding, and cache it.
3) return that value to the user.

This works similarly to lazy evaluation in non-strict languages.

D. Fine Tuning With Lazy Vectors

As an example, if we only need the second value returned by
get_teds, all the TEDs in the ICC file would still be parsed
and the list returned to the user. If any of the other TEDs
resulted in a parsing error, get_teds would fail. This is not
always what we want: this makes our tools brittle when we’d
prefer them to be robust. Inspecting the format, we see that to
parse the second TEDs value, we only need to parse the Tag
count, the second Tag Table entry, and the region referenced
by the second Tag Table entry. To achieve this greater laziness,
Haskell’s laziness doesn’t help: Optim(l) has no knowledge or
requirements on the values bound and it uses strict evaluation
when it requires values. So we need to add lazy vectors directly
into Optim(l). Lazy vectors will allow us to capture element-
wise dependencies between two vector bindings. Fig. 6 shows
how we can write icc to use Optim(l)’s lazy vectors, When
we compile the icc_lazyVectors we get a stateful multi-entry
point module with this API:
Monad m ⇒
applyICC :: String → M -- no computation done, never fails
get_cnt :: M → m Int
get_tbl :: M → Index → m TblEntry -- vector indexing
get_teds :: M → Index → m TED -- vector indexing

Where the “vector” elements tbl and teds now generate
demand functions that require an Index argument. With these,
we can optimally read the second value of get_teds by calling
the icc_lazyVectors.get_teds 1 demand function, which
demands

• teds.1, which demands
• rsTeds.1, which demands rFile and
• tbl.1, which demands
• rsTbl.1, which demands cnt and rRest

So, icc_lazyVectors.get_teds 1 requires very little of the
ICC file to be traversed and parsed.

E. Constraining Modules

In the icc module specification, we can extend the module
with further bindings, refer to Fig. 7 where we now have safe
(get_teds_safe) and unsafe (get_teds) ways to access the
same data, their equivalence (when the file is cavityFree) is
clear from the LoCo code.

Using explicit regions, we can use library functions
to check for sanity among all the regions parsed:
makeCanonicalRegions ensures no region overlaps with an-
other; hasNoCavities ensures there are no undue cavities in
the file. These functions allow us to address the security issues
with regions and cavities referred to in Sec. I-B.

III. DECONSTRUCTING LoCo: Optim(l) AND XRP

In this section we will dive into further details of LoCo.

A. The Three Layers of LoCo

In Sec. I-C we introduced the three layers of LoCo:

1) The base layer of primitive parsers.
2) The XRP (eXplicit Region Parser) layer invokes the

primitive parsers. XRP is a Haskell “parsing combinator
library” with some unique features: parsers must be
passed regions explicitly, the regions are kept abstract,
and the XRP code is in the Reader plus Exception monad
(a commutative monad).

3) The Optim(l) layer (written inside a custom Template
Haskell quasi-quote [12]). Optim(l) is effectively a syntax
for writing DAGs of computations in the computation
language l. The name Optim(l) tries to suggest the
parameterization of Optim(l) over many l languages.
Declaratively, the purpose of Optim(l) is to abstract
over the dependencies between sub-computations (sub-
parsers or the like) and thus to avoid over sequentializing
our specifications. From the implementation point of
view, Optim(l) will be compiled into lazy, on-demand
multi-entry point APIs, i.e., optimal, stateful demand
functions.

We’ve been showing all three layers in our LoCo code, but
let’s make it more explicit. Note the following snippet of our
previous code:
f = return 5
[optimal|
icc : Region -> ICC
icc rFile =
{ (cnt,rRest)= <| pInt4Bytes @! rFile |>
, tbl = <| pManySRPs (v cnt) pTblEntry @!- rRest |>
...
}
|]

We see the top level Haskell code in black. The Optim(l) is
next, defined at the top level and delimited by our quasi-
quotes [optimal| ... |]. Optim(l) doesn’t look inside the <| ... |>
quasi-quotes, this is where the Haskell XRP code goes, XRP
is Haskell of the proper type. And, in this example, there’s

only one primitive parser called (what we call the base layer),
indicated by pInt4Bytes.

B. The Optim(l) DAG computation DSL

Note the simplicity of Optim(l), it doesn’t do much:

• Optim(l) does little computation of its own, the computa-
tion is embedded as l expressions in the bindings;

• Optim(l) lacks any control flow operators;
• Optim(l) lacks recursion: the bindings must form a DAG.

We consider Optim(l)’s simplicity as an advantage: for in-
stance, all data dependencies are statically determinable from
the syntax of a module definition.

The irrefutable pattern matching of tuples on the left hand
sides of bindings is merely syntactic sugar; this could be
transformed away easily using standard techniques.

An Optim(l) binding can reference Haskell top-level defini-
tions, but it also references other Optim(l) bindings. These ref-
erences to bindings are the edges in our DAG of computations.
When an Optim(l) binding is demanded, it will demand (force
a thunk if you will) the bindings of every Optim(l) binding in
its definition. There is no laziness here, all bindings will be
demanded.

C. Lazy Vectors in Optim(l)

As we demonstrated in Sec. II-D, Optim(l) allows for lazy
vectors. When we are thinking of the code as a DAG, we
can view these as node vectors where we have element-
wise dependencies between equal length node vectors. The
following bindings show the four primitives for creating,
transforming, and accessing lazy vectors:

pat= generate int <| l code |> -- :: Int → (Int → a) → Vec<a>
pat= replicate int<| l code |> -- :: Int → a → Vec<a>
pat= map fieldName<| l code |> -- :: Vec<a>→ (a→b) → Vec
pat= index fieldName int -- :: Vec<a>→ Int → a

Optim(l) uses the syntax Vec<a> (which is not Haskell) to
refer to a lazy vector containing values of type a. As lazy
vectors are a special built-in type of Optim(l), and abstract, we
use the non-Haskell syntax Vec<a> to suggest this intention.

The primitive replicate n <|x|> creates a constant vector
of length n, generate n <|f|> creates a vector contain-
ing the values [f i|i←[0..n-1]], and map fld <|f|> cre-
ates a new lazy vector with the values of the Haskell list
map f (toList fld). The primitive index fld i indexes into
fld which needs to be a lazy vector. Note that index may fail
if i is out of bounds.

D. The l in Optim(l): Commutative Computation Languages

Optim(l), as the name tries to suggest, is parameterized over
the language l of computations, where l must be a commutative
monad. A commutative monad is a monad in which the order
of actions does not matter, i.e., a monad where this law holds
for all program contexts A,B,C:

do {a ← A; b ← B; C[a,b]}
== do {b ← B; a ← A; C[a,b]}

This is the key design decision in LoCo: Separate the DAG
evaluation language from the commutative computation
language!
By restricting our computation language l to be a commutative
monad6 Optim(l) becomes a deterministic language: the order
of demands cannot change the results we get from our demand
functions. It turns out that this “restriction” is satisfied in
many useful cases and provides the key to parallel, optimal,
and deterministic behavior. Examples of commutative monads
in Haskell are Identity (i.e., pure code), Maybe (i.e.,
exceptions), and Reader (i.e., read-only globals), as well as
combinations thereof. Monads which are not commutative are
StateM (mutable globals) and IO. However, one could have
a subset of IO that is commutative, e.g., using IO in a "read-
only" manner, such as reading configuration files or program
input. Although the restriction of l to commutative monads
lessens the applicability of Optim(l), we note that giving up
a clean, deterministic, and functional semantics is not a price
we choose to pay to achieve “greater applicability.”

The next section will show the XRP language, a commutative
monad as it is effectively Haskell’s Reader plus Exception
monad.

E. The XRP DSL: explicit, abstract regions for random access
formats

In hindsight, the design of XRP is pretty simple and obvious:

• Start with a parser combinator library designed with the
State (holds the point of next parse) and the Exception

monads (we want to be able to fail).
• Rewrite that library to be a Reader (holds the input) and

Exception monad where we explicitly plumb the region
through all the parsers.

• Ensure regions are abstract by designing an algebra of
regions, the XRP program does not have access to the
concrete region.

• At the base level, primitive parsers must always be
applied to the region.

A key design decision for the XRP parser combinator library
was not to add a ‘seek’ primitive (which would necessitate a
stateful implementation), combinator library, but to “lift” non-
seeking parsers into the explicit region language.

In the code in Sec. II, we saw a few examples of XRP region
combinators:

• parsers that don’t consume their whole region and which
return a remaining region,

• the getSubRegion combinator which extracts one region
out of another,

6This is enforced by convention, our Haskell based implementation cannot
enforce it.

• regionIntoNRegions n which can slice a region into n

equal width regions.

Even the authors can find writing explicit regions in XRP
irksome at times. (Hint: when you do have sequentiality of
parsers, you can use a combinator for that, no explicit regions
needed.) However, compared to the sequential implementation,
we find many things pleasant about writing the ICC format in
Optim(l): (1) the icc module is more declarative, no ordering
is needed, (2) the code generated from icc is optimal and
more general, (3) constraints can be added without cluttering
the main parser code.

The explicit regions are essential to allowing achieving com-
mutativity and essential to accurately determining the depen-
dencies. Optim(l) needs to see all the dependencies between
the bindings, especially when those dependencies are region
variables.

The alternative, an implicit location with some form of over-
riding primitive, is inherently stateful and imperative. We’d
consider it harmful, similar to a goto statement [3] insofar as
it precludes any form of local reasoning, any parser is now
at liberty to “go seeking” anywhere and as many times as it
wants.

In other words, the explicit region approach is pure functional
programming, the implicit location approach is programming
with a mutable global variable (sometimes convenient, but it
can bite).

F. Implementation: Current and Future

Implementing Optim(l) in a meta-language in Haskell using
Template Haskell [15] and quasi-quotation [12] gave us many
advantages

• the ability to write the Optim(l) parser easily,
• easy access to Haskell syntax,
• the ability to borrow Haskell’s type-checking, and
• proof that Optim(l) can be separated from our l compu-

tation language in an elegant fashion.

In the future, we plan to implement LoCo as a stand-alone
compiler. There is nothing in the design of Optim(l) that
precludes us from having a stand-alone compiler from Optim(l)
with l = L that generates code in the language L, provided
L is relatively complete. For a desired language L, we would
need to write a library in L to support the basic glue (thunks
and tracking dependencies) between the computations. In fact,
as future work, we would like to break the tie between
Optim(l) and Haskell by implementing the system as a stand-
alone compiler in which we can target a set of computation
languages; e.g., Haskell, C, and Rust. Not only would a
stand-alone compiler allow for additional target languages, it
would allow for easier extensions to our simple compiler, e.g.,
analyze and optimize the generated code, such as removing
unneeded thunks when a binding has only one dependent.

IV. CONCLUSION

A. Assessments

Although LoCo is at the “concept language” stage, we have
an implementation in Haskell has kept us honest. LoCo can be
downloaded from [8], a toy implementation of ICC is included.

We have struggled with the ramifications of the current design
tradeoffs: LoCo can feel a little complicated, wouldn’t adding
a seek primitive to a traditional parser be simpler? Explicit
regions make LoCo less readable (than a parser defined with
implicit, sequential regions) and code with explicit regions is
more tedious to write. But, as we have gained familiarity with
our new language, we feel that the high road (pure, no seek
with state, commutativity) is a better road, or at least a road
that should be explored further. Further observations are in
Sec. III-E. It should be noted that LoCo was designed for real
world random access formats, that’s where it should shine.

We have found that it is possible to reduce the need for explicit
regions with effort, and certainly where there is no desire for
a "demand function" for an element, one can eliminate an
Optim(l) binding.

However, we think the advantages of LoCo are compelling

• Optim(l) modules are declarative;
• the separation of declarative semantics and the complex

imperative interface;
• with lazy vectors and regions, Optim(l) can provide opti-

mal and fine-grained demand functions which would be
infeasible to do by hand;

• Optim(l) gives a tool that is more general and useful than
a parser;

• with one clear, simple LoCo specification, LoCo allows
for accessing sub-results, full results, and constrained
results from the parser;

• more secure regions (as mentioned in Sec. II-B): detecting
cavities and region overlaps

B. Alternatives

What are other approaches to handling random access formats?

The Classic Shotgun
It appears that the most common approach is rolling ones own
(i.e., shotgun parsers):

• If the primitive parsers are of the “scanf” variety, then
the use of ad hoc code to orchestrate the parsers makes
sense.

• If the number of "demand functions" are small, even if
the parsers are complicated, this is another case where ad
hoc code will probably be sufficient.

The biggest disadvantage here is that correctness is not at all
clear, and the parser is not localized to a single place in the
code where it can be checked for correctness.

Retrofitting Parsing Technologies with ‘seek’, etc.

Galois’ highly expressive DaeDaLus parser [7] does exactly
this. DaeDaLus has the features of a combinator library and
grammar based parser, it supports seeks and more. DaeDaLus
is a great tool for generating basic parsers even for very
complex formats. The gap only became clear when we tried
to use DaeDaLus to create a large set of demand functions
for various parts of the PDF; we then realized it’s still not
solving the “keep track of the dependencies and cache the
result” problem, and to do this we were just writing everything
by hand, except the primitive parsers themselves. Retrofitting
needs more than ‘seek’, it needs to create a stateful multi-entry
point module; and creating such a module requires knowing
the full format.

KaiTai Struct
KaiTai struct [14] is an excellent tool suite for describing
binary formats. It goes beyond LoCo as it supports both
reading and writing formats: and it has features that support
regions. Also, it generates imperative code that implements
caching demand functions.

Some things that distinguish our approach from KaiTai struct
are

• LoCo uses real programming languages (vs. YAML) and
thus we have abstraction (no duplication of code), more
programming language types and sum types.

• In our opinion, LoCo has fewer and simpler concepts than
KaiTai struct and is more declarative.

• LoCo supports the notion of lazy vectors.
• LoCo is less focused on binary formats, and can work, as

originally designed, with both binary and textual (PDF)
formats.

C. Related Work

We are not aware of work particularly close to our topic here:
writing declarative descriptions of random access formats
from which we can generate code for optimal demand
functions. But there is related work further afield:

Tools. There is the previously discussed (Sec. IV-B) KaiTai
Struct tool [14].

Format Description. Zhang et al [17] deal with defining
region based parsers as we do, though from a more theoretical
perspective. They focus on the specification of formats, not
dealing with demand functions or optimality. Their Related
Work section is an excellent survey: they note how frameworks
for data-dependent grammars are generally not sufficient to
describe region based parsing, e.g., PADS [11]. They also
discuss tools that can describe region based parsing, KaiTai
Struct [14], Nail [2], DataScript [1], and FlexT [5]. Similar
to our discussion in Sec. II-B, they note the imperative, goto
like, nature of these descriptions.

Nail [2] is worth calling out individually, it is focused on gen-
erating parsers and generators (unparsers or encoders) using
PEG grammars. Like KaiTai struct, it allows for generating
both the parser and the generator from the protocol definition.

Nail falls into the add a seek primitive language design camp
and Nail does not attempt to support partial parsing.

In comparing LoCo with many of the above approaches, a key
difference is that LoCo focuses on the Optim(l) partial parsing
capabilities (few do) and its method of adding “seeking” (most
don’t allow or add primitives); the LoCo approach is quite
agnostic with respect to particular parsing technologies used
in the “base layer”, e.g., using PEG parsers as Nail does.

D. Future Work

As mentioned in Sec. III-F, we have plans to implement
Optim(l) as a stand-alone compiler, this would allow us to

• Target further l’s as mentioned in Sec. III-D.
• Do further analysis and optimization of the Optim(l) code

(e.g., remove unneeded thunks when a node has only one
dependent).

In order to gain more experience by which to improve LoCo,
we plan to implement more random access formats. Coming
full circle from where we started this paper, an excellent stress
test of LoCo would be to use it to implement a PDF parser.

A more ambitious research topic to explore is using LoCo
to generate encoders as well as decoders. In many cases the
constructs in the bindings are bijective and the use of Optim(l)
variables is linear, so this certainly gives us a reasonable start.

ACKNOWLEDGMENTS

This research was supported in part by DARPA awards
HR001119C0073 and HR001119C0079.

REFERENCES

[1] Godmar Back. DataScript- a specification and scripting
language for binary data. In Don Batory, Charles Consel,
and Walid Taha, editors, Generative Programming and
Component Engineering, pages 66–77, Berlin, Heidel-
berg, 2002. Springer Berlin Heidelberg.

[2] Julian Bangert and Nickolai Zeldovich. Nail: A Practical
Interface Generator for Data Formats. In 2014 IEEE
Security and Privacy Workshops, pages 158–166, San
Jose, CA, May 2014. IEEE.

[3] E. W. Dijkstra. Go To Statement Considered Harmful.
In Edsger Wybe Dijkstra: His Life,Work, and Legacy,
volume 45, pages 315–318. Association for Computing
Machinery, New York, NY, USA, 1 edition, July 2022.

[4] D. Harel and A. Pnueli. On the development of reactive
systems, page 477–498. Springer-Verlag, Berlin, Heidel-
berg, 1989.

[5] Alexei Hmelnov Hmelnov and Andrei Mikhailov. Gen-
eration of Code for Reading Data from the Declarative
File Format Specifications Written in Language FlexT. In
2018 Ivannikov Ispras Open Conference (ISPRAS), pages
23–30, November 2018.

[6] ICC. Specification ICC.2:2019 (Profile version 5.0.0 -
iccMAX) Image technology color management - Exten-
sions to architecture, profile format and data structure
[REVISION of ICC.2:2018], 2019.

[7] Galois Inc. Daedalus. https://github.com/GaloisInc/
daedalus.

[8] Galois Inc. Loco. https://github.com/GaloisInc/LoCo.
[9] ISO TC 171 SC 2 WG 8. ISO 32000-2:2020 Document

management - Portable Document Format - Part 2: PDF
2.0, volume 2 of ISO 32000. ISO, December 2020.

[10] Simon Peyton Jones. Haskell 98 language and libraries:
the revised report. Cambridge University Press, 2003.

[11] Kathleen Fisher and David Walker. The PADS Project:
An Overview, 2011.

[12] Geoffrey Mainland. Why it’s nice to be quoted:
Quasiquoting for haskell. In Proceedings of the ACM
SIGPLAN Workshop on Haskell Workshop, Haskell ’07,
pages 73–82, New York, NY, USA, September 2007.
Association for Computing Machinery.

[13] NDSS Symposium. NDSS 2021 Shadow Attacks: Hiding
and Replacing Content in Signed PDFs, February 2021.

[14] KaiTai Project. Kaitai Struct: Declarative binary format
parsing language. https://kaitai.io/.

[15] Tim Sheard and Simon Peyton Jones. Template meta-
programming for Haskell. In Proceedings of the 2002
ACM SIGPLAN Workshop on Haskell, Haskell ’02, pages
1–16, New York, NY, USA, October 2002. Association
for Computing Machinery.

[16] Mark Tullsen, William Harris, and Peter Wyatt. Research
report: Strengthening weak links in the pdf trust chain.
In 2022 IEEE Security and Privacy Workshops (SPW),
pages 152–167, 2022.

[17] Jialun Zhang, Greg Morrisett, and Gang Tan. Inter-
val parsing grammars for file format parsing. Pro-
ceedings of the ACM on Programming Languages,
7(PLDI):1073–1095, June 2023.

https://github.com/GaloisInc/daedalus
https://github.com/GaloisInc/daedalus
https://github.com/GaloisInc/LoCo

	Introduction
	PDF Applications: Not Your Traditional Parser
	Random Access Formats: Opportunities and Problems
	Our Approach
	Scope and Summary

	LoCo by Example
	A Quick Introduction to LoCo Syntax
	ICC Traditionally and ``Optimally''
	Compiling LoCo to Multi-Entry Point Modules
	Fine Tuning With Lazy Vectors
	Constraining Modules

	Deconstructing LoCo: Optim(l) and XRP
	The Three Layers of LoCo
	The Optim(l) DAG computation DSL
	Lazy Vectors in Optim(l)
	The l in Optim(l): Commutative Computation Languages
	The XRP DSL: explicit, abstract regions for random access formats
	Implementation: Current and Future

	Conclusion
	Assessments
	Alternatives
	Related Work
	Future Work

