L))

Check for
Updates

Daedalus: Safer Document Parsing

IAVOR S. DIATCHKI, Galois, USA

MIKE DODDS, Galois, USA

HARRISON GOLDSTEIN, University of Pennsylvania, USA
BILL HARRIS, Galois, USA

DAVID A. HOLLAND, Galois, USA

BENOIT RAZET, Galois, USA

COLE SCHLESINGER, Galois, USA

SIMON WINWOOD, Galois, USA

Despite decades of contributions to the theoretical foundations of parsing and the many tools available to aid
in parser development, many security attacks in the wild still exploit parsers. The issues are myriad—flaws
in memory management in contexts lacking memory safety, flaws in syntactic or semantic validation of
input, and misinterpretation of hundred-page-plus standards documents. It remains challenging to build and
maintain parsers for common, mature data formats.

In response to these challenges, we present Daedalus, a new domain-specific language (DSL) and toolchain
for writing safe parsers. Daedalus is built around functional-style parser combinators, which suit the rich data
dependencies often found in complex data formats. It adds domain-specific constructs for stream manipulation,
allowing the natural expression of parsing noncontiguous formats. Balancing between expressivity and
domain-specific constructs lends Daedalus specifications simplicity and leaves them amenable to analysis. As
a stand-alone DSL, Daedalus is able to generate safe parsers in multiple languages, currently C++ and Haskell.

We have implemented 20 data formats with Daedalus, including two large, complex formats—PDF and
NITF—and our evaluation shows that Daedalus parsers are concise and performant. Our experience with PDF
forms our largest case study. We worked with the PDF Association to build a reference implementation, which
was subject to a red-teaming exercise along with a number of other PDF parsers and was the only parser to be
found free of defects.
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1 INTRODUCTION

Parsers are the first line of defense against software exploits. A well-written parser will transform
bits into semantically-meaningful data structures, enforce syntactic and semantic well-formedness
conditions, and guard against pathological input. Conversely, a poorly written parser may fail to
reject malicious input or, worse, introduce new vulnerabilities in its implementation.

Parsers are also well studied. Decades of investigation have firmly established a language-
theoretic foundation [2, 14, 30], and there are many tools, libraries, and frameworks available for
writing parsers in practice [21, 41, 43, 54, 61]. Yet despite these advances, parsers remain a source of
vulnerabilities for popular data formats. A brief survey of the NIST National Vulnerability Database
at the time of this writing shows 1,319 CVEs related to parsers, including 14 high-severity and 3
critical vulnerabilities discovered in the first three months of 2023.

Indeed, building (or maintaining) a parser for an established data format poses significant
challenges for developers. Consider the Portable Document Format (PDF) [42]. Developed by Adobe
in 1993, PDF is now standardized as ISO 32000 and has become ubiquitous. An aspiring parser
developer must contend with a complex specification—it is hundreds of pages of English text with
tens of normative references to other standards documents, which are themselves quite lengthy—as
well as a complex, implicit specification arising from the behavior of existing PDF readers, which
often accept common but noncompliant format deviations for business or technical reasons.

The format itself introduces additional challenges. PDF documents are encoded using a noncon-
tiguous, layered binary format. One layer describes a generic representation of object values, while
another schema-like layer ascribes meaning to the objects. A PDF parser must support stream
manipulation, to look up object references and jump to their definitions, and also validate generic
values against their schemas. This second point deserves attention. One might hope to separate
validation from parsing and test the well-formedness of the result once parsing completes. For PDF,
this is not an option. Dependencies in the format mean that some components of the document must
be parsed and validated before it is clear how to parse others. PDF may be particularly complex,
but other established formats pose similar challenges, especially noncontiguous binary formats.
Existing parser frameworks typically cannot cleanly encode such data dependencies. Instead they
rely on a mix of ad hoc mechanisms that make building correct parsers difficult.

Introducing Daedalus. To address these challenges, we present the design and implementation of
Daedalus, a domain-specific language (DSL) for specifying complex, noncontiguous binary formats
and automatically generating correct, memory-safe parser implementations. The design of the
Daedalus language prioritizes clarity of expression while also supporting the complex syntactic
and semantic validation requirements found in standards documents.

The Daedalus language uses parser combinators to support rich data dependencies, enabling
schema processing over general objects, including algebraic datatypes, maps, and arrays, as well
as simpler cases like lengths. First-class stream operators naturally support noncontiguous data
formats. A foreign-function interface allows invoking libraries in the target language, such as for
cryptography. Daedalus is built on a core monadic language. It provides a range of notations for
expressing parsing idioms naturally, such as iteration, character classes, and applicative notation.

We also present daedalus, an open-source implementation of Daedalus that compiles specifi-
cations to memory-safe C++ and Haskell; offers an interpreter mode that provides error traces
and debug messages to assist in parser development; and comes equipped with a Language Server
Protocol (LSP) [51] server for editor integration. Our evaluation shows that Daedalus specifications
are concise in comparison with other tools and that daedalus produces performant code.

We have used daedalus (the tool) to generate parsers for 20 data formats, including PDF and
NITF [66]. The PDF implementation was evaluated in a red-team exercise, where no vulnerabilities

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 180. Publication date: June 2024.



Daedalus: Safer Document Parsing 180:3

were detected in the parser, although 5 defects were discovered in the handwritten C++ wrapper
that invoked the parser. Competing tools were found to have tens of defects. As another point of
comparison, three monthly releases of the Poppler PDF library [56] in 2022 included “Fix crashes
on malformed files” in their change log, and at least two of these received CVE assignments [19, 20].
Poppler has been actively developed for over 15 years and is available on most Linux distributions.

Finally, we also briefly present two analyses built atop Daedalus as evidence of amenability to
analysis: document synthesis and cavity detection. Document synthesis automatically generates
valid inputs for Daedalus parsers. This assists in direct testing of parser implementations. It also
assists evaluation against other tools targeting the same standard, to detect deviations from specified
behavior as well as missing de facto behavior common to the data format. Cavity detection evaluates
a data format for regions that can be exploited to execute code smuggling attacks.

Contributions. In summary, the contributions of this paper are: Header
e Daedalus, a DSL designed for building high-assurance parsers for #PDF-1.5
%aal10

complex binary formats.
e daedalus, an implementation that generates parsers in multiple lan-
guages (C++ and Haskell), with an interpreter mode for development Body

Linearization

and support for error traces and debug messages. 9 0 obj
e An evaluation showing that Daedalus specifications are concise 3.14159 % Comment
when compared to similar tools, the output code is performant, and endobj
Daedalus parsers have relatively fewer defects. 12 0 obj
e Two static analyses built atop Daedalus, demonstrating amenability (Hello world)
to analysis while assisting developers in evaluating their parsers endobj

with respect to the broader format ecosystem.

Cross-reference table

The remainder of the paper is structured as follows. Section 2 explores the
complexities of PDF as motivation, then Sections 3-7 present the design
and rationale for Daedalus. Section 8 shows examples of PDF in Daedalus.
Section 9 discusses the compiler and other facets of the implementation.
Section 10 presents the evaluation, Section 11 discusses analyzability,
Section 12 covers related work, and Section 13 concludes.

2 MOTIVATING EXAMPLE: PDF

We developed Daedalus to parse complex real-world binary formats. Our
main challenge-problem was PDF [42], which is is a mature format, used
in many different ways, and with multiple implementations. It is quite
complex and has many features that challenge traditional parsing and we
expect this will be true for many mature document formats. Daedalus is
designed to help solve these problems in practice, and we have validated
our design by building a full-scale PDF parser. The result has been tested
on hundreds of thousands of PDF documents, has been subject to exten-
sive red-teaming with zero discovered vulnerabilities, and has uncovered
multiple bugs that have been fixed in the PDF standard.
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Fig. 1. PDF layout, from
[65] pg. 2

A previous workshop paper [65] explored PDF’s design in detail, and briefly discusses a prototype
parser. Figure 1, from that paper, illustrates PDF’s structure. Our work focuses on the design of
Daedalus as a language, and so we draw attention only to PDF’s most significant challenges.

At the highest level, a PDF document is a set of objects represented in the Carousel Object System

(COS). One or more cross-reference tables serve to index these objects’ locations. Cross-reference
tables may be partly or wholly superseded by later tables in the document, allowing the file to be
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updated by appending rather than overwriting. A superseded reference still points somewhere; the
old object remains as ‘garbage’ in the file. Thus, identifying the valid location of an object requires
first parsing a sequence of cross-reference tables at different offsets in the file.

This generates Challenge 1: very non-linear parsing of the document. This is compounded by
other factors. An object may be contained as a compressed stream inside another object. An object’s
size may also be contained in another object. As a result, parsing a single object may involve
parsing, retrieving and processing multiple objects across the PDF file.

PDF COS objects are constrained by a schema language, analogous to XML / JSON schemas.
Unfortunately, the PDF schema cannot be fully separated from the parser. For example, cross-
reference streams are a special kind of object—analogous to the cross-reference table—that contain
information about the location of other objects. Examples like these lead to Challenge 2: very rich
data dependency. To perform the schema processing, the parser must rely on the generic COS
objects, which are data structures such as maps and arrays. This contrasts with simpler formats,
where data dependency mostly involves integer values; for example, array lengths.

As mentioned above, COS objects may be contained in other objects. These stream objects are
particularly difficult because they are typically compressed or encrypted. This means that a parser
must be able to pause parsing, apply some computational transformation on some bytes, and then
parse the transformed results. In other words, Challenge 3 is that the parser must be able to compute
over a value generated during parsing, then parse the result of this computation.

The Daedalus language design is intended to address these challenges:

(1) To allow non-linear parsing of the document, Daedalus supports an explicit notion of a
stream value which can be manipulated by the grammar. This also helps address Challenge 3:
streams constructed by decompression/decryption can be parsed in a first-class manner.

(2) To handle rich data dependency, Daedalus is designed with a generic notion of data depen-
dency inherited from functional programming languages. This means that Daedalus programs
are able to depend on any datatype, while allowing parsers to be cleanly structured.

(3) To allow offloading non-parsing logic, Daedalus includes a foreign function interface (FFI).
For example, one might call an external library to decrypt a data stream before parsing it.

At a high level, our PDF parser is structured as follows:

e Daedalus specifications for parsing objects in the COS format;

e Daedalus specifications for processing specific PDF types—typically these happen in two
steps: first we parse a generic COS object, and then we validate it and translate it into a
semantic value that represents the specific PDF type;

e Custom support functions provided by the host application, including the caching mechanism
described next, wrappers around OpenSSL for decryption, and object stream body decoders
(FlateDecode, LZWDecode, ASCITHexDecode, ASCII85Decode, and DCTDecode).

Processing of a PDF starts off in the application code. After creating an empty object cache, we
locate and parse the cross-reference tables, by invoking a parser specified in Daedalus. Then, we
call another Daedalus parser to process the document’s trailer, which is the “root” of a PDF.

While parsing a PDF type, if we need to resolve a reference to a PDF object, we call back into the
application code. This code consults the object cache to see if the object has already been processed.
If not, it consults the cross-reference table to find the object, parse it, and store the result in the
cache. Part of this logic also takes care to avoid cycles while resolving references. This system gives
both good performance, due to the caching, and also a convenient way for processing PDF objects,
as resolving a reference is just a non-terminal in the grammar wrapping the external call.

Note that it is possible to structure the parser in other ways. For example, we could have omitted
the object cache, and parsed objects multiple times, but this has performance drawbacks. The object

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 180. Publication date: June 2024.



Daedalus: Safer Document Parsing 180:5

cache could also be made explicit in the Daedalus specification. While possible, this adds clutter
as many productions have to take the cache as an additional input and return it as an output and,
arguably, the cache is an application-specific optimization.

Besides resolving references, the application code exports libraries to the Daedalus specification.
In particular, when processing PDF streams we often need to transform the body of the stream before
parsing. It would be somewhat impractical to specify this in Daedalus itself—typical transformations
include decompression and decryption. Instead we use standard libraries, such as OpenSSL.

3 DAEDALUS BASICS

A specification in Daedalus consists of a collection of modules, each of which contains a collection
of declarations. We distinguish between three kinds of declarations:

e parser declarations define new grammar productions,
e semantic function declarations define pure functions that manipulate semantic values, and
o character classes define predicates over single elements of the input (i.e., bytes).

The language is statically typed, using an off-the-shelf Hindley-Milner type system [58] with
qualified types [49], which supports parametric polymorphism and type inference. We do not
include typing judgments for the language constructs, as they are quite lengthy and not very
illuminating. A few specific properties of the type system, including the use of type qualifiers as
inference constraints, are discussed in Section 5.

Parser declarations are at the heart of a Daedalus specification, as they specify the strings that are
accepted by the language and the semantic values that correspond to them. Our design is heavily
influenced by monadic parser combinators [34], so parsers are constructed compositionally, by
combining existing parsers into more complex parsers.

3.1 Primitive Parsers

At its core, Daedalus provides only a few primitive parsers:

the empty string parser *v, which consumes no input and succeeds with semantic value v,
the empty language parser Fail msg, which never succeeds and produces an error message,
the singleton parser $[c], which extracts the first element of the input, as long as it belongs
to character class c, and

the string parser Match "string", which matches a string literal; semantically, this is
equivalent to sequencing multiple singleton parsers and storing their results in an array.

Note that our singleton parsers are a generalization of the terminals found in traditional grammars.
The character classes serve to provide a more compact notation for large numbers of alternatives.
For example $['a' .. 'z'] is more compact than composing 26 terminal parsers in parallel.

3.2 Sequential Composition

The sequential composition of parsers P1 through Pn is written [ 46 aqd2 =

as{ P1; ...; Pn }. This succeeds if each sub-parser succeeds in block

turn on the input. By default, the result is the result of the last parser, let x = BEUINt64
but that may be changed by explicitly defining the special variable let y = BEUInt64
$$. The results of intermediate parsers may be named with the let AX+y

keyword. If a result is named, but the let keyword is omitted, then
the result of the parser is a record that contains the corresponding

. . . . block
field (more on this in Section 5). Finally, Daedalus also supports a $$ = Statement
less noisy layout based notation for sequencing, using the block $[': ']
keyword. The examples on the right illustrate sequencing parsers.

def StatementSemi =
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3.3 Parallel Composition

Parallel composition allows multiple parsers to examine the same part of the input. Daedalus
supports two flavors of parallel composition:

e biased composition P1 <| P2 (or First in its layout form) parses the input with P1 and will
fall back to P2 if, and only if, P1 fails; one may think of P2 as an exception handler for P1.

e unbiased composition P1 | P2 (or Choose in its layout form) parses the input with both P1
and P2, and may result in multiple results if the grammar is ambiguous.

The parallel composition operators require their sub-parsers to produce the same type of semantic
value. Parsers that construct different types of semantic values may be composed in parallel by
injecting the values into a common tagged union type. Section 5 has more details on tagged unions.

3.4 Repetition

The most primitive way to handle repetition in a parser is with recursion. Direct use of recursion,
however, can be error prone and difficult to understand or analyze. Thus, Daedalus provides
structured repetition constructs that can easily express common repetition patterns.

Kleene Star. A well-known construct from regular expressions is the Kleene-star, which sequences
a parser P with itself some number of times. In Daedalus this is written as Many P, which applies P
as many times as possible and returns an array of the results. Many also has a constrained form
that bounds the number of iterations. For example, Many (1..) P will succeed only if P is applied
at least once. Daedalus’s data dependency support means the constraints need not be constants, and
may be parse results. The “lazy” variant of this construct is Many?, discussed further in Section 7.

Kleene Star with State. A related iteration pattern is many

(x = s) P, which—like Many—uses P sequentially as many times | def Number =

as possible. The difference is that in this form, P may depend on a many (value = @)
piece of state x, which starts off as s. On each successful iteration, P bl(l>§lt( d = Digit
computes a new value for x. The result of the whole many construct 10 % value + d
is the final value of x. On the right is an example that shows how to

use many to parse a base 10 number.

Iterating Over Collections. Daedalus provides two constructs for
traversing collections, map and for. Both constructs succeed only |map (k,v in c) P
if the body P succeeds for every element of the collection. They |for (x = s; k,v in ¢) P
bind the variables k and v to successive keys and values respectively.
(The key may be omitted, if it is not needed.)

The result of map is a collection with the same keys as ¢, but with values computed by the
parser P. The for loop carries a piece of state x, which initially has the value s. On each iteration, P
computes a new value for x. The result of for is the final value of x.

Relation Between the Iteration Constructs. The four iteration constructs of Daedalus are closely
related and are the result of choices in two orthogonal design dimensions:

(1) How does iteration terminate?

e Many and many never fail; body failure terminates iteration.

e map and for propagate body failure; the argument container determines termination.
(2) What is the result of iteration?

e Many and map collect values parsed by the body.

e many and for update the iteration state with each body result and ultimately return it.
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3.5 Branching

The most direct way to introduce data-dependent behavior in Daedalus is to make decisions based
on a parsed value using case-of (or if-then-else for boolean values). The case-of construct chooses
the first alternative whose pattern matches the provided value. If none of the alternatives match, it
behaves like Fail. Note that while case resembles parallel composition, there is also an important
difference—in particular, case makes its decision based on the value being examined, and will only
ever execute one of the branches. If the branch fails, then the entire case construct fails. This is in
contrast to biased choice, which will consider further alternatives if an earlier one fails, and also
different from unbiased choice, which considers all alternatives at once.

3.6 Coercions

Daedalus is a strongly typed language, but it also provides mechanisms for coercing between values
of different types. The first one, v as T, is a safe static coercion of the value v to type T. The coercion
is safe in the sense that no precision is lost when coercing the value to its target type. The safety
of the coercion is determined statically, based on the type of the value and the target type. For
example, it is always safe to coerce from uint 8 to uint 64.

On occasion, it is also necessary to perform a static lossy coercion, which is written v as! T. This
allows to convert a value while possibly losing some precision. For example, converting a uint 64
to a uint 8 this way would retain only the 8 least significant bits of the original value.

Finally, Daedalus also supports a dynamic safe coercion, written v as? T, which will perform a
check at runtime to determine if the value v may be coerced to type T without losing any information.
For example, we may coerce from uint 64 to uint 8, but this will succeed only if the input value is
less than 256. Otherwise the coercion behaves like the failing parser Fail.

4 EXPRESSION NOTATION FOR SEQUENCE PARSERS

Daedalus supports an applicative notation for sequences of parsers which often helps to write more
concise and readable parsers. The notation was inspired by the bracket notation for applicative
programming with effects [18], adjusted as described in this section. The central idea is that parsers
can be used in contexts that expect a semantic value, as long as the whole construct is in a parser
context. Consider, for example, f P Q, where the semantic function f is applied to two parsers P
and Q. This is desugared into {let x = P; let y = Q; * f x yJ}, which parses P first, then Q,
and finally applies f. Similarly, one can examine the result of a parser with a case expression. Using
a value in a context expecting a parser is a special case of the function call rule, corresponding to a
zero-arity function application. For this reason, most of the time specifications need not use the *v
parser (consume nothing and return a value) directly, and write just v instead.

The applicative notation does not require special bracketing and works everywhere in a specifi-
cation. Instead of bracketing, we rely on context to determine when to desugar applications. Since
Daedalus supports type inference we need a mechanism to distinguish semantic values and parsers
syntactically. To do so, it is sufficient to be able to distinguish between parser names and semantic
value names, which we achieve by partitioning the set of identifiers:

e semantic values use names starting with a lower-case letter,
e parsers use names starting with an upper-case letter,
e character classes use names starting with $.

The restriction on character class names also allows us to promote character class names to parsers,
which allows us to just write $x instead of $[$x].
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5 SEMANTIC VALUE TYPES

Daedalus supports a rich language of semantic values, including booleans, various numeric types,
optional values, arrays, association-maps, user-defined bitdata [38], and algebraic datatypes (ADTs).
Most of these are standard and available in most programming languages. In this section we focus on
two of the less common type phenomena in Daedalus: bitdata declarations and automatic synthesis
of algebraic datatypes. These both combine the declaration of a type and its representation in a
single declaration, making specifications more concise and easier to understand and maintain.

5.1 Bitdata

Bitdata declarations introduce types with explicit bit-level rep-

resentation. They are particularly suited for working with packed | bitdata Packed where

bit-fields, and values whose representation needs to set certain x: uint 8
. . . . . OxFFFF
bits. In particular, enumeration types are a special case of bitdata. y: uint 8

Some bitdata declarations appear on the right. On top is a bit-
data record, defining a new type called Packed to be represented  |bitdata Uni where
with a 32-bit word. The record has two fields, x and y, which oc- value = { get: Packed }
cupy the most and least significant 8 bits of the word, respectively. null =0
The middle 16 bits of the word are always 1.

On the bottom is a bitdata union, defining a new type called Uni, which is also represented with
a 32-bit word. Values of this type may be created with two constructors, null, represented as 0,
and value which contains a valid representation of a Packed value. Values may be inspected using
pattern-matching as usual, except that instead of generating additional “tag” bits, Daedalus will
compute a discriminator based on the representations of the constructors.

The Daedalus compiler uses these declarations to synthesize code, such as field accessors,
constructors, pattern recognizers, and value validators, which greatly simplifies the—usually rather
error prone—process of working with such values.

While values of bitdata types may be constructed with constructors, just like any other algebraic
datatype, it is also possible to coerce the underlying representation type into a value of the bitdata
type (e.g. convert a uint 32 to a Packed value). Daedalus analyses the bitdata declaration to find
which bit patterns correspond to valid values. If all bit patterns are valid, no work is done at runtime.
However, if there are values in the representation that correspond to no value in the bitdata type,
then the coercion must be dynamic. For example, a coercion to Packed needs to check that the
middle 16 bits are all 1. The analysis uses BDDs to represent sets of possible bit-patterns [25].

Indeed, it is quite common to parse a bitdata value in two steps: (1) parse the representation, and
(2) coerce the representation to the bitdata type. This allows separating byte order concerns from
validation of the value produced. Thus, to parse a big-endian Packed value, we would first use the
32-bit big-endian parser, like this: BEUint32 as? Packed.

5.2 Automatic ADT Synthesis

In traditional languages with algebraic datatypes, datatypes must be declared before values of that
type. This is useful because the declaration of the type serves as the contract between various
functions that use the given type. Daedalus supports this mode of operation; however, we also
provide a shortcut for a very common case. In particular, since Daedalus is a parsing DSL, most
of the time we are writing parsers for various datatypes, while complex computation over the
resulting types is relatively uncommon. As such, it is quite convenient to infer the declaration of
an algebraic datatype from its parser. Consider, for example, the header for a typical binary data
format. One might declare a record with all the fields found in the header, and then write a parser
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that produces a value of this type. Alas, the resulting specification typically contains quite a lot of
duplication. To help with this Daedalus does not require explicit declaration of parser result types.
In our design, a parser declaration defines both a parsing function
and a type. The type introduced by a parser refers to the type of se- block
mantic values it produces. For example, the code on the right declares « = UInts
a parser called Point, which implicitly defines a new record type, y = UInts
also called Point, with two uint 8 fields, x and y. It also defines a
parser called PointX which parses points in a different way. We use | def PointX : Point =

def Point =

an explicit type annotation to specify that PointX constructs a value block
of type Point, instead of introducing a new type. The name PointX X = glnt8
y =

becomes a type alias for Point.

We implement this feature by using overloaded constructors for values of algebraic types. When
constructing an ADT value, we do not pick a specific type, but instead keep track of constraints on
what the type needs to support. (In the case of a record type, the constraints might specify that the
concrete type should have certain fields with certain types.) We then do type inference as usual,
which may resolve the concrete type of the constructor. After validating a declaration, we check
if any constructor types are still unresolved; if so, we use the collected constraints to generate a
minimal satisfying new type, and resolve the types to refer to the newly generated type.

Tagged Unions. The same system also works for parsers constructing

tagged union values, which may also be recursive. A tagged union de’r‘. List P =
constructor, {| C = v |}, produces a constraint relating the type of Flgzzs — Node P
constructor C to the type of its field, in this example v. If inference does Nil = Accept
not resolve the resulting type, we generate a new tagged union type

containing only the constructors used in the definition. Since working | def Node P =

with tagged unions is common, we also provide tagged variants of the block

First and Choose constructs, which are syntactic sugar for composing heéd - P_

the untagged version with the appropriate constructor. The code on tail = List P

the right illustrates how one might define a parser that behaves like Many, but instead of producing
an array, constructs a linked list of the parsed values.

6 LOOKAHEAD AND STREAM MANIPULATION

While text-based formats are often processed in a linear fashion, processing some binary formats
requires non-sequential access to the data that is being parsed. For example, many formats have a
table of contents that contains offsets to various other elements. Rather than processing everything
linearly, an application may read only the table of contents, and then continue at a particular
sub-component at some other part of the input. Daedalus supports this, and other non-linear
parsing use cases, by allowing users to manipulate the data being parsed. At the lowest level, this
is done with four primitive parsers that handle abstract semantic values of type Stream:

e GetStream, which never fails, and returns the current stream;

e Drop n s, which computes a new stream corresponding to s advanced by n bytes, and fails if
s does not contain enough data';

e Take n s, which computes a new stream containing the first n bytes of s, and fails if s does
not contain enough data;

e SetStream s, which never fails and modifies the current data being parsed—parsers that are
sequentially composed with this construct will process s instead of the current stream.

'While Drop may be defined using Many, we made it a primitive to keep stream manipulation self-contained. Also, it is
quite convenient—for both users and the implementation—to make advancing the stream explicit.
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Using these constructs we can express a wide variety
of non-linear parsers, including complicated use cases, |block
such as documents that are partially compressed (or let base = GetStream
encrypted), so parts of the input need to be unpacked be- Many block
. . . let offset = Word64
fore they can be parsed. The simplified example given to
. . . . . let here = GetStream
the right shows parsing a table of object offsets, jumping
K e . SetStream (Drop offset base)

to each offset, and parsing the individual objects. The $$ = ParseObject
result is a sequence of semantic values resulting from SetStream here
parsing the objects.

These basic constructs are quite low-level, and using them can lead to specifications that are hard
to follow and error prone. Therefore, we provide a collection of derived combinators that capture
various common patterns. Examples include Chunk n P, which parses the following n bytes using
parser P, and LookAhead P, which applies parser P to the current input without consuming it.

Semantics. SetStream assigns the current input stream. One might argue that this is too powerful.
The Daedalus standard library also includes a more restricted variant, WithStream s P, which
applies parser P to input s but, crucially, does not modify the current stream. This is sufficient for
many use cases. Interestingly, while using SetStream pretty much forces the semantic interpretation
of a parser to be a stream transformer, if we restrict to WithStream, it is still possible to interpret
parsers as sets of strings, which is much closer to the traditional interpretation of grammars. (Since
Daedalus is data dependent, the sets do not contain just strings, but pairs of strings and semantic
values, and since the combination of GetStream and WithStream still supports look-ahead,
instead of using strings, we need to use “strings in context”, sometimes referred to as cursors in the
input, but the general interpretation of a parser can still be just a set, rather than a function.)

7 EAGERVS. LAZY

Along with biased and unbiased choice for parallel composition, Daedalus also has two forms,
“eager” and “lazy”, for the looping operators where termination is determined by the success of the
parser (i.e, unconstrained Many and many). Eager iteration consumes as much input as possible,
and is closely related to biased choice: we choose to consume input whenever possible rather than
terminating the loop. Lazy iteration is correspondingly related to unbiased choice: conceptually,
we explore both the alternatives of terminating the loop and of doing one more iteration.

The two forms provide different trade-offs. The biased/eager constructs, popularized by parsing
expression grammars [10], have the benefit that only one of the alternatives will be selected, and
as a result, they cannot introduce ambiguity. They are also relatively simple to compile efficiently,
especially to recursive descent code, because the path to take depends only on the specific parsers
being composed in parallel. They can, however, be somewhat error prone. One might avoid writing
an ambiguous grammar, and instead write the wrong grammar. One might compose alternatives in
the wrong order, or not notice that the input accepted by one parser in a loop may overlap with the
input accepted by the next parser after the loop. The unbiased/lazy operators avoid these ordering
pitfalls, but do introduce the possibility of ambiguity. In general, generating efficient parsers for
grammars using the unbiased/lazy constructs is also harder, unless the determinization analysis
described in Section 9.1 can resolve the choice based on limited look ahead.

8 REVISITING PDF

This section presents a fragment of our PDF specification, as an extended example. As we noted
in Section 2, the data of a PDF file is stored as a collection of object declarations, and Figure 2
describes their structure in Daedalus.
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The left-hand side of the figure shows the high-level structure of an object: it has a name (two
numbers), and a definition enclosed between obj and endobj. The definition is either a Value (a
normal COS object), or a stream object, which is how most actual data in a PDF is stored. Streams
contain things like the pages of the PDF, images, and even other PDF objects.

The right-hand side of the figure shows how to process streams: these contain a header, which is
a COS dictionary, and some data enclosed between stream and endstream. The Chunk combinator
from our standard library restricts the input to the length of the stream data. While streams are
terminated with endstream, this does not determine the amount of data in the body. Instead, the
length of the data appears in the header. As an additional complication, the length in the header
may be a reference to another object that contains the actual number?. We encapsulate this pattern
in LookupResolve. This operation gets a value from a dictionary, but if it sees a reference, it also
resolves it by parsing another object at an entirely different position in the file. To resolve the
reference we need access to the xref table, which we access via a piece of user-defined parser
state—we could have parameterized all declarations by the xref table, but this was quite messy. The
final complication is that the header may specify transformations to be applied to the bytes (e.g.,
decompress them, or apply various encodings). This is abstracted in the function ApplyFilters,
which processes the header and applies transformations to the current input. In our implementation
the transformations are implemented as external primitives, which often use existing libraries.

def TopDecl = block def Stream (val : Value) = block

ManyWs header = val is dict

id = Token Natural Match "stream"; SimpleEOL
gen = Token Natural body = StreamBody header
KW "obj" KW "endstream"

obj = TopDeclDef
Match "endobj"

def StreamBody header = Token

(Chunk (StreamLen header)
def TopDeclDef = block (ApplyFilters header GetStream))
let val = Value
First def StreamLen header = block

stream = Stream val let lenV = LookupResolve "Length" header

value = val NumberAsNat (lenV is number) as? uint 64

Fig. 2. Daedalus specification for parsing PDF objects.

9 IMPLEMENTATION
We implemented a few different tools for working with Daedalus specifications, in particular:

e daedalus, for interpreting specifications, visualizing parser results, and compilation to either
C++ or Haskell;

e talos, which may be used to synthesize inputs accepted by a grammar; and

e daedalus-language-server, providing LSP support [51] for editor integration.

The tools rely on a collection of inter-dependent libraries for processing and analyzing Daedalus
specifications, and in this section we describe some of the more notable aspects of our imple-
mentation. The overall structure is not unlike that of traditional compilers for general purpose
programming languages, and processing a specification happens in a sequence of passes which
may be grouped in three components, each with its own intermediate representation (IR):

2PDF allows this so that generators can write the length as a separate object, after generating the body of the stream.
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(1) The Front-end. The front-end passes mostly deal with validating specifications, including
parsing, name resolution, and type inference.

(2) The Core. Passes in this group use a simplified IR, containing only the essence of Daedalus.
The code in the core mostly deals with analysis and transformation of specifications.

(3) The Back-end. Passes in this group use a low-level CFG-like IR. The back-end code mostly
deals with code generation, and analyses related to code generation.

The different tools stop at different parts in the pipeline. For example, daedalus-language-server
uses only the front-end, talos works mostly with the core representation, and daedalus exercises
the full pipeline. We also have two important passes that translate between IRs, described next.

Specialization. This pass translates from the front-end to the core IR. The biggest difference be-
tween the IRs is that the front-end supports polymorphism and productions that are parameterized
by other productions, while in the core IR all declarations are monomorphic and may be param-
eterized only by semantic values. Besides desugaring various constructs, the specialization pass
performs a whole-program analysis, starting at the entry points of the specification, and generates
specialized versions for each use of a polymorphic function, or a production parameterized by
another production.

Compilation. This pass translates from the core IR, to the back-end CFG. The main purpose of
this pass is to make explicit aspects that are left implicit in the core. In particular, here is where we
make the parsing algorithm we use explicit. Our implementation compiles Daedalus using recursive
descent on the structure of the grammar, but this is an implementation choice and in principle one
could consider other implementation strategies. At this point the input to the parser becomes an
explicit parameter to each declaration. Control flow also becomes explicit (biased choice is explicitly
implemented with backtracking, we choose various calling conventions for calling functions, etc.).

Validation. We treat each intermediate representation as a small language in its own right. As
such, each intermediate representation has a validator, checking various invariants of the IR (e.g.,
that the IR is type-correct), as well as a precise semantics, in the form of an interpreter. This serves
a dual purpose. It provides documentation, capturing explicitly many aspects of the code that might
be left implicit otherwise, and it makes it possible to test the various passes of our implementation,
to ensure that each pass preserves both the well-formedness of the IR and also its semantics.

9.1 Grammar Analysis and Transformations

In this section we describe a few of the grammar-level transformations we perform—these preserve
the semantics of the specification but are intended to improve the generated parsers, or make the
specification more suitable for analysis. A lot of the transformations are standard for a programming
language, although perhaps not as common in a parser generator. Examples include constant folding,
definition inlining, and case inlining (sometimes referred to as case-of-case optimization).

This highlights one of the trade-offs between a standalone and an embedded DSL: standalone
DSLs, like Daedalus, need to do this work explicitly, while embedded DSLs (e.g., a parser combinator
library in Haskell) would get these for free from the compiler for the host language. On the other
hand, we can also do some transformations that are specific to the semantics of Daedalus, that
might be hard to spot for a general purpose compiler. We outline these next.

Unused Semantic Values. It is common for specifications to examine the underlying input, but
not make use of the resulting semantic value. Consider, for example, skipping some white space
using a parser like Many $white_space. The resulting semantic value is an array of bytes, but
it is unlikely that this would be used for anything, and it would be wasteful to create it, only to
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discard it. Embedded parser combinator libraries typically leave it to the writer of the specification
to avoid this (e.g., by using a different combinator that behave likes Many but throws away the
result). In daedalus we generate custom match-only variants for parsers, and then we transform
specifications to use the match version in contexts where the semantic value is ignored.

Determinization. This transformation is fairly standard for parser gen-  original code:
erators, and is similar to the algorithm for converting an NFA into a DFA

Choose
following derivative based techniques [12]. In our language-based settings, {$'a'l; P}
this amounts to replacing parsers composed in parallel with a case parser, ($['b']; Q3

when we can find a prefix of the input that can discriminate between the
alternatives. The code on the right shows an example of this transforma-
tion. The transformation performs algebraic rewriting using derivatives
and zipper, inspired by Edelmann et al. [28], extended to several bytes
lookahead.

Transformed code:

case $any of
'3l -> P
|b| -> Q

Factor Out Non-failing Parsers. We also found it useful to reduce the
scope of biased choice, by factoring out non-failing parsers. The transfor-  oyiginal code:
mation is illustrated on the right. Q is a parser that cannot fail. Optional _

: : . T . {let x =P
P is a parser that behaves like P, but instead of failing returns nothing. 03} <R

We implemented a static analysis to annotate non-failing parsers,
which is needed to ensure the validity of the transformation. When
combined with case-inlining this rule helps preserve the linearity of | case Optional P of
state in state transforming parsers, such as the body of the many loop. nothing -> R
Recall that this loop executes the body, and on success produces a new just x> Q
state value and does another iteration. On failure, we terminate using
the old state value. Factoring the creation of the new state out of the parallel composition reveals
that we need not roll back to the old state, which in turn allows updating it in place [59].

Transformed code:

9.2 Interfacing With an Application

While one may write a standalone format validator entirely in Daedalus, far more commonly the
generated parser needs to be integrated with an existing external application. The most basic use
case is to generate parsing functions for a specification’s entry points. In this section, we outline
some additional features that we found to be useful for applications using Daedalus parsers.

Calling External Code. Daedalus provides a rich language for manipulating semantic values but,
in practice, it is often useful to be able to reuse existing code. For example, while processing a PDF
document, we may need to decrypt part of the input before parsing it, which is best done by calling
existing cryptography code. Daedalus supports both externally defined semantic functions, and
externally defined parsers, the main difference being that parsers can access the underlying input
and can fail, while semantic functions cannot. Of course, one must be careful when using external
functions, as the generated parser would inherit any problems they have.

User-defined State. Another useful feature is the ability to pass some application specific data to
external calls. This data is provided by the application when calling a parser, and is not visible to
the specification. However, when the parser calls an external function, it makes this data available
to the external code, which can manipulate it as needed. We used this feature in our PDF parser to
carry around a cache of PDF objects without needing to thread it through the entire specification.
Whenever the parser needs to resolve a reference it calls an external function that has access to the
cache and wraps the object parser; this means we never parse any object more than once.
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Parsing Partial Data. In some scenarios, a parser may have to process partial inputs (i.e., the
entire input is not available when parsing begins). For example, applications that parse data arriving
from a network do not get to choose when the data arrives or in what chunks. In some cases explicit
external calls to get more data may work, but even when workable this is intrusive. To handle these
cases, daedalus supports a compilation mode that uses a custom lazy stream datatype to represent
the input. (Normally the input is an array of bytes.) This datatype supports being extended with
incremental chunks of data, and distinguishes between partial inputs (i.e., cases where we are out
of data, but more data may be coming), and finished inputs, where we know that no more data is
available. This is important because Daedalus supports look-ahead and matching on the end of
input. When a parser tries to access data at the end of a partial stream, the parser is suspended, and
control is transferred to a callback that will either add more data to the stream or mark it finished.
This makes it possible to write applications such as a single threaded web-server with one parser
per connection. Whenever data arrives over a connection, the corresponding parser is resumed.

9.3 The C++ Back-End

In this section we give a brief overview of the
code generated by our C++ back-end. For each entry
point to the parser we generate a parsing function,
as shown on the right. On error, there are no results,
and the error object contains specifics. Otherwise
there will be one result, or more if the grammar is ambiguous. The run-time system provides classes
for semantic values of built-in type, such as numbers and arrays. User-defined types are represented
with custom classes generated by the compiler. Figure 3 shows the class generated to represent
a sum type. Broadly, these classes provide ways to initialize a value, examine it, and do memory
management. We also generate support functions such as comparison and printing.

void parseMain(
DDL::ParseError<DDL::Input> &error,
std::vector<DDL::UInt<8>> &results,
DDL::Input al);

Memory Management. The generated code uses reference counting to manage allocated memory,
with an additional ownership discipline that distinguishes between owned and borrowed uses. An
owned use of a value is reflected in the reference count, while borrowed ones are not. Borrowed
uses therefore require care. (In particular, the compiler never stores borrowed values in other data
structures.) It is always possible to convert a borrowed value into an owned one by incrementing
its reference count. Doing these manipulations manually is quite error prone, so the daedalus
standard library supports the standard C++ hooks for adjusting the count when values are copied
or destroyed. The compiler-generated code includes all reference-count operations. However, an
application consuming the result of the parser needs to be aware of the memory model.

Memory Management Validation in the Compiler. To ensure that we generate correct memory
management code, we perform a validation pass after we insert the reference count increment and
decrement instructions. At this point in the pipeline, the code is a control-flow graph in SSA form,
where each basic block takes all of its parameters explicitly, and the parameters are annotated with
ownership information. The validation pass tracks if a variable is borrowed or owned, and owned
parameters are assumed to start with a reference count of 1. We simulate each instruction in the
block, keeping track of the reference counts, and check the following conditions:

e we never use an owned variable that has a count of 0,

e we never use a borrowed variable when an owned one was required,
e we never decrement the reference count a borrowed variable,

e at the end of the block all owned variables are at reference count 0.
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namespace PdfCos {
class Value : public DDL::IsBoxed {
DDL::Boxed<PdfCos::Private::Value> ptr;
public:
/* Constructors =*/
void init__bool (DDL::Bool);
void init_dict(DDL::Map<DDL::Array<DDL::UInt<8>>, PdfCos::Value>);

/* Selectors x/

DDL::Tag::Value getTag();

DDL::Bool get__bool();

DDL ::Map<DDL::Array<DDL::UInt<8>>, PdfCos::Value> borrow_dict();
DDL ::Map<DDL::Array<DDL::UInt<8>>, PdfCos::Value> get_dict();

/* Variant dispatch =%/
using Pat__bool = DDL::Pat<DDL::Tag::Value, DDL::Tag::Value::_bool>;
using Pat_dict = DDL::Pat<DDL::Tag::Value, DDL::Tag::Value::dict>;

template<typename Cases>
auto sum_switch(Cases&& cases);

/* Memory Management x/
void copy(); /* increment refcount =*/
void free(); /* decrement refcount x/

Fig. 3. C++ class for the PDF COS object type, which is a sum with a number of alternatives, including _bool
and dict. To save on space we only show the pieces for these alternatives; the others follow a similar pattern.
The DDL namespace includes the run-time system’s semantic value types, such as DDL: :Bool.

10 EVALUATION

There are three competing concerns in parser development, and indeed in software engineering
in general: ease of implementation, performance, and safety. We evaluate Daedalus on a suite
of microbenchmarks in comparison with five popular parser generators or combinator libraries,
measuring execution speed to gauge performance and using the number of lines of code as an
imperfect proxy for ease of implementation.

Daedalus was also subject to two evaluations conducted by third parties. One measured the
performance of and defects encountered in four PDF parsers using tens of billions of PDF documents.
The other measured defects using popular static analysis tools. We report those results here.

10.1 Microbenchmarks

To evaluate implementation effort and performance, we wrote parsers for a few different formats
in Daedalus and also using other tools. We are not aware of a parser generator that supports
all the formats in question, so instead we just picked the tool for the relevant language (C++ or
Haskell) that seemed most suitable for the job. The performance benchmarks were done with the
hyperfine [22] tool on one of our development machines®. Table 1 summarizes the results. The

3Ubuntu 23.04 OS, 12th Gen Intel® Core™ i9-12900H CPU, 32GB memory, M.2 2280, Gen 4 PCle x4 NVMe SSD
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Table 1. Benchmarks. Times are in seconds, averaged over ten runs. Standard deviations are < 5%, except for
the 0.492 time, whose standard deviation was 9.5%. In parens are approximate MB/s.

C++ HASKELL
Daedalus Kaitai ANTLR | Daedalus attoparsec bson happy
LEB128 | 0.313 (137) 1.609 (27) - 0.492 (87) 1.459 (29) - -
BSON | 1.508(67) 3.953 (26) - 1.564 (65) - 1.593 (63) -
S-Expr | 4.055 (25) - 9.570 (11) | 5.781 (17) - - 6.834 (15)

rest of this section provides more details on the benchmarks, and while these are by no means
exhaustive, we hope that the results in Table 1 demonstrate that our tools can generate performant
parsers that compare quite favorably with existing alternatives.

LEB128. This is a little-endian variable sized encoding of numbers in base 128, which is used as a
component of many binary formats. The format is pretty simple, but requires some bit manipulation
to determine how many bytes to process. The sample task was to parse and add up 10° randomly
generated numbers of length between 1 and 8 bytes, resulting in an input of size 43MB. We compared
the Daedalus parsers against a C++ parser generated with the Kaitai Struct compiler (version 0.10),
and against a Haskell parser written with the attoparsec [11] library (version 0.14.4).

BSON. This is a binary rendering of JSON, used by MongoDB. We chose this format because it
has many features that are common in other binary formats, for example: objects of limited size,
various encodings of strings, and nested formats. (The strings are themselves encoded in UTF-8,
which we need to validate.) The sample task was to parse a randomly generated BSON document
(100MB) and add up the length (in bytes) of all strings. The BSON documents contain strings,
numbers, and nested documents. We compared our parsers to a C++ parser generated with the
Kaitai Struct compiler [43] (version 0.10), and against the Haskell bson library [64] (version 0.4.0.1).

S-expressions. This is a tree encoding used by a number of formal method tools (e.g., SMT-LIB,
Racket). We chose this format because it requires matching of parentheses, and is suited to more
traditional text-based parsing tools. The sample task was to parse a large randomly generated
S-expression (100MB) and count the number of atoms. We compared the Daedalus parsers against
a Haskell parser written with an alex [15] (version 3.4) generated lexer and a happy [5] (version
1.20) generated parser, and also against a C++ parser generated with ANTLR [63] (version 4.7.2).

10.2 Comparing the Specifications

Table 2 shows the lines of code for each microbenchmark implementation, excluding standard
libraries and generated code. While the total lines of code do not vary dramatically between these
examples, we find there is a qualitative difference in the programming experience. In the remainder
of this section, we provide a brief discussion of the more notable stylistic differences between the
various ways to write the parser specifications.

Basic Syntactic Structure. The specifications of the parsers we benchmarked may be grouped in
three categories, based on their notational philosophies:
e Custom grammar notation (ANTLR, happy, alex)
e Embedded in Haskell (attoparsec, bson)
e Based on YAML (Kaitai)
There are various trade-offs between these: for example, using a highly structured notation, such
as YAML, makes it easy to explain the basic syntax of the language, and write tools that parse
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Table 2. Lines of code in benchmark implementations, excluding standard libraries and generated code. We
omit bson because it is a hand-tuned implementation in Haskell and does not have meaningful non-library
code to measure.

‘Daedalus Kaitai ANTLR attoparsec happy

LEB128 28 37 - 50 -
BSON 112 202 - - -
S-Expr 15 - 11 - 52

specifications. On the other hand, subjectively, these specifications are a bit harder to read for a
human, as they tend to be more verbose, and contain a fair bit of repetition. Daedalus is somewhere
between the first two options: our specifications are structured in a way that is similar to a
programming language like Haskell, but we also provide some custom notation to cover common
cases (e.g., ways to write character classes, constraint repetitions combinators, etc.).

Organizing The Specification. A Kaitai specification of a parser roughly contains two sections:
one specifies the layout of the data to be parsed, while the other specifies various attributes that
may be computed from the matched fields. This separation between matching and computation
is also present in the non-dependent parsing tools (ANTLR, happy). The three differ in how the
computation is specified. Kaitai Struct uses a custom computation language, happy uses Haskell,
and ANTLR only specifies a name, which is linked to computation in a backend-specific way (e.g., it
can be mapped to a visitor class).

In contrast, Daedalus and monadic parser combinator libraries allow computation and matching
to be intermixed. This has both positive and negative aspects—by mixing computation and matching
sometimes we can generate more efficient parsers, because we can avoid generating intermediate
structures. Some intermixing like this is unavoidable in data-dependent grammars. However, too
much of it may lead to specifications that are hard to understand, and generally, we find that
separating matching and computation leads to specifications that are easier to understand.

Like Kaitai Struct, Daedalus also uses a custom computation language; however, it is quite a
bit more expressive and has, subjectively, more intuitive semantics. The restrictions of the Kaitai
Struct language showed up in the LEB128 parser, where one needs to combine a sequence of
7-bit numbers into a single number. In Daedalus we do this with a loop. By contrast, the Kaitai
computation language does not support iteration, so the loop has to be manually unrolled. This
is undesirable, because it is error prone, and leads to duplication which makes the specification
harder to read. Another limitation we encountered is that unless explicitly specified, computation
in Kaitai is always done at a fixed implicit numeric type, which may or may not be what is needed
in a particular case. This seems very error prone, as we encountered when we tried to use the
specification from the Kaitai Struct website and got an incorrect parser. In contrast Daedalus uses
type inference and strong typing to significantly reduce such errors.

10.3 Red Team Evaluation for PDF

The Daedalus PDF parser was examined for vulnerabilities and defects by a commercial third-
party security auditor. Three other PDF parsers were also evaluated in the same audit: XPDF [69],
Parsley [52], and a parser developed by BAE Systems. Each parser was evaluated continuously for
7 days using tens of billions of inputs drawn from PDF corpora scraped from open government
documents, Common Crawl [17], and generated files constructed to contain syntactic and semantic
malformations. Errors and anomalies were investigated, and each tool was scored by the number
of unique defects detected. Table 3 presents these results. The errors in the 5 defect files for our
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Table 3. Evaluation results for PDF parsers reported by third-party auditor. Five defects were discovered
in the hand-written C++ wrapper driving the Daedalus parser. No defects were discovered in the Daedalus
parser itself.

‘ Unique Defects K Lines of Code Tests (Billions)

BAE PDF 34 71 36.8
Daedalus PDF 5(0) 4 72.8
Parsley PDF 7 14 41.6
XPDF 41 80 10.0

parser were in two categories:

o 4 of the defects were because our parser ran out of stack: the test files were hand-crafted to
create an extremely nested parser context (e.g., many repeated [ characters, which to the
parser looks like a very nested array). Our mitigation was to change the grammar to impose
limits on the nesting of values, which is not a general solution. Motivated by this problem,
we considered various approaches to impose global limits on the resource consumption by
the parser, but have not yet come up with a satisfactory solution.

o 1 of the defects was due to an error in the application that called the Daedalus generated
parser: when the application determined the location of the xref table, it did not validate
that the specified offset was within the limits of the buffer being parsed.

Size of implementation. Each implementation was measured by the number of lines of code in
C++ header and source files. The Daedalus parser implementation comprised 2 KLOC lines of
Daedalus specifications, plus 2 KLOC for the C++ wrapper, which is much smaller than the other
tools. However, a direct comparison is difficult; XPDF, for example, includes business logic for
displaying PDF files that is not possible to decouple from its parser. The Daedalus implementation
does not include similar business logic.

Performance. Each tool was evaluated continuously for 7 days. The Tests (Billions) column
in Table 3 shows the number of PDF documents each implementation was able to parse in that
time. The Daedalus parser was able to process more than 70B documents, nearly twice that of the
next-fastest tool, showing that its generated code is performant.

Safety. The Daedalus implementation had the fewest defects. Digging deeper, it turns out these
defects arose in the hand-written C++ wrapper that calls into the Daedalus-generated parser—recall
from Section 2 that the Daedalus PDF implementation comprises a C++ parsing library generated
from the Daedalus PDF specification along with a C++ wrapper that dispatches calls to the parser.
No defects were detected in the parser, and the defects in the wrapper have since been fixed.

10.4 Evaluation with Static Analyses

A second third-party evaluation [4] shows similar re-

Table 4. Static analysis for PDF parsers.

sults to the red team exercise; they applied static anal- ‘ Weaknesses
ysis tools [13, 48, 68] to three parser DSLs: DFDL [50], Apache Daffodil 20
Kaitai Struct [43], and Daedalus, using a representative Kaitai Struct 29
grammar included with each tool to generate C++ parser Daedalus 1

implementations. Table 4 presents the results.

This evaluation discovered one warning in the Daedalus implementation, where a call to open
did not prevent opening a symlinked file. In contrast, the evaluation discovered 42 weaknesses in
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the code generated by Apache Daffodil and Kaitai Struct, including buffer overflow vulnerabilities
and missing bounds checks.

11 ANALYSES TARGETING DAEDALUS

When deciding between an embedded or standalone DSL, amenability to analysis is a key considera-
tion. Embedded parser DSLs like Parsec [21] (Haskell) and Hammer [35] (C/C++) are deeply coupled
with their host languages, to the point where meaningful analyses of the resulting parsers require
reasoning about the entirety of the host language as well as the DSL. Daedalus is a simpler language
than Haskell and C/C++, and its implementation has a well-structured syntax and evaluation
semantics—making it easier to write analyses targeting Daedalus-specified data formats. In this
section, we briefly describe two such analyses: document synthesis, which automatically generates
documents that satisfy a given Daedalus-specified parser, and cavity detection, which discovers
locations in file formats that can enable code smuggling exploits.

11.1 Document Synthesis

Document synthesizers are remarkably useful when coupled with testing techniques like property-
based testing [16] and fuzzing [8, 29]. These techniques involve testing a program by running it
over and over with many different inputs. When testing a PDF processor, for example, a fuzzer
attempts to generate hundreds of PDFs and ensure that none cause the program to crash. Of course,
for such a fuzzer to be effective, it should mostly produce valid PDFs; invalid inputs will simply be
rejected by the parser without reaching interesting program logic. To avoid this problem, developers
often write ad hoc generators as part of their testing infrastructure that duplicate the parsing and
validation logic of the program under test.

We built a document synthesizer for Daedalus-specified data formats, named Talos, which gener-
ates valid documents by analyzing a Daedalus parser. The Talos analyzer symbolically evaluates the
Daedalus core syntax to collect constraints on parser input. From there, these constraints are passed
to an SMT solver; a satisfying assignment to the constrained formula corresponds to valid input.
To help improve the distribution of generated documents, Talos uses Boltzmann sampling [27] to
sample the structure of a document—which branches to take, constructors to use, loop iterations
to select, etc.—from a uniform distribution. This means that the solver need not make decisions
about unconstrained choices, and the final distribution contains far more variety. To aid scalability,
Talos leverages the structure of Daedalus semantics to decouple unrelated parts of the program via
program slicing [67]. Constraints are then generated and discharged independently for each slice.

We have applied Talos to HT'TP/1.1 and HTTP/2 Daedalus parsers and used the synthesized
HTTP/1.1 messages to investigate the behavior of PicoHTTPParser, an open-source HT TP parser [55].

11.2 Polyglot Detection

A polyglot file can be parsed as more than one valid data format. A PDF/JPG polyglot may, for
example, display a document when opened with a PDF reader while displaying an entirely unrelated
image when opened as a JPG. Polyglots have been used to smuggle malicious code, such as disguising
Java or PHP Archive (Phar) files as innocuous formats like JPG [36, 45].

Data formats are amenable (vulnerable) to polyglots when they admit cavities, contiguous bit
ranges that are ignored by the parser. Formats like JPG and PNG are perfectly happy to ignore
trailing data, admitting a cavity at the end of the document (suffix cavities). Other formats, notably
PDF, will ignore data at the start of a document (prefix cavities) until finding a magic start token—for
PDF, this is the string “%PDF-version”. Together, JPG and PDF combine to form a simple polyglot:
a document starting with JPG content (which PDF ignores) and ending with PDF content (which
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Table 5. Feature comparison chart.

Portable Binary Data-Dependent Noncontiguous

yacc

ASN.1 v v

Hammer v v v
Parsec v v v

nom v v v

Kaitai Struct v v limited support v
Daedalus v v v v

JPG ignores). Albertini et al. identify and classify patterns of cavity locations in binary files and
show how they combine to form polyglots [3].

To aid in detecting polyglots, we have built a context-sensitive, flow-insensitive dataflow analysis
that identifies cavity locations in Daedalus specifications and determines whether they are prefix
or suffix cavities. An instruction that reads from the input stream contributes to a cavity if (a) it is
unbounded, that is, the data read does not flow to a control location that can lead to failure, and
(b) it is part of a control flow cycle that does not contain other bounded reads. We have used this
analysis to detect and reproduce Phar-based polyglots.

12 RELATED WORK

Daedalus is inspired by parser combinators [21, 35] and domain-specific data description languages,
such as PADS [44, 70] and incorporates elements from each. But it also draws on additional features
to meet the challenges inherent in tools for complex data formats. Table 5 lists our requirements: A
tool should be portable, to define a data format once and generate parsers in multiple languages,
and it should handle binary data with rich data dependencies and noncontiguous layouts.

Parser Generators. Some of the most lasting tools for defining parsers, motivated by a long history
of work in the theory of formal languages [1, 37], are parser generators. Parser generators like
yacc [61] and its successors [10, 63] are used to define a wide variety of context-free languages,
including many of the programming languages that we use on a daily basis. However, many of
these tools are not portable, as the target language is woven into the parser definitions, and they
are less suited for binary formats, which often fall outside the set of context-free languages.

Interface Description Languages. When defining binary and textual formats, engineers often reach
for Interface Definition Languages (IDLs). ASN.1 [6, 26, 46] is the paradigmatic example of an IDL;
ASN.1 is used in hundreds of protocols and formats in domains such as network management,
email, cellular telephony, air traffic control, and cryptography. Other IDL-based tools include DFDL
(Data Format Description Language) [24] from the Open Grid Forum, protocol buffers [32], and
Apache Thrift [60]. IDLs define an abstract notion of data value that are neither tied to a language
representation nor an encoding method—thus ASN.1’s name, Abstract Syntax Notation. Given an
IDL specification, one can generate parsers (encoders) and printers (decoders) in various languages,
providing significant portability and interoperability.

We have not considered printers in the design of Daedalus; this remains future work. But when
it comes to parsers, Daedalus can express far more complexity than most IDLs. ASN.1 has local
constraints (e.g., an integer is between two values) but no way to specify complex relational
constraints between data fields. The same is true of parser generators: a yacc grammar could specify
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some aspects of the PDF data layout, but significant re-parsing and validation would need to be
done downstream to check the various well-formedness conditions inherent in the format.

Parser Combinators. The most flexible tools available for parsing complex formats are libraries
or embedded DSLs. Many, for example Hammer [35] in C and Parsec [21] in Haskell, fall under
the umbrella of parser combinator libraries; these provide a suite of “basic” parsers along with an
interface for combining parsers together into more complex ones. There are even libraries like
nom [54] in Rust and attoparsec [11] in Haskell that are designed to work with low-level formats
like the ones this paper focuses on. Parser combinators are “shallowly” embedded in their respective
programming languages, so they can do nearly arbitrary computations during parsing, applying
complex rules and checks and ruling out malformed inputs without requiring further validation.

Another interesting point in the design space is the work on staged parser combinators [47, 53],
which is half way between traditional parser combinators and parser generators: like traditional
parser combinators, specifications are embedded in a programming language; however, staged
evaluation is used to process the grammar at compile time. This eliminates interpretive overhead
and allows generating efficient parsers.

Daedalus takes inspiration from the combinator approach to parsing, providing a compositional
interface and flexible tools for validation, but it skirts the main downsides: language-dependence
and analyzability. As a standalone parser language, Daedalus allows writing a single program to
define a portable parser that can be compiled to many languages, preventing duplicated work and
inconsistencies across implementations. We touched on the issue of analyzability in Section 11.

Binary Parser DSLs. IDLs like ASN.1 take a declarative approach to parsing binary formats
but have limited ability to express noncontiguous formats with data dependencies and complex
validation conditions. Binary parser DSLs like Kaitai Struct [43], Datascript [31], Everparse [57,
62], and Narcissus [23] take a similarly declarative approach but differ in several key ways: (1)
primitives and combinators are fixed and limited to those applicable to binary formats; (2) rather
than “computation in a host language,” one has a small integer constraint language; (3) some method
is provided to allow for non-linear layout of fields. Reducing the expressiveness of the parsing
and computation languages allows extracting both the encoder and decoder. In contrast, Daedalus
is Turing-complete, and its parser-combinator design provides strong support for complex data
dependencies, validation conditions, and stream operations for handling noncontiguous formats.

Nail [7] was an early inspiration for Daedalus’s design. Nail uses a single grammar to derive
a parser, a generator and an internal representation for the parsed objects. It has support for
dependent fields, manipulating the underlying parser stream, and can be extended by application
specific code. Daedalus does not support generating serializers, but it extends the functionality
of Nail, by adding features like a richer data description language, a type system, parameterized
parsing rules, and support for working with bits.

Wauffs [33] is an imperative C-like programming language and libraries for parsing, serializing
and deserializing binary formats. Its goals are industrial robustness, efficiency, and safety, addressing
vulnerabilities such as buffer overflows, integer overflows and null pointer dereferences. Wuffs
programs require explicit safety annotations and are transpiled into C to be easily integrated with
C/C++ applications. In comparison, Daedalus attempts to provide a syntax and semantics in which
format definitions are closer to parameterized grammars than low-level programs.

Parsley[52] is a Data Format Definition Language that extends Parsing Expression Grammars
(PEG) to handle complex formats like PDF. Similar to Daedalus, it supports data dependencies and
is able to generate memory-safe parsers. The parsing algorithm underlying Parsley is a formally
verified packrat parser [9]. Parsley’s parsing algorithm also computes a proof-of-parse certificate,
which appears to be a unique feature in the field of parsing tools. Unlike Parsley, Daedalus supports
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both ordered and non-ordered choice, along with explicit stream manipulation, and has the ability
to compile grammars to executable code, for integration with an application.

13 CONCLUSIONS

Parsing is a classic problem in computer science. Nearly every undergraduate learns the fundamen-
tal theory and practice of parser construction. When developing Daedalus, we have sometimes
encountered surprise that we are working on a long-‘solved’ problem. Yet, as of 2024, most parsers
in deployment are constructed using insecure technologies and ad hoc methods. The result can be
seen in CVE databases throughout the world, and in the growing security industry focusing on
exploiting and/or mitigating parsing-related issues.

It is past time to build parser languages that are powerful enough to handle the complexities of
real-world binary formats, performant enough to be deployed in practice, and secure enough to
eliminate many parser vulnerabilities by default. Daedalus is our attempt to make progress on this
problem, and this paper collects evidence that Daedalus can be used to solve parsing issues in a
range of realistic binary-parsing scenarios.

There remains a great deal of interesting work to be done in format definition languages. One
intriguing topic is the relationship between binary parsing and schema conformance. In PDF, we
use Daedalus to define both the construction of COS objects from bits, and the schema constraining
COS object values. In languages such as XML and JSON, these notions are separate, but in PDF
they are (slightly) intertwined. At present, Daedalus forces us to intermingle concerns. But perhaps
a better solution would allow us to define a pipeline of parsers, starting with binaries, building
objects, applying schema rules, then maybe constructing higher-level semantic values. We have
early ideas on what such a language would be like, but we encourage others to look at this problem.

Another intriguing topic is parser correctness*. In a sense, Daedalus is a specification language in
itself, and we have designed it to be amenable to expert audit. But in practice, formats are defined
by (1) human-readable prose specifications; (2) a set of existing implementations; and (3) a extant
document corpus, which for PDF comprises billions of documents. For any non-trivial format,
all of these will be inconsistent with each other and with basic security principles! To address
this, we have built Daedalus as one component in a larger parser-correctness toolchain, with a
complementary set of tools for document understanding, based on statistical inference and program
analysis. We hope to submit a paper on this larger toolchain soon.

Finally, we are fascinated by format analysis. In a classic parser generator, the format is specified
in a grammar which is highly amenable to analysis. In contrast, the type of ad hoc parsers that
are prevalent in reality are just semi-structured programs in commodity languages such as C++,
and are therefore very difficult to analyze. With Daedalus, we have a language that is both useful
in these more complex environments and that has a clean syntax and semantics. This creates the
opportunity to analyze Daedalus format descriptions much more easily than would be possible for
previous parsers. Above, we have already discussed two types of analysis: our tool Talos which
constructs conformant inputs for a Daedalus parser, and a detector for so-called polyglot files.
Daedalus is open source, and we hope that others will use it as a platform for data format analysis.

14 DATA-AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in zenodo[39] and our repository
[40].

4We do not mean the problem of correctly compiling Daedalus to a target language such as C++. This is interesting as an
instance of compiler assurance / verification, but we think it is mostly orthogonal to parsing as a problem domain.
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