
N things I learned
trying to do formal methods

in industry

Mike Dodds - Big Spec Workshop - Oct 2024

Context: I was an academic, then I wasn’t
2004 → 2017

● York / Cambridge / York - PhD, postdoc, lecturer (~ junior professor)
● Separation logic, concurrency, weak memory

2017 → now

● Galois Inc - PI / principal scientist
● Formal methods for a lot of different things: parsers, crypto(graphy),

crypto(currency), protocols, cyber-physical systems …

Context: Galois does research for $$$
● A contract research shop / “R&D temp agency”
● 110 people, employee-owned
● Focus on security / reliability tech (PL, formal methods, static analysis)
● Clients: DARPA / DoD, some US Gov, some commercial

Context: Galois is doing interesting things
● CN, a unified testing and verification tool for real C code. Part of the VERSE

project with Cambridge, UPenn, others
● Daedalus, a safe parsing language. We used it to build a reference PDF

parser for the PDF association
● c2rust, a transpiler from C to Rust which is used for several popular Rust

crates. Currently working on a proposal for DARPA TRACTOR btw.
● Verified cryptography with our tool SAW/Cryptol. We’ve worked with AWS

(amongst others) including verifying core bits of the AWS-LibCrypto library

Context: Galois is doing interesting things
● CN, a unified testing and verification tool for real C code. Part of the VERSE

project with Cambridge, UPenn, others
● Daedalus, a safe parsing language. We used it to build a reference PDF

parser for the PDF association
● c2rust, a transpiler from C to Rust which is used for several popular Rust

crates. Currently working on a proposal for DARPA TRACTOR btw.
● Verified cryptography with our tool SAW/Cryptol. We’ve worked with AWS

(amongst others) including verifying core bits of the AWS-LibCrypto library

Today I won’t talk about
any of these projects

Okay, then what?

Hello I’ve heard of formal methods and I’m
interested in doing a formal method

potential
client

I’ve done a lot of formal methods ‘technical sales’

Hello I’ve heard of formal methods and I’m
interested in doing a formal method

potential
client

MeExcellent! Please tell me about your objectives
/ target system / team / budget …

I’ve done a lot of formal methods ‘technical sales’

Hello I’ve heard of formal methods and I’m
interested in doing a formal method

potential
client

MeExcellent! Please tell me about your objectives
/ target system / team / budget …

Success! We scope a project
that meets the client’s needs

I’ve done a lot of formal methods ‘technical sales’

Hello I’ve heard of formal methods and I’m
interested in doing a formal method

potential
client

MeExcellent! Please tell me about your objectives
/ target system / team / budget …

Success! We scope a project
that meets the client’s needs

Failure! We couldn’t find a
project that the client wants :(

I’ve done a lot of formal methods ‘technical sales’

This talk:
things I learned in ~7
years of sales calls

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Holistic cost: time / money /
people / resources / …

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Holistic cost: time / money /
people / resources / …

Holistic benefit: security / reliability /
economic value / …

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Some kind of client-specific
break-even line

Holistic cost: time / money /
people / resources / …

Holistic benefit: security / reliability /
economic value / …

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Some kind of client-specific
break-even line

Holistic cost: time / money /
people / resources / …

Holistic benefit: security / reliability /
economic value / …

Engineering teams are somewhat
rational (under incentives)

Projects that make sense in terms
of cost/benefit will occur

Projects that don’t, won’t

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Claim: many potential formal
methods projects live in this region

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Claim: many potential formal
methods projects live in this region

The project is possible,
but doesn’t ‘pencil out’
in terms of benefit

Worldview: The cost/benefit landscape of projects
Benefit

Cost

These projects
make sense

These projects
don’t make sense

Claim: many potential formal
methods projects live in this region

The project is possible,
but doesn’t ‘pencil out’
in terms of benefit

So:
… why?
… what could we do
 about this?

Hot takes:

➔ Project have to deliver value early

➔ Correctness often doesn’t matter

➔ Specifications don’t exist

➔ It’s hard to define & explain success

➔ Do cheap things first

Project have to deliver
value early

A bad cost/benefit curve
Benefit

Cost (time, $, ...)

A bad cost/benefit curve
Benefit

Set up initial
definitions

Prove the main
theorem

Prove some
lemmas

Cost (time, $, ...)

A bad cost/benefit curve
Benefit

Set up initial
definitions

Prove some
lemmas

Prove the main
theorem

At this point: high cost,
low benefit!

Cost (time, $, ...)

A bad cost/benefit curve
Benefit

Set up initial
definitions

Prove some
lemmas

Prove the main
theorem

At this point: high cost,
low benefit!

High benefit, but v late & expensive

Cost (time, $, ...)

This does not work for clients
Benefit

A proof sounds great! What
value would I get in x
months, for $y dollars?

potential
client

Cost (time, $, ...)

This does not work for clients
Benefit

A proof sounds great! What
value would I get in x
months, for $y dollars?

potential
client

x months,
$y dollars

Cost (time, $, ...)

This does not work for clients
Benefit

A proof sounds great! What
value would I get in x
months, for $y dollars?

potential
client

MeEr, how about 4*x months
and $8*y dollars? … hello?

x months,
$y dollars

Cost (time, $, ...)

Ideally: small costs → small but real benefits
Benefit

Project 1

Benefit from project 1

Cost (time, $, ...)

Ideally: small costs → small but real benefits
Benefit

Project 1

Benefit from project 1

Cost (time, $, ...)

This is great, let’s do
a second project!

client

Ideally: small costs → small but real benefits
Benefit

Project 1

(bigger)
Project 2

Benefit from project 1

Benefit from project 2

Cost (time, $, ...)

FM tools often don’t work like this

Lots of up-front costs before we get to benefits:

● Writing specifications
● Building proofs
● Understanding the domain
● Training engineers
● Tool building (sometimes)
● …

Compare: write-test-debug
Benefit

Low early cost to
improve correctness

Cost (time, $, ...)

Compare: write-test-debug
Benefit

Low early cost to
improve correctness

But it’s difficult or impossible
to achieve higher levels of
correctness

(Ah-ha! Formal
methods wins!)

Cost (time, $, ...)

Correctness often
doesn’t matter

Obviously at some margin correctness matters, but
● Many systems already have adequate mitigations (bugs are ‘priced in’)
● The marginal value of ‘fewer bugs’ / ‘more security’ can be nearly zero
● Often true for high assurance systems

Correctness might be less important than…
● Ability to ship features or security fixes more rapidly
● Ability to hire developers that can staff the team
● Paying down tech debt
● Meeting upstream needs from customers
● Reducing other costs

Especially if a correctness technology makes any of the above more costly

Anecdote: correctness doesn’t matter

 …

Leadership
person at high
assurance
developer

Galois
colleagueIf we had a moderate-cost tool that would

make [system] 2x more reliable / secure,
would that be valuable to your business?

Anecdote: correctness doesn’t matter

 No

Leadership
person at high
assurance
developer

Galois
colleagueIf we had a moderate-cost tool that would

make [system] 2x more reliable / secure,
would that be valuable to your business?

Anecdote: correctness doesn’t matter

 No

Leadership
person at high
assurance
developer

Galois
colleagueIf we had a moderate-cost tool that would

make [system] 2x more reliable / secure,
would that be valuable to your business?

Analysis:
● Their current reliability / security process

works well for them
● They believe their system is already more

reliable / secure than their competitors
● They don’t win or lose sales on reliability /

security considerations

The kicker

Leadership
person at high
assurance
developer

Galois
colleagueWhat if we could make regulatory

compliance testing 10% cheaper?

…yes, that would save us $Xm / year

The kicker

Leadership
person at high
assurance
developer

Galois
colleagueWhat if we could make regulatory

compliance testing 10% cheaper?

…yes, that would save us $Xm / year

Analysis:
● Without compliance testing, they can’t sell the product
● Compliance testing is very expensive and highly manual
● Also slows down release schedule, reduces flexibility,

grinding for engineers, hard to staff

Security bugs >>> other types of bugs
Non-security bugs in many environments:

● Adequately controlled by standard SWE practices
● Systems are built to resist failures, so uncorrelated bugs don’t matter much

Security bugs: much more important

● An adversary can escalate a single bug into a catastrophic failure
● A lot of Galois’s projects are motivated by security, rather than any other

properties
● Clients typically have a threat model in mind

Useful to understand the threat model
Eg. for a cryptographic primitive, we might have:

● Memory safety violations: v bad, could lead to compromise of the host system
● Incorrect implementation of the primitive: undesirable, but less bad because it

would only comprise a single message
● Timing attacks: out of scope, mitigated by some other mechanism

(I wish I saw more threat models in POPL / PLDI papers)

Specifications
don’t exist

Formal specs, ideally:
Mathematically clean

Stable over time

Agreed by the users of the system

Easy to reason about

Stable, clean specs do (sort of) exist for
● Cryptographic algorithms
● Operating systems / hypervisors
● Compilers / programming languages
● Hardware

These are the big success stories for formal methods, but

● These systems are highly unusual in this regard
● Even slightly less formalizable things are very hard to deal with
● Most systems are very un-formalizable

The Portable Document Format (PDF) has:

● Many parsers, many use cases
● A vigorous standards body, the PDF Association
● A large body of examples of the format

It does not have

● Agreement between existing parsers
● Specifications matching de facto behavior
● A clear definition of a ‘bad / insecure document’

Parsers are incentivized to parse non-conformant inputs

Anecdote: PDF, a somewhat formalizable thing

Known-bad
examples

Known-good
examples

dataset

We used a PDF dataset of 1M+ files

Some known-good and known-bad
examples, but mostly unknowable

��

There’s no ground truth for PDF

‘PDF’ does not exist as a coherently defined spec

standard

parser 1 parser 2We formalized PDF in our format definition
language Daedalus

● Testing on millions of cases
● Worked closely with the PDF association

But…

● Non-descriptive: different from real parsers
● Non-normative: doesn’t characterize bugs
● Unclear how to get to a more rigorous &

accepted specification

More typical specifications
● Prose standards / RFCs / papers
● Powerpoint decks (v common)
● The code itself
● Reference implementations
● Inline code comments
● Test cases
● User stories
● Requirements documents
● Regulatory rules
● Scribbled notes on coffee-shop napkins
● …

Typically these specifications are not
Mathematically clean

Stable over time

Agreed by all users of the system

Easy to reason about

MeDo you have a specification for [your system]?

We sometimes have this conversation:

Yes, here’s a 2-slide powerpoint deck

MeDo you have a specification for [your system]?

We sometimes have this conversation:

~ and / or ~

Yes, here’s a 7000 page requirements
document written in semi-structured prose

Client

MeWe found that your system does X but your
specification says (or implies) Y

… which leads to this conversation:

Oh, huh, yeah that doesn’t matter Client

MeWe found that your system does X but your
specification says (or implies) Y

… which leads to this conversation:

~ repeat x 40,000 ~

More instances of this problem
Asking engineers to write specifications is difficult

● Concrete: it’s hard to learn a new specification language
● Deeper (1): precise specification is itself a v difficult skill to learn
● Deeper (2): specification requires a more comprehensive understanding of

the system than engineers typically need / have

Specifying the environment is difficult, e.g:

● Specifications for common libraries
● World modelling for a cyber-physical system

It’s hard to define &
explain success

Formal methods results:
● Highly precise technical meaning (a 600-line Lean theorem or whatever)
● Difficult to capture as a simple explanation
● Clients probably can’t read the theorem

Problems:

● How does the client know they’re getting something they want?
● How do we explain our results?
● How do we know when we’re done?

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (bad version)

Client

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (bad version)

Client

There are NO BUGS IN YOUR SYSTEM 🙌

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (bad version)

Client

There are NO BUGS IN YOUR SYSTEM 🙌

~ 3 months pass ~

Hey we found a horrible bug >:(Client

MeThat wasn’t covered by the spec / originates in
some other module / [+ technical quibbling]

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (slightly better)

Client

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (slightly better)

Client

To simplify, it means [dense math theorem]

Er…

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (better)

Client

Great, what does that mean for me?

MeWe finished and proved the theorem!

Explaining results (better)

Client

To simplify, it means [long prose document]
● [caveat 1]
● [caveat 2]
● …

Does that make sense?

~ long discussion follows ~

Eg: https://github.com/awslabs/aws-lc-verification

https://github.com/awslabs/aws-lc-verification

Issues with this approach
● Expensive, depends on technical clients and a lot of discussions
● May still result in misunderstanding
● Hard for internal teams to explain to management

Also: caveats tend to get ‘smoothed off’

● Galois: [technical results, technical caveats]
● Client engineering team: [simplified results, simplified caveats]
● CTO: [simplified results]
● PR team: “Galois has shown there are NO BUGS IN OUR SYSTEM! 🙌”

Related problem: defining completion conditions
Sometimes a caveat significantly changes project scope

● Project (with caveats 1,2,3): $x months, $y dollars
● Project (with caveats 1,3): $x*3 months, $y*5 dollars

Let’s hope we agreed beforehand whether caveat 2 matters

Sometimes the landscape of caveats is not obvious before the project starts

Do cheap things first

Cheap techniques work!

● Code review/Documentation
● Testing
● CI/CD
● Fuzzing/property based testing
● Modelling/Model Checking
● Symbolic Testing
● Program proof/Correct by Construction

Increasing effort,
Increasing confidence

Cheap techniques work!

● Code review/Documentation
● Testing
● CI/CD
● Fuzzing/property based testing
● Modelling/Model Checking
● Symbolic Testing
● Program proof/Correct by Construction

Increasing effort,
Increasing confidence

Many many systems
don’t do these things

Cheap predictable > expensive risky projects
Benefit

Cost

Project 2: do a formal method

Project 1: write
more tests

Cheap predictable > expensive risky projects
Benefit

Cost

Project 2: do a formal method

Project 1: write
more tests

Generally makes sense to
prioritize this project first

Strategy 1: “gold plating”

“Formal methods should be applied after conventional techniques”

● This approach makes sense
● I think it describes a lot of FM projects right now
● It really limits the number of projects that pencil out

Strategy 2: YOLO

“Formal methods can replace conventional techniques”

● This sounds great!
● Really mostly not true right now
● Some domains where it’s been successful (eg. Tiros / Zelkova @ AWS)

Hot takes:

➔ Project have to deliver value early

➔ Correctness often doesn’t matter

➔ Specifications don’t exist

➔ It’s hard to define & explain success

➔ Do cheap things first

Theme: costs vs. benefits
Benefit

Cost

Your favorite
under-appreciated
formal method

Theme: costs vs. benefits
Benefit

Cost

Your favorite
under-appreciated
formal method

be cheaper

Theme: costs vs. benefits
Benefit

Cost

Your favorite
under-appreciated
formal method

be cheaper

be more
beneficial

Theme: costs vs. benefits
Benefit

Cost

Your favorite
under-appreciated
formal method

be cheaper

be more
beneficial

Final take: I think moving
along this axis may be the
easier of the two

Theme: costs vs. benefits
Benefit

Cost

Your favorite
under-appreciated
formal method

be cheaper

be more
beneficial

Final take: I think moving
along this axis may be the
easier of the two

But this axis is also
needed for more
projects to be viable

Thanks!

Mike Dodds
miked@galois.com

mailto:miked@galois.com

