
Concurrency is coming!
Concurrency means interaction between processes.

Classic problems:

• Reading and writing from shared memory

• Communicating asynchronously

Concurrency has been regarded with suspicion:

“If you can get away with it, avoid using threads. Threads can
be difficult to use, and they make programs harder to debug.”

 - Java Sun Tutorial

Concurrency makes errors hard to replicate.

But in a multi-core world, concurrency is inevitable:

• Multi-core processors are taking over

• Concurrency built in from the hardware level

Verification
Programs often do not do what we want. Two solutions are:

• Testing possible inputs. Too many possible inputs!

• Verifying for all possible inputs

Verification: prove that program conforms to its specification.

However, current verification approaches do not work well with fine-
grained concurrency.

Rely/guarantee & separation logic
Concurrency verification is about two things:

(1) partitioning state into local and shared areas

(2) controlling interference between processes

Separation logic is a logic for shared mutable data-structures:

• Reason locally about data-structures.

• Partitioning of state makes proofs tractable.

Rely/guarantee models interference as actions:

• Rely = ‘interference from the environment’

• Guarantee = ‘interference caused by the process’

We use separation logic for partitioning and rely/guarantee for interfer-
ence.

Each process has its own local state, and they all share a single global
state.

Actions only operate over the shared state, making proofs simpler.

People
• Viktor Vafeiadis, Microsoft Research Cambridge
• Matthew Parkinson, University of Cambridge
• Cristiano Calcagno, Imperial College
• Mike Dodds, University of Cambridge

Lock coupling list
Two ways to concurrently access a list:

• Coarse-grained: lock the whole list

• Fine-grained: lock individual nodes

Lock-coupling list algorithm locks nodes hand-over-hand, i.e. lock a
node only after locking the preceding node:

1) Lock the list head

2) Until target node discovered, do:

A. lock the next node

B. release the current node

3) Insert / delete node

Algorithm relies and guarantees defined by actions:

Check stability under interference from rely actions. After applying an
action we must get back a list.

The result of an Insert operation is a list, meaning the action preserves
the invariant.

Tool support
Logic is tractable for automatic checking.

SmallfootRG operates by symbolic execution, that is, execution over an
abstract domain.

• Input: specification and actions

• Stability inference is automatic

• Output: proof of correctness

Verifying concurrent programs Computer Laboratory
Theory and Semantics Group

Lock:

Unlock:

Delete:

Insert:

7532

7532

6

5

1) List:

2) Insert:

3) Stabilise:

