
Parsing
&

Understanding
in a

Messy World

Mike Dodds - January 2024

Context: Galois / me

Galois: A contract research shop. Paid research by-the-hour

● Security / reliability technologies (PL, formal methods, static analysis)
● Clients: DARPA, US Gov, some commercial

Me: verified cryptography, formal methods at scale, parser security
● 2004 → 2017: York / Cambridge / York – PhD, postdoc, junior professor
● 2017 → now: Galois principal scientist (~ full professor)

SafeDocs: Galois + other teams try to make parsing better

Galois built two tools:

● Format Analysis Workbench (FAW), a tool for understanding existing formats
● Daedalus, a language for developing safer parsers

We have:

● built a high-assurance parser which covers most real-world PDFs
● analyzed millions of real-world PDF documents
● fixed multiple issues in the PDF standard

Context: DARPA SafeDocs project

This talk:

1. Parsing matters a lot and is very hard

2. Eg: PDF, an interesting and horrible format

3. Two core problems in safer parsing

4. Some progress: FAW & Daedalus

1. Parsing matters a lot
and is very hard

Parsers are the immune system

A system has an outside (low trust) and an inside (high trust)

Systems interact with the world

Parsers convert low-trust data to high-trust data

✅

❌
❌

❌

SYSTEM

ENVIRONMENT

Environment is untrustworthy

Trusted data object

https://www.flaticon.com/free-icon/skull_2099721
https://www.flaticon.com/free-icon/shield_1489589
https://www.flaticon.com/free-icon/binary-code_274412

Everyone writes parsers

Me (naive): “Every system has a parser”

P1

“...every system has many parsers”

P1

P2

P3 P4 P5

“...every system has layers of parsers”

P1

P2

P3 P4 P5

“...& multiple non-equivalent parsers”

P1

P2

P3 P4 P5

“Aaaaargh”

P1

P2

P3 P4 P5

“Aaaaargh”

P1

P2

P3 P4 P5

Why are there so many parsers?

Parsers are:

● performance critical
● intermingled with computation
● perform different tasks (security filter, data parsing, constructing values)
● written in languages don’t provide clean abstractions

Also: systems are built over time, and parsers tend to grow capabilities

Parsers fail in
interesting ways

1: Parsers crash

This is quite bad

Usually this means a memory safety violation

Potentially, this allows an adversary to write into memory

Desired property: absence of undefined behavior

No specification required. A crash is a crash.

2: Parsers construct semantic values incorrectly

This is bad, obviously

Eg. data sanitization failures - see →

But also, meaning is reconstructed wrongly

Desired property: the parser behaves as intended

We need to know what is intended

(...even for non-conformant inputs)
https://xkcd.com/327/

3: Parsers disagree

Er, this might be bad?

Actually, let me give an example…

Aside: ‘psychic paper’ https://blog.siguza.net/psychicpaper/

<!--->

XML blob 1

<!-->

XML blob 2

<!-- -->
Parser 1:
CFPropertyListCreateWithData

Parser 2:
IOCFUnserialize

<!--->

XML blob 1

<!-->

comment

<!-- -->

<!--->

comment

<!-->

XML blob 2

<!-- -->

https://blog.siguza.net/psychicpaper/

Aside: ‘psychic paper’ https://blog.siguza.net/psychicpaper/

<!--->

XML blob 1

<!-->

XML blob 2

<!-- -->
The culprit:

Not valid XML. It could be interpreted as:
● “Start comment”
● “Start and end comment”

 ⇒ Both parsers are ‘correct’!

https://blog.siguza.net/psychicpaper/

Aside: ‘psychic paper’ https://blog.siguza.net/psychicpaper/

<!--->

Low permissions

<!-->

High permissions

<!-- -->
Security filter:
CFPropertyListCreateWithData

Data parser:
IOCFUnserialize

Q: Is this user asking for
valid low permissions?

A: Looks great! Go ahead!

<!--->

Low perms

<!-->

comment

<!-- -->

<!--->

comment

<!-->

High perms

<!-- -->

Q: What permissions
should I grant?

A: High permissions!

☹

https://blog.siguza.net/psychicpaper/

3: Parsers disagree

So this is actually bad, and hard to detect

Examples:

● Sneak past security parsers
● PDFs that parse differently when viewed and printed

Desired property: parsers agree with each other

This is a meta-property between parsers

Writing correct parsers
is very hard

We can assume:

● One or more existing parsers
● Some documentation, and maybe a standard
● A set of examples of the format

We can’t assume:

● Agreement between existing parsers
● Specifications matching de facto behavior

Parsers are incentivized to parse non-conformant inputs

Ground truth does not exist

standard

parser 1 parser 2

Common parser languages are difficult to audit

Typically, parsers are written in C++ & similar:

● Hard to even establish absence of undefined behavior
● Hard to extract parser behavior / reason about parsers
● Hard to specify parsers at the high level
● Hard to audit behavior for humans

Fuzzing is good but limited

● Generate lots of random inputs
● Guided search for crashes

Fuzzing is de-facto the way that parsers are secured

But: only finds undefined behavior parser flaws

Hold on didn’t we solve
parsing in, like… 1959?

Damn you, data dependency

We have to:

● Parse length, and compute n
● Read n more data chunks

In general, parsing has to perform arbitrary computations

I’ll come back to this later…

Int32 data data data data …
length n 1 2 3 4

data

n - 1

data

n

Input stream: …

“Shotgun parsing” (Brattus et al)

A common parser structure for dealing with data dependency:

● Read some data
● Call some arbitrary handler function (e.g written in C++)
● Return a value and keep going

Unsafe, hard to maintain, non-auditable

2. PDF, an interesting
and horrible format

PDF is important and interesting

● Billions of users
● De facto message format for many human processes
● Huge attack surface & many vulnerabilities
● Contains embedded formats: images, fonts, JavaScript, video (...yes, really)

● Has a somewhat agreed core standard
● Many real implementations - some good, some v bad
● Huge dataset of examples in the wild

PDF is an attack vector

Eg. Operation Triangulation (December 2023) https://securelist.com/trng-2023/

Operation Triangulation exploit chain

https://securelist.com/trng-2023/

SafeDocs built a huge dataset of PDFs

https://pdfa.org/new-large-scale-pdf-corpus-now-publicly-available/

About 8m extant (real-world) documents

A large proportion of these PDFs don’t conform to the standard

https://pdfa.org/new-large-scale-pdf-corpus-now-publicly-available/

PDF is weird
and hard to parse

XRef table

PDF structure:

● A set of objects - text,
values, pages, fonts…

● A cross-reference table of
object locations

XRef supports incremental updates

Surprising results:

● Parsing is highly non-linear
● Parsing depends on computing offsets

Object streams

Objects can be contained in other objects

● Object sizes can be contained in other objects
● Objects can be compressed or encrypted

Surprising results:
● Parsing an object may require accessing multiple other objects
● Parsing may require decrypting / decompressing other object

Themes in parsing PDF:

Pervasive data-dependency

Pervasive computation

Non-local parsing

Many embedded formats

Hypothesis:
most mature formats
are super weird

3. Two core problems
in safer parsing

“What do existing
parsers do?”

“How can we write
better parsers?”

“What do existing
parsers do?”

“How can we write
better parsers?”

Implement parser understanding

“What do existing
parsers do?”

“How can we write
better parsers?”

Implement parser understanding

Test new safer parsers

4. Some progress
(Daedalus and FAW)

“What do existing
parsers do?”

“How can we write
better parsers?”

Daedalus
A format description language for
generating safe and correct parsers

Daedalus can:

● Define human-readable format
definitions

● Prevent crashes
● Synthesize parsers

Format Analysis Workbench
An investigation engine for
understanding parsers and formats

FAW can:

● Run parsers at scale
● Analyze results
● Test hypotheses
● Generate understanding

Daedalus
A format description language for
generating safe and correct parsers

Daedalus can:

● Define human-readable format
definitions

● Prevent crashes
● Synthesize parsers

Format Analysis Workbench
An investigation engine for
understanding parsers and formats

FAW can:

● Run parsers at scale
● Analyze results
● Test hypotheses
● Generate understanding

Format Analysis
Workbench (FAW)

“What do existing
parsers do?”

Document dataset

Document dataset

Known-bad
examples

Known-good
examples

Document dataset

Eg, PDF dataset:

● 1M+ files
● Some known-good and known-bad

examples, but mostly unknown��

Parser

✅
❌

❌

✅

Document dataset

❌

1000s of
documents

Parser

✅
❌

❌

✅

Document dataset

❌

Results of parsing:

● Valid ✅ or invalid ❌
● Parser return codes

But also:

● Plug-in analysis results
● Any tool that can apply to a parser!

1000s of
documents

Parser

✅
❌

❌

✅

P2

✅
❌

✅
✅

Document dataset

❌

✅

1000s of
documents

Parser

✅
❌

❌

✅

P2

✅
❌

✅
✅

Document dataset

❌

✅

1000s of
documents

Parser

✅
❌

❌

✅

P2

✅
❌

✅
✅

Document dataset

❌

✅

1000s of
documents

Parser

✅
❌

❌

✅

P2

✅
❌

✅
✅

Document dataset

❌

✅

Parser \\
P2

rejected valid

rejected X % A %

valid B % Y %

1000s of
documents

The FAW is a format science lab

Inputs:

● Format examples (e.g., PDFs)
● Parsers or programs that ingest those examples

Use cases:

● Identify potentially unsafe inputs
● Identify causes of false alarms at scale
● Understand patterns of input and how they affect individual programs at a

deep level

FAW interface

Outcomes of
parsing by
result type

Breakdown
of results

Categorization is controlled by the user

Output status is determined by
a regexp-based alarm language

FAW interface Output status controls

The FAW assists in format detective work

Show error messages causing reject:

Manually inspect the failing files

Identify a dataset for further
investigation

Run further analyses and
discover correlations

Interrogation example: PolyFile

A utility by Trail of Bits for examining the
structure of files and detecting their file type

● Hex viewer for examining the file in
detail which shows how various parts of
the binary are interpreted

● Map file data back to AST nodes
generated by the parser

● Plugs into FAW

https://github.com/trailofbits/polyfile

https://github.com/trailofbits/polyfile

Interrogation example: PolyTracker

https://github.com/trailofbits/polytracker

PolyTracker: a generic taint tracking tool

● Binary instrumentation to track data processing
● Identify which parser functions touch which parts of the file

PolyFile + PolyTracker:

● Map a file’s meaning (PolyFile)
● Map how it is used in the binary (PolyTracker)

https://github.com/trailofbits/polytracker

“What do existing
parsers do?”

“What do existing
parsers do?”

“How can we write
better parsers?”

Implement parser understanding

“How can we write
better parsers?”

Daedalus

Daedalus: a language for writing formats

Aim: close the gap from formats to parsers

● Powerful enough to represent eg. PDF
● Amenable to human reading and static analysis
● Type-safe, crashes can’t happen
● Turing-complete, but highly structured
● Amenable to performant compilation into C++

Daedalus is a language and toolchain

Daedalus (language): Data Description Language

Daedalus (toolchain): compilation and execution of Daedalus-lang specifications

● Compile Daedalus to performant C++ code

Daedalus design

Based on functional programming ideas / parser combinators

Includes several highly useful capabilities:

● A generic notion of data dependency. Depend on any datatype
● An encapsulated notion of an input stream. Safe non-linear parsing.
● An FFI interface. Call into helper functions in a controlled way

Example: PPM, a small image format

Specification:

● A magic number identifying the file type (for ASCII PPM, this is P3)
● The dimensions of the image (width then height)
● The maximum color value
● A ‘matrix’ of RGB triples for each pixel defined in row-major order

A PPM file

P3
4 4
15
 0 0 0 0 0 0 0 0 0 15 0 15
 0 0 0 0 15 7 0 0 0 0 0 0
 0 0 0 0 0 0 0 15 7 0 0 0
15 0 15 0 0 0 0 0 0 0 0 0

● The magic number is P3, indicating an ASCII RGB image
● The width and height are both 4
● The maximum color value is 15
● There is a four-by-four grid of triples, one triple per pixel

-- PPM format in Daedalus
def Main =
 block
 $$ = PPM

def Token P =
 block
 $$ = P
 Many (1..) WS

def PPM =
 block
 Match "P"
 let version = Token Natural
 version == 3 is true
 width = Token Natural
 height = Token Natural
 maxVal = Token Natural
 data = Many height (Many width RGB)

def RGB =
 block
 red = Token Natural
 green = Token Natural
 blue = Token Natural

def WS = Match1 (0 | 9 | 12 | 32 | '\n' | '\r')

def Natural =
 block
 let ds = Many (1..) Digit
 ^ for (val = 0; d in ds) (addDigit val d)

def Digit =
 block
 let d = Match1 ('0' .. '9')
 ^ d - '0'

def addDigit val d = 10 * val + (d as uint 64)

-- PPM format in Daedalus
def Main =
 block
 $$ = PPM

def Token P =
 block
 $$ = P
 Many (1..) WS

def PPM =
 block
 Match "P"
 let version = Token Natural
 version == 3 is true
 width = Token Natural
 height = Token Natural
 maxVal = Token Natural
 data = Many height (Many width RGB)

Parser declaration in Daedalus

Note that parsers are higher-order -
the Token parser takes the
parameter P, itself a parser

-- PPM format in Daedalus
def Main =
 block
 $$ = PPM

def Token P =
 block
 $$ = P
 Many (1..) WS

def PPM =
 block
 Match "P"
 let version = Token Natural
 version == 3 is true
 width = Token Natural
 height = Token Natural
 maxVal = Token Natural
 data = Many height (Many width RGB)

Primitive parsing in Daedalus

The parser reads a token “P” off the
input stream

If no such token is present, the
parser backtracks

def RGB =
 block
 red = Token Natural
 green = Token Natural
 blue = Token Natural

def WS = Match1 (0 | 9 | 12 | 32 | '\n' | '\r')

def Natural =
 block
 let ds = Many (1..) Digit
 ^ for (val = 0; d in ds) (addDigit val d)

def Digit =
 block
 let d = Match1 ('0' .. '9')
 ^ d - '0'

def addDigit val d = 10 * val + (d as uint 64)

Primitive parsing with multiple
possible values

The parser WS reads one of the
possible choices: 0, 9, …

def RGB =
 block
 red = Token Natural
 green = Token Natural
 blue = Token Natural

def WS = Match1 (0 | 9 | 12 | 32 | '\n' | '\r')

def Natural =
 block
 let ds = Many (1..) Digit
 ^ for (val = 0; d in ds) (addDigit val d)

def Digit =
 block
 let d = Match1 ('0' .. '9')
 ^ d - '0'

def addDigit val d = 10 * val + (d as uint 64)

Parser combinators in Daedalus

The red, green, and blue values
are parsed in sequence using the
block combinator

The return type of the block is a
structure type with fields red,
green, blue

def RGB =
 block
 red = Token Natural
 green = Token Natural
 blue = Token Natural

def WS = Match1 (0 | 9 | 12 | 32 | '\n' | '\r')

def Natural =
 block
 let ds = Many (1..) Digit
 ^ for (val = 0; d in ds) (addDigit val d)

def Digit =
 block
 let d = Match1 ('0' .. '9')
 ^ d - '0'

def addDigit val d = 10 * val + (d as uint 64)

Computation in Daedalus

The Natural parser reads multiple
digits, and then computes the
overall value by iterating over the
list of digits

-- PPM format in Daedalus
def Main =
 block
 $$ = PPM

def Token P =
 block
 $$ = P
 Many (1..) WS

def PPM =
 block
 Match "P"
 let version = Token Natural
 version == 3 is true
 width = Token Natural
 height = Token Natural
 maxVal = Token Natural
 data = Many height (Many width RGB)

Data dependency in Daedalus

The parser behaviour depends on
the width and height values
computed during earlier parsing

-- PPM format in Daedalus
def Main =
 block
 $$ = PPM

def Token P =
 block
 $$ = P
 Many (1..) WS

def PPM =
 block
 Match "P"
 let version = Token Natural
 version == 3 is true
 width = Token Natural
 height = Token Natural
 maxVal = Token Natural
 data = Many height (Many width RGB)

A magic number identifying the file type
(for ASCII PPM, this is P3)

The dimensions of the image (width then
height)

The maximum color value

A ‘matrix’ of RGB triples for each pixel
defined in row-major order

Daedalus reflects the intuitive spec:

Try Daedalus

Tutorial: https://galoisinc.github.io/daedalus/tutorial/index.html

try-Daedalus, a framework for developing Daedalus in VSCode, using a remote
container: https://github.com/galoisinc/try-Daedalus

https://galoisinc.github.io/daedalus/tutorial/index.html
https://github.com/galoisinc/try-Daedalus

FAW
 +
Daedalus

Format Analysis
Workbench (FAW)

Daedalus language
& toolchain

Implement parser understanding

Test new safer parsers

Parser

✅
❌

P2

✅

❌
✅
❌

✅
✅

Document dataset

❌

✅

Daedalus

✅
❌

❌

✅
✅

1000s of
documents

Parser \\
Daedalus

rejected valid

rejected X % A %

valid B % Y %

We tested FAW + Daedalus a lot!

● Daedalus definitions and generated parsers for 14 formats (inc PDF)

● Analyzed 13 PDF parsers, 5 NITF parsers and 1MM+ documents

● Discovered 9 issues with PDF specification, 10s of bugs in
parsers

● Working with the PDF Foundation to develop a machine-readable
specification of PDF that eliminates common vulnerabilities

We built other things (thanks, DARPA!)

Talos, an object synthesizer based on symbolic analysis of Daedalus specs
● Daedalus: parse bytes into a semantic value
● Talos: from a format and desired semantic value, construct the input bytes

HTTP smuggling detection, FAW + Talos to find HTTP parser differentials

Polyglot detection, based on Daedalus + static analysis

Polyglots are bad

Security filter Data parser JPEG data

PHP archive data

Q: Is this a safe file-type?

A: It’s a JPEG! Looks good!

Q: Parse this data

A: Here’s some PHP!● JPEG ignores data
after end

● PHP archive
ignores data before
‘magic’ start string

file:

☹

Polyglots are caused by cavities (& other things too)

<cavity>

Data

AB type:

<cavity>

Data

Zipper type:

<cavity>

Data

● Cavities don’t affect the
resulting semantic value

● Caused by eg. comments, start
characters

Eg: Evan Sultanik @ Trail of Bits -
resume is PDF and NES ROM:

https://www.sultanik.com/cv

...

https://www.sultanik.com/cv

Static cavity detection in formats

Cavity detection process:

● Write the format in Daedalus
● Use a context-sensitive, flow-insensitive analysis to track how parsed data is

handled
● Cavities form when data is parsed but not tested by the program

Detect potential polyglots based on a Daedalus format description

Also: synthesize polyglot instances using Talos

Daedalus as a target for format analysis!

Summary:

1. Parsing matters a lot and is very hard

2. Eg: PDF, an interesting and horrible format

3. Two core problems in safer parsing

4. Some progress: FAW & Daedalus

SafeDocs team

● Galois (Prime)
● Trail of Bits
● RTI
● Narf Industries
● Verocel
● Cornell
● Penn State
● Princeton
● Purdue
● Tufts

Parsing is, unfortunately, still very hard

Some problems we thought about but didn’t solve:

● Parser verification, especially for extant parsers
● Subsetting / filtering parser languages
● Managing variants of formats (eg. a spec vs non-conformant versions)
● Specifying schema descriptions (eg. JSON) alongside data formats
● Synthesis of format specifications from examples

Someone should solve these problems too …

miked@galois.com

