
NOTICE: We’ve been made aware that there’s a bug in this paper that renders the
reasoning unsound in certain corner-cases. We believe that the specifications can be fixed,
and we’re currently working on a solution. Please get in touch if you need more details.
Thanks to Kasper Svendsen (kasv@itu.dk) for finding the bug.

– Mike, Suresh and Matthew.

Modular Reasoning for Deterministic Parallelism

Mike Dodds
University of Cambridge, UK

md466@cl.cam.ac.uk

Suresh Jagannathan
Purdue University, Indiana

(work done while on sabbatical at Cambridge)
suresh@cs.purdue.edu

Matthew J. Parkinson
Microsoft Research Cambridge, UK

mattpark@microsoft.com

Abstract
Weaving a concurrency control protocol into a program is diffi-
cult and error-prone. One way to alleviate this burden is determin-
istic parallelism. In this well-studied approach to parallelisation,
a sequential program is annotated with sections that can execute
concurrently, with automatically injected control constructs used to
ensure observable behaviour consistent with the original program.

This paper examines the formal specification and verification of
these constructs. Our high-level specification defines the conditions
necessary for correct execution; these conditions reflect program
dependencies necessary to ensure deterministic behaviour. We con-
nect the high-level specification used by clients of the library with
the low-level library implementation, to prove that a client’s re-
quirements for determinism are enforced. Significantly, we can rea-
son about program and library correctness without breaking ab-
straction boundaries.

To achieve this, we use concurrent abstract predicates, based
on separation logic, to encapsulate racy behaviour in the library’s
implementation. To allow generic specifications of libraries that can
be instantiated by client programs, we extend the logic with higher-
order parameters and quantification. We show that our high-level
specification abstracts the details of deterministic parallelism by
verifying two different low-level implementations of the library.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Correctness proofs; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms Languages, Theory, Verification

Keywords Separation Logic, Concurrent Abstract Predicates,
Concurrency, Futures

1. Introduction
Writing safe and efficient concurrent programs is challenging be-
cause it requires programmers not only to parcel useful units of
work into threads that can be executed in parallel, but also to
weave suitable concurrency control to coordinate the access of
these threads to shared data. To enable effective reasoning about
concurrent programs, however, it is essential to devise modular
abstractions whose implementations can be hidden behind well-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

defined interfaces, allowing clients to reason about correctness in
terms of abstract, rather than concrete, behaviour.

In this paper, we consider the verification of one such concur-
rency construct: barriers. In deterministic parallelization, code re-
gions in a sequential program are executed concurrently. While the
parallelized program is internally nondeterministic, control con-
structs are used to ensure that it exhibits the same deterministic
observable behaviour as its sequential counterpart. Automatic par-
allelization of this kind has been well-studied for loop-intensive nu-
merical computations. However, it is also possible to extract paral-
lelism from irregularly structured sequential programs, where pro-
gram dependencies are not readily apparent [4, 22, 25].

One way to achieve deterministic parallelism is through compiler-
injected barriers [19]. We can think of these barriers as resource
management operations that enforce the original sequential order
(aka program dependencies). A resource could be any program
variable, data structure, memory region, lock, etc. for which own-
ership guarantees are essential in order to enforce deterministic se-
mantics. We assume barrier implementations are provided as part
of a library.

While the intuition behind using such barriers is quite simple,
there are many possible implementations. Verifying that an imple-
mentation adheres to this intuition is challenging for several rea-
sons.

First, the patterns of signalling in a barrier implementation are
highly non-local. To access a resource, a barrier must wait until all
logically preceding threads have indicated that it is safe to do so;
these logically preceding threads represent sources in a dependency
graph. This abstract view of resource-transfer does not fit with the
structure of a highly concurrent implementation, making it difficult
to avoid breaking abstraction boundaries.

Furthermore, compiler optimizations might strive to identify the
earliest point in a thread’s execution path from where a resource
is no longer required. In some cases, this means threads can re-
lease resources without ever acquiring them, so that subsequent
signalling of this resource by its ancestors to its descendants can
bypass it altogether. An ancestor of a thread is a computation that
logically precedes it under sequential execution, and a descendent
is a computation that logically follows it. Implementations of bar-
riers must allow a thread to renounce the acquisition of a resource
in this way.

Finally, barriers may have to treat reads and writes differently
to ensure preservation of sequential behaviour. Although many
reads can be performed concurrently, they must be sequentialized
with respect to writes. Moreover, reads must be sequentialized
with respect to other reads, if there is an intervening write in the
sequential order.

In this paper, we show how to reason in a modular way about
implementations of such barriers. To do this, we use concurrent
abstract predicates [6], a technique based on separation logic that
enables abstract reasoning about concurrent modules. Our logic

allows us to reason about both high-level behavioural properties
and low-level implementation details. This approach allows fine-
grained reasoning about behaviour, meaning that each thread can
be given access to exactly the behaviour it needs to run according
to the abstract specification. This behavioural reasoning is local,
meaning even non-local descriptions of the shared state can be
encapsulated and abstracted.

By leveraging concurrent abstract predicates in this way, we
take a first step towards the formal specification and verification
of a system for deterministic parallelism. While full verification of
compiler analyses, transformations, and library implementations is
our ultimate goal, we focus here on just the verification problem
for libraries. We present a high-level specification for reasoning
about barriers for deterministic parallelism, independent of their
low-level implementation. We prove that two low-level implemen-
tations of these barriers implement our high-level specification.

In the presence of runtime thread creation and dynamic (heap-
allocated) data, our specification must also be both generic and dy-
namic, in the sense that it must be able to construct signals at run-
time that protect arbitrary resources. To support the transfer of arbi-
trary resources between threads, we have extended the concurrent
abstract predicates approach to support higher-order predicate pa-
rameters, and higher-order quantification. The controlled resources
are represented by propositional arguments to abstract predicates.

We make the following contributions:

1. We develop a high-level abstract specification for reasoning
about libraries that implement barriers used to enforce deter-
ministic parallelism. This specification can express complex be-
haviours such as the dynamic construction of new barriers and
out-of-order signalling between threads.

2. We provide proofs that two implementations of such barriers
satisfy our high-level specification. The first implementation
naı̈vely sequentializes signalling, while the second aggregates
information from logically earlier threads to avoid this bottle-
neck.

3. We extend prior work on concurrent abstract predicates to sup-
port higher-order parameters and quantifications, following
higher-order separation logic [3]. By allowing propositional
parameters, we can define predicates that take invariants as ar-
guments, to enable abstract reasoning about resource transfer.

An extended version of this paper containing full proofs is available
as a technical report [9].

2. A Specification for Deterministic Parallelism
In this section, we describe the behaviour of a library providing
barriers for enforcing deterministic parallelism. We define a high-
level specifications for these barriers, which allow us to prove
that programs parallelised using these barriers preserve sequential
behaviour.

We assume that code sections believed to be amenable for par-
allelization have been identified, and the program split accordingly
into threads. We assume a total logical ordering on threads, such
that executing the threads serially in the logical order gives the
same result as the original (unparallelised) program.

Barriers are associated with resources (e.g., program variables,
data structures, etc.) that are to be shared between concurrently-
executing program segments. There are two sorts of barriers. A
grant barrier notifies logically later threads that the current thread
will no longer use the resource. A wait barrier blocks until all
logically prior threads have signalled that they will no longer use
the resource (i.e., have issued grants). We assume barriers have
been appropriately injected by a compiler to ensure that all salient
data dependencies in the original program are respected.

Consider the following function f; here * corresponds to non-
deterministic choice, so sleep(*) waits for an arbitrary period of
time:

f(x,y,v) {
if(x<10) {
y:=y+v; x:=x+v;

} else { sleep(*); }
}

Suppose now that we run two instances of f in sequence:

x:=0; y:=0; f(x,y,5); f(x,y,11);

When this program terminates, location x and y will both hold 16.
Here, the second call to f may have to wait for the first call to

finish its arbitrarily long sleep, even though the first call will do
nothing more once it wakes. We parallelise this function by con-
structing two new functions f1 and f2. We run both concurrently,
but require that f1 passes control of x and y to f2 before sleeping,
allowing f2 to continue executing.

f1(x,y,v,i) {
if(x<10) {
y:=y+v; x:=x+v;
grant(i);

} else {
grant(i);
sleep(*);

} }

f2(x,y,v,i) {
wait(i);
if(x<10) {
y:=y+v; x:=x+v;

} else {
sleep(*);

} }

x:=0; y:=0; i:=newchan(); f1(x,y,5,i)||f2(x,y,11,i);

The barriers in f1 and f2 ensure that the two threads wait exactly
until the resources they require can be safely modified, without
violating sequential program dependencies. The correct ordering
is enforced by barriers that communicate through a channel; in the
example, newchan creates the channel i. Assuming the barriers are
correctly implemented, the resulting behaviour is equivalent to that
of the original sequential program.

2.1 Verifying a Client Program
How can we verify that our parallelised program based on f1 and
f2 has the same specification as the original sequential program?
Typically, one would incorporate signalling machinery as part of a
parallelization program analysis. Clients would then reason about
program behaviour using the operational semantics of the barrier
implementation. Validating the correctness of parallelisation with
respect to the sequential program semantics would therefore re-
quire a detailed knowledge of the barrier implementation. Any
changes to the implementation could entail reproving the correct-
ness of the parallelisation analysis.

In contrast, we reason about program behaviour in terms of ab-
stract specifications for grant, wait and newchan. Such an ap-
proach has the following advantages: (1) Implementors can mod-
ify their underlying implementation and be sure that relevant pro-
gram properties are preserved by the implementation, and (2) client
proofs (in this case, proofs involving compiler correctness) can be
completed without knowledge of the underlying implementation.

We will reason about f1 and f2 using separation logic. We write
the following assertion to denote that x points to value v and y to
value v′, and that x and y are distinct: x 7→ v ∗ y 7→ v′. To reason
about the parallel composition of threads, we use the PAR rule of
concurrent separation logic [20]:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗Q2}

PAR

Now, to reason about f1 and f2, we must be able to encode the
fact that f1 can give up access to x and y by calling grant(i),

while f2 can retrieve access to them by calling wait(i). To use the
parallel rule, we must be able to give the two threads star-separated
preconditions.

We encode these two facts by defining two predicates, fut and
req, corresponding to the future resource, the resource that can be
acquired from logically earlier threads, and the required resource,
the resource that must be supplied to logically later threads. We
read these as follows:

fut(i, P) – By calling wait on i, the thread will acquire a
resource satisfying the assertion P .

req(i, P) – By calling grant on i when holding a resource
satisfying P , the thread will lose the resource P .

These predicates are abstract; each instantiation of the library will
define them differently; the client program knows nothing about
how they are actually defined. The client only depends on an ab-
stract specification that captures the intuitive meaning of the predi-
cates:

{emp} i := newchan() {req(i, P) ∗ fut(i, P)}
{fut(i, P)} wait(i) {P}

{req(i, P) ∗ P} grant(i) {emp}

(Note that this is a weaker version of our full specification, given in
Fig. 2.)

The specification of newchan is noteworthy. This specifica-
tion is implicitly universally quantified for all assertions P , mean-
ing that we can construct a predicate for any assertion.1 New fut
and req predicates can be constructed at run-time using newchan,
meaning we can construct an arbitrarily large number of channels
for use in the program.

Given these two predicates, we can define the following speci-
fications for f1 and f2.
v1<10 ∧ x 7→ v1 ∗ y 7→ v2

∗ req

(
i,
x 7→ (v1+v) ∗
y 7→ (v2+v)

) f1(x, y, v, i) {emp}

{
v3<10 ∧
fut(i, x 7→ v3 ∗ y 7→ v4)

}
f2(x, y, v, i)

{
x 7→ (v3+v)

∗ y 7→ (v4+v)

}
The specification for f1 says that the thread must supply the req
predicate with the resources x and y such that the value in x is less
than 10. The specification for f2 says that the thread can receive x
and y with the value in x less than 10. Fig. 1 gives sketch-proofs
for these two specifications.

Given this specification, the proof for the main program goes
through as follows:{
x 7→ ∗ y 7→

}
x:=0; y:=0; i:=newchan();{
x 7→ 0 ∗ y 7→ 0 ∗ req(i, x 7→ 5 ∗ y 7→ 5) ∗ fut(i, x 7→ 5 ∗ y 7→ 5)

}
f1(x,y,5,i) || f2(x,y,11,i) // Parallel rule.{
x 7→ 16 ∗ y 7→ 16

}
This proof establishes that the post-condition for the parallelised
version of the program is identical to the post-condition for the
original sequential version.

1 In the full specification, we impose an extra requirement that P is stable,
meaning invariant under concurrent interference, but this holds trivially for
unshared assertions such as x 7→ v ∗ y 7→ v′.

{
v1 < 10 ∧ x 7→ v1 ∗ y 7→ v2 ∗
req (i, x 7→ (v1+v) ∗ y 7→ (v2+v))

}
if(x<10) {
y:=y+v; x:=x+v;{
x 7→ (v1+v) ∗ y 7→ (v2+v) ∗
req (i, x 7→ (v1+v) ∗ y 7→ (v2+v))

}
grant(i); // Abstract spec.{
emp

}
} else ... // Contradiction as v1 < 10.{
emp

}
{
v3 < 10 ∧ fut (i, x 7→ v3 ∗ y 7→ v4)

}
if(x<10) {
wait(i); // Abstract spec.{
v1 < 10 ∧ x 7→ v3 ∗ y 7→ v4

}
y:=y+v; x:=x+v;{
x 7→ (v3+v) ∗ y 7→ (v4+v)

}
} else ... // Contradiction as v3 < 10.{
x 7→ (v3+v) ∗ y 7→ (v4+v)

}
Figure 1. Proofs for f1 and f2.

2.2 Generalising to Many Threads
Suppose we want to run many copies of the function f in sequence,
for example over an array of values vs. We might have the follow-
ing sequential program:

for(j:=0; j<max; j++){ f(x,y,vs[j]); }

To parallelise this program, we want each call to f to run in a
separate thread. To do this, f must be modified to contain calls
to both grant and wait. Intuitively, each call to f receives the
resource from logically earlier threads (those invoked in earlier
loop iterations) with wait, then releases it to logically later threads
(those invoked in later loop iterations) using grant.

To allow many threads to access the same resource in sequence,
we can construct a chain of channels. A wait barrier called on a
channel waits for grant barriers on all preceding channels. We use
the ordering in chains of channels to model the logical ordering
between a sequence of parallelised threads.

A chain initially consists of a singleton channel constructed us-
ing newchan. We introduce an operation split that allows us to
insert a new channel into the chain. The specification of split
takes a req predicate for an existing channel and creates a new fut
and req predicate representing the new channel. The new channel
is inserted into the chain immediately before the existing channel.
We extend the req predicate with an additional argument identi-
fying the preceding channel in the chain. The split operation’s
specification is given in Fig. 2.

There are two more potential sources of parallelism in f. First,
in the original transformation involving f1 and f2, we did not
distinguish between the resources x and y. However, we need to
gain access to y only if we take the first branch of the conditional.
Otherwise we can release y to logically future threads. To realise
this parallelism in the new version of f, we use two chains of
channels: one for x, and one for y.

Second, we can exploit the ability to renounce access to a
resource without acquiring it first. In the simple specification given

SPECS:
{fut(i, P)} wait(i) {P}

req(i, i′, P) ∗

P ∨

(
fut(i′, P ′)

∗ (P ′−∗P)

) grant(i) {emp}

{
req(i, i′, P)

∗ stable(Q)

}
j, j′:= split(i)


req(j, j′, P)

∗ fut(j′, Q)

∗ req(j′, i′, Q)


{stable(P)} i := newchan()

{
fut(i, P)

∗ req(i, nil, P)

}
AXIOMS:(

fut(i, P) ∗ (P −∗ (P1∗P2))

∗ stable(P1) ∗ stable(P2)

)
=⇒ fut(i, P1) ∗ fut(i, P2)

Figure 2. Full abstract specification for deterministic parallelism.

above, we can only call grant if we hold the required resource.
However, this is often not necessary. For example, if we take the
second branch of the conditional in f, we do not need the resource
y. It is safe to notify future threads that y is available, conditional
on all logically prior threads releasing it, even though the thread
itself never acquired access to the resource.

Renunciation can be a powerful technique for parallelisation.
Suppose a thread is logically last in a chain of threads accessing
a resource. Suppose the thread takes an execution path rendering
it unnecessary to ever access the resource. Without renunciation,
a call to grant will block until all earlier threads have finished
with the resource. With renunciation, the thread can pass the barrier
and continue executing, irrespective of the status of logically earlier
threads.

To support renunciation, we modify the specification for grant
(see Fig. 2). This new specification allows a thread to discharge a
req using the preceding fut predicate. In other words, the thread
gives up the ability to ever acquire the resource, and instead for-
wards this capability to future threads. When the resource becomes
available from logically prior threads, the next thread in the logical
order will receive it. The assertion (P ′ −∗ P) is used to convert the
state supplied by the future to the state required by the next thread.2

In Fig. 2, we also add an axiom to our specification. This is a
fact about the library predicates that clients of the library can make
use of. The axiom allows resource splitting. This axiom asserts that
when a thread can receive a resource P using identifier i, access to
that resource can be split between two threads, potentially before
the resource is available. The assertion (P −∗ (P1∗P2)) asserts that
P can be split into P1 and P2.

We now define fp, top of Fig. 3, a version of f which is
safe to run in parallel with many copies of itself. This function
takes arguments ix and iy representing the next points in the two
channel sequences, and ixp and iyp representing the immediately
prior points. We verify fp against the following specification:{
req(ix, ixp, x 7→) ∗ fut(ixp, x 7→) ∗
req(iy, iyp, y 7→) ∗ fut(iyp, y 7→)

}
fp(...)

{
emp

}
A proof of this specification is given in Fig. 4. Note that we only
assert basic memory safety in this specification. We could verify

2 A resource satisfies P ′−∗P iff its combination with any disjoint resource
satisfying P ′ produces a resource satisfying P .

fp(x,y,v,ix,iy,ixp,iyp) {
wait(ixp);
if (x<10) {
wait(iyp);
y:=y+v; grant(iy);
x:=x+v; grant(ix);

} else {
grant(ix); grant(iy);
sleep(*);

} }

ixf:=newchan(); iyf:=newchan();
for(j:=0; j<max; j++){
v:=vs[j];
ixl:=ixn; (ixf,ixn):=split(ixf);
iyl:=iyn; (iyf,iyn):=split(iyf);
future(fp(x,y,v,ixn,iyn,ixl,iyl));

}
wait(ixf); wait(iyf);

Figure 3. Example parallelisation of f and a client. The future
annotation marks the call to fp as a source of deterministic paral-
lelism.

1

{
req(ix, ixp, x 7→) ∗ fut(ixp, x 7→) ∗

req(iy, iyp, y 7→) ∗ fut(iyp, y 7→)

}
2 fp(x,y,v,ix,iy,ixp,iyp) {
3 wait(ixp);

4

{
x 7→ ∗ req(ix, ixp, x 7→) ∗
req(iy, iyp, y 7→) ∗ fut(iyp, y 7→)

}
5 if (x<10) {
6 wait(iyp);

7

{
x 7→ ∗ y 7→ ∗
req(ix, ixp, x 7→) ∗ req(iy, iyp, y 7→)

}
8 y:=y+v; grant(iy);

9

{
x 7→ ∗ req(ix, ixp, x 7→)

}
10 x:=x+v; grant(ix);
11 } else {
12 grant(ix);

13

{
req(iy, iyp, y 7→) ∗ fut(iyp, y 7→)

}
14 grant(iy);

15

{
emp

}
16 sleep(*);
17 } }

18

{
emp

}

Figure 4. Proof for parallelised program fp.

more complex properties by giving the fut and req predicates
stronger invariants.

Line 14 of the proof is noteworthy. There, the precondition does
not assert that the thread has access to y 7→ ; rather, it asserts it
can acquire access by calling wait. Instead of doing this, the thread
renounces access to the resource, giving it up without ever having
it.

g(x) {
if(*) {
sleep(*);
read(x);

}
else {
write(x);

} }

gp(x,r,rp,w,wp) {
if(*) {
grant(r);
sleep(*);
wait(rp);
read(x);
grant(w);

} else {
wait(rp); wait(wp);
write(x);
grant(r); grant(w);

} }

Figure 5. Example function g and its parallelisation.

The parallelised version of the main program is given at the bot-
tom of Fig. 3. We give the following sketch-proof for this example.
Here the predicates req(ixf, ixn, true) and req(iyf, iyn, true)
are dummy req predicates used to represent the logically latest el-
ement of the sequential order. The predicate array stands for the
array of values.{
array(vs, max)

}
ixf:=newchan(); iyf:=newchan();{
array(vs, max) ∗ req(ixf, nil, true) ∗ fut(ixf, x 7→)

∗ req(iyf, nil, true) ∗ fut(iyf, y 7→)

}
for(j:=0; j<max; j++){
ixl:=ixn; (ixf,ixn):=split(ixf);
array(vs, max) ∗ req(ixf, ixn, true) ∗ fut(ixn, x 7→)

∗ req(ixn, ixl, x 7→) ∗ fut(ixl, x 7→)

∗ req(iyf, iyn, true) ∗ fut(iyn, y 7→)


iyl:=iyn; (iyf,iyn):=split(iyf);
array(vs, max) ∗ req(ixf, ixn, true) ∗ fut(ixn, x 7→)

∗ req(ixn, ixl, x 7→) ∗ fut(ixl, x 7→)

∗ req(iyf, iyn, true) ∗ fut(iyn, y 7→)

∗ req(iyn, iyl, y 7→) ∗ fut(iyl, y 7→)


future(fp(x,y,vs[j],ixn,iyn,ixl,iyl));

}
wait(ixf); wait(iyf); // GC dummy req predicates.{
array(vs, max) ∗ x 7→ ∗ y 7→

}
We have shown that our parallelised version of the program is
memory-safe. With a little more effort, we could verify the be-
haviour of the program. Crucially, even though this program fea-
tures many threads running at once, with complex communication
between threads, each individual thread is able to reason locally,
without dealing with other threads or the implementation of the
barriers.

2.3 Relating Reads and Writes
Further parallelism is available by refining read and write accesses
to a resource. Consider the function g given in Fig. 5. It is safe
for parallel threads to read x at the same time. However, it is
important that writes to x are sequentialised, and that groups of
reads are sequentialised with respect to writes. If two groups of
reading threads are separated by a writing thread, the logically later
group must wait for the writer to finish before reading.

To exploit this, we split reading and writing into two channels.
We use r and rp for reads, and w and wp for writes. w and r are the
outgoing channels, while wp and rp are the incoming channel. As
soon as the thread nondeterministically takes the first branch of the

1

fut(rp, x
π7−→) ∗ fut(wp, x π′

7−→) ∧ π+π′ = 1

∗ req(r, rp, x
1
2
π
7−−→) ∗ req(w, wp, x

π′+ 1
2
π

7−−−−→)


2 if(*) {
3 // Apply the future splitting axiom to rp.

4

fut(rp, x
1
2
π
7−−→) ∗ fut(rp, x

1
2
π
7−−→) ∗ fut(wp, x π′

7−→)

∗ req(r, rp, x
1
2
π
7−−→) ∗ req(w, wp, x

π′+ 1
2
π

7−−−−→)


5 grant(r);

6

fut(rp, x
1
2
π
7−−→) ∗ fut(wp, x π′

7−→)

∗ req(w, wp, x
π′+ 1

2
π

7−−−−→)


7 sleep(*); wait(rp);

8

{
x

1
2
π
7−−→ ∗ fut(wp, x π′

7−→) ∗ req(w, wp, x
π′+ 1

2
π

7−−−−→)

}
9 read(x); grant(w);

10

{
emp

}
11 } else { ... }

12

{
emp

}
Figure 6. Proof for parallelised program gp.

conditional, it can use the read channel to signal that later threads
can read. In contrast, a thread that wishes to write must wait for
both the read and write channels. The parallelised program is given
in Fig 5.

In separation logic, read and write access are often controlled by
fractional permissions [5]. Each thread can hold either full permis-
sion, 1, on a location x, denoted x 7→ v, or fractional permission
π ∈ (0..1), denoted x π7−→ v. Full permission gives the thread ex-
clusive permission to write, while fractional permission gives non-
exclusive permission to read. Fractional permissions compose by
addition, as follows:

x
π7−→ v ∗ x π′

7−→ v ⇐⇒ x
π+π′
7−−−→ v if π+π′ ≤ 1.

We give the function gp the following specification:
req(r, rp, x

1
2
π
7−−→) ∗ fut(rp, x π7−→) ∗

req(w, wp, x
π′+ 1

2
π

7−−−−→) ∗ fut(wp, x π′
7−→)

∧ π+π′=1

 gp(..) {emp}

This specification says that when a thread receives a fractional
permission from the read channel, only half of it has to be sent
on to future threads using the read channel. The other half can be
supplied on the write channel. This allows a thread to keep the
ability to read, while notifying future threads that they also can
read.

Fig. 6 shows a sketch-proof for the program. We elide the
writing branch of the conditional as it is straightforward. The most
notable proof step is line 3, where the specification’s resource-
splitting axiom is used to divide up access to the fut predicate. Half
is used to discharge the req predicate r, allowing logically later
threads to read, while half is used to allow the current thread to
read. In this way, many threads can simultaneously have fractional
access to the resource.

3. Verifying a Simple Implementation
So far, we have given an abstract specification for deterministic par-
allelism. The specification was independent of the implementation

grant(i) {
if(i.prev!=nil)
wait(i.prev);
〈i.bit:=1〉;

}

split(i) {
n:=alloc(bit);
n.prev:=i.prev;
n.bit:=0;
i.prev:=n;
return (i,n);

}

wait(i) {
while(i.bit!=1)
skip;

}

newchan() {
i:=alloc(bit);
i.prev:=nil;
i.bit:=0;
return i;

}

Figure 7. Implementation of signalling library.

of the barrier. In this section, we show how such a specification
can be justified by giving a simple implementation of the wait and
grant barriers, and verifying our abstract specification against this
concrete implementation.

The implementation is given in Fig. 7. This implementation sup-
ports resource transfer using a sequence of nodes, each of which has
a bit field and a prev field. Each fut / req pair is associated with
a single node, and the order of the sequence represents the logical
ordering. The implementation requires that bits are set in sequential
order. In §5 we consider a more sophisticated implementation that
allows out-of-order signalling, and show that it also implements our
abstract specification.

The wait barrier simply waits for the immediately preceding
bit to be set. As bits are set in order, with logically earlier threads
setting their bits before logically later ones, this suffices to show
that all the earlier bits in the order have been set.

Recall from the previous section that our specification permits
threads to renounce the ability to access a resource, meaning that
grant can be called before wait within the same thread. To ensure
that bits are set in sequential order, grant must wait for the previ-
ous bit to be set before setting its own bit. The implementation uses
the prev field of the bit to call wait, and then sets its bit when it
exits. Bits are set atomically by grant, denoted by 〈−〉.

The constructor functions newchan and split are implemented
by allocating a new bit; split inserts a bit into the order by
redirecting the prev pointer of the existing bit to point to the newly
allocated bit. This allows computations to dynamically instantiate
sub-computations that have internal deterministic parallelism.

3.1 Proof Approach
To prove the correctness of our module’s functions, we use concur-
rent abstract predicates [6]. We extend this work with higher-order
quantification, allowing us to prove specifications that abstract over
the particular resource held by the predicate.

Concurrent abstract predicates extend standard separation logic
with two new kinds of construct allowing explicit reasoning about
sharing and interference. The first are named shared regions, de-
noted by boxed assertions of the form

P
r

I

This asserts that the region r contains a resource satisfying P , and
nothing else. This region is shared between the current thread and
an arbitrary number of other threads. The permitted state changes
over the region are controlled by the interference environment, I .

The second are capabilities, resources controlling the updates
that a thread can perform. In order to mutate the contents of a shared

region, a thread requires a capability in its local state, denoted:

[ACTION]rπ

This is a permission for the operation ACTION on the region r.
The exact operation denoted by the name ACTION is determined by
the interference environment for region r. Suppose that ACTION
denoted the ability to rewrite the value in a shared address x from 0
to 1. Then we would have the following interference environment:

I(x) , (ACTION : x 7→ 0 x 7→ 1)

A capability [ACTION]rπ controls both whether the operation is
permitted to the local thread, and whether it can be performed
by the environment. Following deny-guarantee [8], exactly what
is allowed and denied is determined by the permission level, π.
We write 1 if the thread can exclusively perform the action, gz if
the thread and the environment can perform the action, and dz if
neither the thread nor the environment can perform the action. The
value z ∈ (0..1) is used to track the amount of permission, allowing
capabilities to be split and combined.

Updates performed by a thread must be permitted according to
the capabilities held by the thread in local state. So-called abstract
updates, those that do not modify the underlying heap-state, can be
performed at any time by a thread. We write P ≡VQ to denote that
P can be abstractly updated to give Q.

As assertions describe shared states that can be updated by other
threads, we need to be able to describe assertions that will remain
true no matter what the environment does. We describe these as-
sertions as stable. Capabilities specify exactly what behaviours the
environment can perform, giving fine-grained control of stability.
For example, the following assertion is stable, because I specifies
that the only way region r can be mutated is by the ACTION opera-
tions, and the exclusive capability to perform this operation is held
by the thread in local state:

x 7→ 0
r

I(x)
∗ [ACTION]r1

Our logic includes an assertion stable(P) that holds if P is stable.
An abstract specification for a module consists of abstract pred-

icates, function specifications and axioms. To show that a concrete
implementation of a module corresponds to a particular abstract
specification, we must supply concrete definitions for the module’s
abstract predicates, and then show that the following three proper-
ties hold: (1) the module implementation satisfies the abstract spec-
ifications, given the concrete predicate definitions; (2) the predicate
definitions are stable; and (3) the axioms hold, given the concrete
predicate definitions.

For simplicity, we assume that resources are garbage collected,
rather than being explicitly deallocated. This means that we can
safely remove star-conjuncts from assertions, and we often use this
to clean up the post-conditions for operations.

3.2 Verifying the Implementation
Next, we prove that the implementation satisfies the abstract speci-
fication. We give definitions to the fut and req predicates in Fig. 8.
(In all our predicate definitions, we assume unbound variables are
existentially quantified.)

The definition of req(i, i′, P) captures three pieces of informa-
tion: First, that there exists a shared bit at address i. Second, that i′

is the immediate predecessor of i, and it can be read by the thread.
Third, that the thread must supply the resource P before setting the
bit at i.

In this definition, we use two auxiliary predicates: pa and box.
The predecessor access predicate pa(i) asserts that i is either nil,
or it is a shared bit that can be read. This ensures that the thread
that holds req is able to access the preceding bit. The predicate
box(i, P, π) asserts that the thread can exchange the resource P for

req(i, i′, P) ,
i.bit 7→ 0

r

I(i)
∗ box(i, P, 1)

∗ i.prev 7→ i′ ∗ pa(i′)

pa(i) , i = nil ∨ i.bit 7→
r

I(i)

box(i, P, π) ,

[PUT]r
′

1 ∗

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ ∨

box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

fut(i, P) ,

stable(P) ∗ [GET]r
′

1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)

∨ P ∗ i.bit 7→
r

I(i)

r′

J(i,P,π,r)

Figure 8. Collected predicate definitions.

the permission dπ on SET for the bit i. Hence, in order to acquire
the full permission to set the shared bit, the thread must supply
the resource P to the predicate box(i, P, 1). That is, the following
abstract update holds:

i.bit 7→ 0
r

I(i)
∗box(i, P, π) ∗P ≡V i.bit 7→ 0

r

I(i)
∗ [SET]rdπ

Below, we prove that the abstract implication holds. For the mo-
ment, we just note that boxes are used to control the splitting of re-
sources according to the splitting axiom. Note that, the definition of
box is recursive, as it mentions the box predicate inside the shared
region, and in the interference on the shared region. The fixed point
exists by first finding a solution ignoring the interference environ-
ment, and then restricting the interference environment by the re-
sulting solution.

Finally, we give a definition to fut(i, P). This assertion must
capture one essential piece of information: that either the shared bit
at i is zero, or the resource P is available for collection.

In these definitions, names surrounded with square brackets are
capabilities. The semantics of such capabilities are defined by the
interference environments. We define two environments. The first,
I(i) defines the interference over the shared bit i. This environment
includes only a single operation, the ability to set the shared bit:

I(i) , (SET : i.bit 7→ 0 i.bit 7→ 1)

The interference environment J(i, P, π, r) defines the interference
over the resource-holding regions.

J(i, P, π, r) ,

PUT :


[SET]rdπ P(
box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1 + π2 = π

)
 emp ,

GET :


P emp

[SET]rdπ

(
box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1 + π2 = π

)


Intuitively the first case for PUT allows the thread to push the re-
source P into the shared state, and retrieve a fractional permission
to SET the shared bit. The first case for GET allows the thread to re-

trieve the resource P . The second cases are used in resource split-
ting; see below for details.

The first obligation for showing that our module implements
the abstract specification is to use our program logic to prove
the module functions’ specifications. Proofs for grant, wait and
split are given in Fig. 9. The proof of newchan is almost identical
to the proof of split, and hence omitted.

The proof of grant operates by first appealing to the specifica-
tion of wait to recover the full resource from a possible fut pred-
icate. We also use the specification {pa(i)}wait(i){emp}, which
can be proved trivially. It then exchanges the resource and the box
predicate for permission to set the shared bit. Finally it sets the
shared bit and forgets all the remaining resource.

The proof of wait spins until the bit field is 1, which excludes
the case where the resource is not present. As the resource can
only be removed by the wait thread, this assertion is stable under
interference. The thread uses the GET to recover the resource, and
garbage-collects all the other resources.

The proof of split (and newchan) allocates a new piece of
memory, sets the pred and bit fields to appropriate values, then
creates the fut and req predicates by wrapping the new memory in
a shared region.

The second obligation we must discharge is to show that the
predicates are stable. To do this, we check each of the predicate
definitions to make sure that each shared region assertion is invari-
ant under permitted interference.

3.3 Resource Splitting Using Boxes
Our specification requires that we can split fut predicates according
to the axiom given in Fig. 2.

We use the box predicate to support this splitting in our concrete
implementation. Intuitively, each box initially shares its shared
region with a fut predicate. Then, if that fut predicate is split, the
box instead contains a pair of boxes representing the shared state
for the two new fut predicates.

The definition of a predicate box(i, P, π), Fig. 8, either allows
the thread to access the SET permission, or contains two boxes with
resources P1 and P2 such that P −∗ P1 ∗ P2. In the proofs of the
module’s operations, we relied on the assumption that a predicate
box(i, P, 1) and resource P can be exchanged for a permission to
set the shared bit i.bit. We now justify this assumption with a proof.

Our definition of box is the least fixed point of the recursive
definition. We reason inductively, hence it suffices to prove that the
entailment holds when box is defined as false, and under the as-
sumption that the disjunction holds. The base case of the induction
holds trivially as box(i, P, π) is false. In the first inductive case, we
assume that the left disjunct in the shared region holds. The proof is
given in Fig 10 (a). In the second case, we assume that the property
holds for box(i, P1, π1) and box(i, P2, π2). The proof is given in
Fig. 10 (b).

The proof given in Fig. 10 (c) shows that the future-splitting
axiom holds for the concrete predicate definitions. We only show
the left case for the disjunction; the right case is easy. This proof
uses the GET action while at the same time creating new regions
for the two new futures. This completes the proof that our simple
implementation corresponds to our high-level specification.

4. Logic and Semantics
In this section, we present the syntax and semantics of our logic.
It extends the previous work on concurrent abstract predicates [6]
with higher-order parameters and quantification following the work
of Biering et al. on higher-order separation logic [3].

Our assertion logic is a typed higher-order separation logic
extended with predicates that denote the ability to change the state
and a connective for expressing sharing. The syntax of the assertion

i.bit 7→ 0
r

I(i)
∗ box(i, P, π) ∗ P

≡V (defs & assumption)

i.bit 7→ 0
r

I(i)
∗ P ∗ [PUT]r

′
1 ∗

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

r′

J(i,P,π,r)

≡V (action PUT)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′
1 ∗ [SET]rdπ

∗ i.bit 7→ 0
r

I(i)
∗ P

r′

J(i,P,π,r)

≡V (GC)

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

i.bit 7→ 0
r

I(i)
∗ box(i, P, π) ∗ P

≡V (defs and case split)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′
1 ∗ P ∗

box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

≡V (action PUT)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′
1 ∗ P ∗ emp

r′

J(i,P,π,r)

∗ P −∗ (P1 ∗ P2) ∧ π1+π2 = π

∗ box(i, P1, π1) ∗ box(i, P2, π2)

≡V (assumption and GC)

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

fut(i, P) ∗ (P −∗ P1∗P2) ∗
stable(P1) ∗ stable(P2)

≡V (def)
stable(P1) ∗ stable(P2) ∗ [GET]r

′
1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)

∨ P ∗ i.bit 7→
r

I(i)

r′

J(i,P,π,r)

≡V (action GET, creation of two new regions)

box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1 ∗ π2 = π

r′

J(i,P,π,r)

∗ [GET]r
′

1 ∗ fut(i, P1) ∗ fut(i, P2)

≡V (GC)
fut(i, P1) ∗ fut(i, P2)

(a) (b) (c)

Figure 10. Proofs of abstract updates

language is as follows:

τ ::= Int | Frac | Region | Asn | τ → τ

P,Q,L,M,∆ ::= false | P ⇒ Q | ∃x : τ. P | LM | λx:τ.M
| E | emp | P ∗Q | P −∗Q
| L 7→M | stable(P) | [γ(~M)]rπ | P

r

I

I ::= γ(~x) : ∃~y : ~τ(P Q) | I, I

π ::= 1 | dL | gL

where r ranges over region names, γ over token names, and v over
values. We lift expressions E from the programming language to
the logic. Note that we use P,Q,∆ when the term is of type Asn.
Terms are typed in the obvious way, and we will implicitly assume
all definitions are well-typed.

Our propositions have three important aspects they describe: (1)
the contents of the state, (2) the capability to change state, and (3)
a partitioning of these contents and capabilities between local and
shared regions.

For completeness, the full semantics of terms is given in Fig. 11.
Below we will only describe the salient features of the semantics.
A more thorough explanation can be found in [6].

Model We model propositions with Worlds that have three com-
ponents: a local component, LWorld, that specifies the current local
state and local capabilities; a shared component, SWorld, that spec-
ifies the current shared state and shared capabilities; and an interfer-
ence environment, IEnv, that specifies the possible interference (or
protocol) on the shared component of the world. The shared com-
ponent is split into many named regions, each of which is modelled
by an LWorld.

A local world, LWorld, is modelled by a partial heap, Heap,
specifying the locally accessible state, and a capability mapping,
Capab, mapping from actions in Action to permission to perform
that action in DG. Each action is mapped to either a full permis-
sion 1, an exclusive permission to perform that action, that hence
prohibits the environment from performing the action; a guarantee
permission gz, a non-exclusive permission to perform that action; a
deny permission dz, a non-exclusive prohibition on the action that
also prevents the environment performing it; and an empty permis-
sion 0 that does not allow the action but does not prohibit the envi-
ronment from performing it. Following Boyland [5], the z compo-

nents of deny and guarantee are used to track how much permission
is required to re-establish exclusive permission.

Members of Action comprise a Region, a Token and a sequence
of Val arguments. An action’s semantic meaning as interference
over a shared region is defined by an interference environment, in
the set IEnv. The definition of an interference environment as a re-
lation over SWorld enforces the restriction that the interpretation
of an action does not allow you to change the interference interpre-
tation of any actions.

Model operations As we are building a separation logic we re-
quire a composition operator on worlds that will be used to inter-
pret the separating conjunction and separating implication. We use
the standard operation from separation logic for combining heaps,
h⊕ h′, by disjoint partial function combination.

We use the deny-guarantee composition model [8] for DG.
This has 0 as the unit of ⊕. It combines two guarantee (or deny)
permissions by combining their fractional components to produce
a guarantee (or deny) permission with the sum of the fractions. If
the fractions sum to 1 then it lifts to 1. If the fractions sum to more
than 1, then combination is undefined. This is then lifted to the
function space in the obvious way.

We define the composition of LWorld as the combination on
both components; and on World as the combination on the LWorld
component, where the SWorld and IEnv components are equal.

We define other useful operations on the model that aid in the
definition of the semantics: bsc collapses all the shared regions
into a single one; lH gives the heap component of l; lP gives the
permission component of l; and TwU collapses a world into a single
heap.

Finally, we define the set of well-formed worlds, WFW. A
world is well-formed iff all the regions and the local component
can be combined, each capability is defined in the interference
environment, and the capabilities only mention valid regions.

Types The types are semantically interpreted as in Figure 11.
We use i for interpretations of the free variables in a term: it is
a dependent product from a variable to the denotation of the type of
that variable. We interpret propositions on the powerset of worlds.

Terms The interpretation of false,⇒, ∃, ∗,−∗, variables, function
application, and function abstraction λ are standard.

The predicate emp specifies that the local component of the
heap is empty and makes no restriction on the shared part, the

{
req(i, i′, P) ∗ (P ∨ (fut(i′, P ′) ∗ P ′ −∗ P))

}
grant(i) {
if(i.prev!=nil) {{

req(i, i′, P) ∗ (P ∨ (fut(i′, P ′) ∗ P ′ −∗ P))
}

wait(i.prev); // wait() spec, or by pa.{
req(i, i′, P) ∗ P

}
} // Unfold definition.{
i.bit 7→ 0

r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ box(i, P, 1) ∗ P

}
// Push resource into the box.{
i.bit 7→ 0

r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ [SET]r1

}
〈i.bit:=1〉; // Action SET.{
i.bit 7→ 1

r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ [SET]r1

}
} // Garbage collect.{
emp

}
{
fut(i, P)

}
wait(i){

stable(P) ∗ [GET]r
′

1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)
∨ P ∗ i.bit 7→

r

I(i)

r′

J(i,P,π,r)


while(i.bit!=1){ skip; }{
stable(P) ∗ [GET]r

′
1 ∗ P ∗ i.bit 7→ 1

r

I(i)

r′

J(i,P,π,r)

}
// Abstract action GET.{
P ∗ stable(P) ∗ [GET]r

′
1 ∗ i.bit 7→ 1

r

I(i)

r′

J(i,P,π,r)

}
} // Garbage collect.{
P
}

{
req(i, i′, P) ∗ stable(Q)

}
split(i) {
n:=alloc(bit);
n.prev:=i.prev; n.bit:=0; i.prev:=n;{
i.bit 7→ 0

r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′)

∗ stable(Q) ∗ n.prev 7→ i′ ∗ n.bit 7→ 0

}
// Construct region for new predicates.
i.bit 7→ 0

r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′) ∗

stable(Q) ∗ n.prev 7→ i′ ∗ [SET]r
′

1 ∗ n.bit 7→ 0
r′

I(n)


// construct a new box for the future.

i.bit 7→ 0
r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′)

∗ n.prev 7→ i′ ∗ n.bit 7→ 0
r′

I(n)
∗ stable(Q) ∗ [GET]r

′′
1

∗ [PUT]r
′′

1 ∗ [SET]r
′

1 ∗ n.bit 7→ 0
r′

I(r′)

r′′

J(n,Q,1,r′)


return (i,n);

} // Fold definitions.{
∃i1, i2. ret = (i1, i2) ∧ req(i1, i2, P)

∗ fut(i2, Q) ∗ req(i2, i
′, Q)

}
Figure 9. Proofs for grant, wait and split.

interference environment, or the capability. The points-to predicate
L 7→ M specifies that the location L contains the value M in the
local world, and that the heap contains nothing else.

The capability [γ(~M)]rπ that says the local world contains the
π permission on region r for action γ with parameters ~M . The as-
sertion stable(P) says that P will remain true given the permitted
interference on the shared world. That is, if we start in a world sat-
isfying P and take a step in R, then we must still satisfy P . The
shared assertion P

r

I
says that the shared region r satisfies the

assertion P and that region’s interference is specified by I .

Interference We define several relations giving the possible up-
dates to the shared world as a result of the thread and the environ-
ment. Following Jones [16], we call the interference permitted to
the environment the rely and the interference permitted to the local
thread the guarantee.

We define the semantics of the interference specfication as a
relation of SWorlds. For a particular update P Q, we specify
that a part of the pre-state must satisfy P , and replacing that part
with a part satisfying Q gives the post-state. We also allow the
action to increase the number of regions in an unspecified way.
This will allow actions both to repartition and to create new shared
regions simultaneously.

We allow the dynamic creation of regions. The relations Rc and
Gc model this creation. The first, Rc, specifies the world-change if
the environment creates a region. The environment can only create
a region if it does not already exist. It adds a new shared region, and
the relevant definition to the interference environment. The second,
Gc, specifies the world-change if the current thread created a region.
This differs from the rely as all of the permissions on actions for the
new region are given to the current thread.

The global rely relation, R, allows any action in the inference
environment that is not explicitly prohibited with a deny permission
or a full permission, as well as the creation of regions. We restrict
R to well-formed worlds.

The global guarantee, G, allows any action for which there is
either a full permission or a guarantee permission. The guarantee
requires that the permissions and heap domain must be the same
before and after the action, upto repartioning between regions. This
ensures that permissions and heap cannot be created out of thin air.
We also allow region creation, and restrict G to well-formed worlds.

Program logic We give the proof rules for our program logic in
Figure 12. The judgements are of the form ∆; Γ ` {P} C {Q}
where ∆ is an assumption about the logical context, and Γ is an
assumption about the procedures in the context of the form

{P1}f1{Q1}, . . . , {Pn}fn{Qn}.
We use ∆ to encode the assumptions about the abstract predicates
and their axioms

We assume a standard semantics of programs [6] where (C, h)
η→

(C′, h′) denotes a successful reduction in the procedure con-
text η (a mapping from procedure names to commands); and
(C, h)

η→ fault denotes a memory access problem. We then define
the semantics of judgments as follows:

DEFINITION 1 (Configuration safety). C,w, η, i, Q safe0 always
holds; and
C,w, η, i, Q safen+1 iff the following four conditions hold:

1. ∀w′. if (w,w′) ∈ R∗ then C,w′, η, i, Q safen;
2. ¬((C,TwU)

η→ fault);
3. ∀C′, h′. if (C, TwU)

η→ (C′, h′), then ∃w′ such that (w,w′) ∈
G∗, h′ = Tw′U and C′, w′, η, i, Q safen; and

4. if C=skip, then ∃w′ such that TwU=Tw′UH , (w,w′) ∈ G∗,
and w′ ∈ JQKi.

Model

π ∈ DG , {1, 0}] {tz | z ∈ (0, 1) ∧ t ∈ {d, g}} a ∈ Action , Region× Token× Val∗ ρ ∈ Capab , Action→ DG

h ∈ Heap , Address→ Val] {⊥} l ∈ LWorld , Heap× Capab s ∈ SWorld , Region⇀ LWorld

I ∈ IEnv , Action⇀ P(SWorld× SWorld) w ∈World , LWorld× SWorld× IEnv

Model operations

⊥⊕ v , v ⊕⊥ , v
π ⊕ 0 , 0⊕ π , π

(t, z)⊕ (t, z′) , 1 if z + z′ = 1

(t, z)⊕ (t, z′) , (t, z + z′) if z + z′ < 1

h1 ⊕ h2 , λv. h1(v)⊕ h2(v) if ∀v. h1(v) = ⊥ ∨ h2(v) = ⊥
ρ1 ⊕ ρ2 , λv. ρ1(v)⊕ ρ2(v) if ∀v. ρ1(v)⊕ ρ2(v) defined

(h1, ρ1)⊕ (h2, ρ2) , (h1 ⊕ h2, ρ1 ⊕ ρ2) if h1 ⊕ h2 and ρ1 ⊕ ρ2 are defined (h, ρ)H , h bsc , ⊕r∈dom(s)s(r)

(l1, s1, I1)⊕ (l2, s2, I2) , (l1 ⊕ l2, s1, I1) if l1 ⊕ l1 defined ∧ s1 = s2 ∧ I1 = I2 (h, ρ)P , ρ T(l, s, I)U , (l ⊕ bsc)H
WFW , {(l, s, I) | (l ⊕ bsc) defined ∧ dom((l ⊕ bsc)P) ⊆ dom(I) ∧ (∀r. r ∈ dom(s)⇔ ∃γ,~v. (r, γ, ~v) ∈ dom(I))}

Types JIntK , Z JRegionK , Region Jτ1 → τ2K , Jτ1K→ Jτ2K JAsnK , P(World)

Terms JfalseKi , ∅ JxKi , i(x)

JP ⇒ QKi , {w | w /∈ JP Ki ∨ w ∈ JQKi} JL MKi , JLKi(JMKi) JP ∗QKi , {w ⊕ w′ | w ∈ JP Ki ∧ w′ ∈ JQKi}

J∃x : τ. P Ki ,
⋃
v∈JτK. JP Ki[x7→v] Jλx : τ.MKi , λv. JMKi[x 7→v] JP −∗QKi , {w | ∀w′ ∈ JP Ki. w ⊕ w′ ∈ JQKi}

JempKi , {((∅, ρ), s, I)} JL 7→MKi , {(([JLKi 7→ JMKi], ρ), s, I)}
r

[γ(~M)]rπ

z

i
, {((∅, ρ), s, I) | ρ(r, γ, J ~MKi) ≥ π}

Jstable(P)Ki , {w |∀w1 ∈ JP Ki. (w1, w2)∈R⇒ w2∈JP Ki}
r
P

r

I

z

i
, {((∅, ρ), s, I) | (s(r), s, I) ∈ JP Ki ∧ I(r) = JIKi,r}

Interference

Jγ(~x) : ∃~y : ~τ(P Q)Ki,r(r, γ′, ~v) ,


s1, s2 ∃~v′ ∈ J~τK, I, l0, l1, l2. (l1, s1, I) ∈ JP K

i[~x 7→~v,~y 7→~v′] ∧ (l2, s2, I) ∈ JQK
i[~x 7→~v,~y 7→~v′]

∧ γ = γ′ ∧ s1(r) = l1 ∗ l0 ∧ s2(r) = l2 ∗ l0
∧ ∀r′ ∈ dom(s1). r′ 6= r ⇒ s1(r′) = s2(r′)


JI, I ′Ki,r , JIKi,r ∪ JI ′Ki,r

Rc , {(l, s, I), (l, s′, I ∪ I′) | r /∈ dom(s) ∧ s′ = s[r 7→ l′] ∧ rdom(I′) = {r}}
Gc , {(l, s, I), (l′, s′, I ∪ I′) | r /∈ dom(s) ∧ s′ = s[r 7→ l1] ∧ l ⊕ all(I′) = l1 ⊕ l′ ∧ rdom(I′) = {r}}

where all(I′) ,
⊕

(r,γ,~v)∈dom(I′)(∅, [r, γ, ~v 7→ 1]) and rdom(I) = {r | (r, ,) ∈ dom(I)}
R ,

({
(l, s, I), (l, s′, I ∪ I′) ∃a. (s, s′) ∈ I(a) ∧ (bsc ⊕ l)P (a) /∈ {1, dz} ∧ dom(s′) \ dom(s) = rdom(I′)

}
∪ Rc

)
∩ P(WFW2)

G ,

({
(l, s, I), ∃a. (s, s′) ∈ I(a) ∧ (l′P)(a) ∈ {1, (g,)} ∧ dom(s′) \ dom(s) = rdom(I′)
(l′, s′, I ∪ I′) ∧ (bsc ⊕ l)P ⊕ all(I′) = (bs′c ⊕ l′)P ∧ dom((bsc ⊕ l)H) = dom((bs′c ⊕ l′)H)

}
∪ Gc

)
∩ P(WFW2)

Ancillary definitions

P ≡V{p}{q}i Q , ∀w ∈ JP Ki. ∃h ∈ JpKi. ∀h2 ∈ JqKi. ∃h′ w2. h⊕ h′ = TwU ∧ h2 ⊕ h′ = Tw2U ∧ (w,w2) ∈ G ∧ w2 ∈ JQK

J∆K , {i | J∆Ki = JAsnK} ∆ |= ∆′ , J∆K ⊆ J∆′K

∆ |= P ≡V{p}{q}Q , ∀i ∈ J∆K . P ≡V{p}{q}i Q ∆ |= P ≡VQ , ∀i ∈ J∆K . P ≡V{emp}{emp}
i Q

Figure 11. Semantics of assertions

`SL {p} C {q}
∆; Γ ` {p} C {q}

(PRIM)
∆; Γ ` {P1} C1 {Q1} ∆; Γ ` {P2} C2 {Q2}

∆; Γ ` {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}
(PAR)

α /∈ Γ, P,Q ∆; Γ ` {P}C{Q}
(∃α.∆); Γ ` {P}C{Q}

(EXISTS)

{P} f {Q} ∈ Γ

∆; Γ ` {P} f {Q}
(CALL)

`SL {p} C {q} ∆ |= P ≡V{p}{q}Q
∆; Γ ` {P} 〈C 〉 {Q}

(ATOMIC)
∆; Γ ` {P} C {Q} ∆ |= stable(R)

∆; Γ ` {P ∗R} C {Q ∗R}
(FRAME)

∆; Γ ` {P1} C1 {Q1} . . . ∆; Γ ` {Pn} Cn {Qn}
∆; {P1} f1 {Q1}, . . . , {Pn} fn {Qn},Γ ` {P} C {Q}

∆; Γ ` {P} let f1 = C1 . . . fn = Cn in C {Q}
(LET)

∆′; Γ ` {P ′} C {Q′} ∆ |= ∆′

∆ |= P ≡VP ′ ∆ |= Q′≡VQ

∆; Γ ` {P} C {Q}
(CONSEQ)

Figure 12. Selected proof rules from [6]. All rules assume that the pre- and post-conditions of their judgements are stable.

DEFINITION 2 (Judgement Semantics). ∆; Γ |= {P}C {Q} holds
iff

∀n.∀i ∈ J∆K .∀η ∈ JΓKn,i . |=η,i,n+1 {P}C{Q} ,
where JΓKn,i , {η | ∀{P}f{Q} ∈ Γ. |=η,i,n {P}η(f){Q}}
and |=η,i,n {P}C{Q} , ∀w ∈ (JP Ki∩WFW). C, w, η, i, Q safen.

Differences from the CAP paper [6]. The original paper treated
the meaning of interference syntactically in the model, that is, the
equivalent of IEnv was a map from action to syntactic definition of
the actions. This was done to avoid a cyclic definition in World. In
this paper, we have factored out the semantics of interference to be
a separate component. We thus impose the restriction that the inter-
ference environment cannot update the interference environment.
Note, this kind of update was not allowed before, but was not ex-
plicitly forbidden in the model, just in the interpretation. This small
refactoring of the semantics allows higher-order quantification.

We extend the model from the original CAP paper to addition-
ally contain deny permissions [8]. This is a straightforward exten-
sion to the original paper.

Finally, we take an intuitionistic model for the permissions. This
enables permissions to leak. The library we are considering in this
paper requires garbage collection to collect signals when they are
no longer accessible.

5. Verifying a More Complex Implementation
The module implementation given in §3 imposes a strong sequen-
tial order on calls to grant. A wait only checks its immediate
predecessor, so a call to grant must ensure its predecessor is set
before setting its own bit. In this section, we consider an alternative
implementation that allows out-of-order bit setting. We prove that
this implementation also implements our abstract specification.

The new implementation uses the same data-structure as the
simple implementation. Bits can be set by calls to grant in arbi-
trary order, but as a consequence, each call to wait must examine
all prior bits before exiting. As this implementation uses the same
data-structure as the first one, the split and newchan operations
are identical. The grant and wait operations are defined as fol-
lows:

grant(i) {
〈i.bit := 1〉;

}

wait(i) {
while (i!=nil) {
while(i.bit=0){ skip; }
i := i.prev;

} }

As with the first implementation, each address has a bit field and
a prev field. Calling grant sets the bit field for the current address
from 0 to 1, then exits immediately. When wait is called, it blocks
until every bit field earlier in the order is set. To do this, it chases
prev fields, waiting for each bit field to go to 1 before accessing
the preceding location. In this way, wait ensures that all previous
threads have called grant.

The predicate definitions (given in Fig. 13) are similar to those
for the simple implementation. The main difference is in the defi-
nition of the fut predicate. When the shared bit is set, the resource
that is available to the thread may include a preceding fut predi-
cate. So, if the current thread expects resource P , it may instead
get a resource satisfying (P ′ −∗ P) ∗ fut(i′, P ′), where i′ is the
immediately preceding location in the logical order.

The thread can then recover P ′ by checking the bit for i′, which
may include a fut predicate for the preceding location i′′. Only
when the thread has checked all the bits earlier in the order can it
be confident it holds the full resource. In this way, our predicate
definitions reflect the fact that the thread does not know exactly
which threads have supplied a resource, and which have simply
renounced access to it.

fut(i, P) ,

[GET]r
′

1 ∗(
i.bit 7→ 0

r

I(i)
∗ ∀∗i′. [SET(i′)]rdπ

)
∨

i.bit 7→ 0 ∨
i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(r)

∗ P ∨ ∃P ′, i′. (fut(i′, P ′) ∗ (P ′−∗P))



r′

J(i,P,π,r)

req(i, i′, P) ,
i.bit 7→ 0

r

I(i)
∗ i.prev 7→ i′ ∗

pa(i′) ∗ box(i, P, 1)

pa(i) , i = nil ∨
i.bit 7→ 0 ∨
i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(i)

box(i, P, π) ,

i.bit 7→ 0
r

I(i)
∗ ∀∗i. [SET(i)]rdπ ∨

box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

∗ [PUT]r
′

1

Figure 13. Predicate definitions for out-of-order bit setting.

1

{
fut(i, P)

}
2 wait(i) {
3 while (i!=nil) {

4

{
i 6= nil ∧ (pa(i) ∗ P ∨ ∃P ′. fut(i, P ′) ∗ (P ′ −∗ P))

}
5 while(i.bit=0) skip;

6

{
i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)

r
∗

(P ∨ ∃P ′. fut(i′, P ′) ∗ (P ′ −∗ P))

}
7 i := i.prev;
8 }

9

{
i = nil ∧ ((pa(i) ∗ P) ∨ (∃P ′. fut(i, P ′) ∗ (P ′ −∗ P)))

}
10 } // fut(i,) is false if i = nil, so...

11

{
P
}

Figure 14. Proof for wait.

The req predicate is defined similarly to the first proof, with a
recursive box predicate controlling access to bit-setting.

The interference environment for the shared bit, I(i), is:

SET(i′) : i.bit 7→ 0 i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

The environment J(i, P, π, r) for resource-holding regions is:

PUT :


[SET(i′)]rdπ P ∨ (fut(i′, P ′) ∗ P ′ −∗ P)(
box(i, P1, π1) ∗ box(i, P2, π2)

∗ P −∗ (P1 ∗ P2) ∧ π1+π2 = π

)
 emp

GET :


P emp

(∀∗i′. [SET(i′)]rdπ)

(
box(i, P1, π1) ∗ box(i, P2, π2) ∗
P −∗ (P1 ∗ P2) ∧ π1+π2 = π

)
(Here the symbol ∀∗ is the iterated version of ∗.)

A proof for wait is given in Fig. 14. The most interesting step
is line 5, where the resource is recovered from the shared region.
We justify this step by the following proof. The other case, where
a pa rather than fut is present, is trivial.{
fut(i, P ′) ∗ (P ′ −∗ P)

}
// Unfold definitions.

(P ′ −∗ P) ∗ [GET]r
′

1 ∗

i.bit 7→ 0
r

I(i)
∗ ∀∗i′. [SET(i′)]rdπ ∨

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)

∗ (P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′))

r′

J(i,P ′,π,r)


while(i.bit = 0) { skip; }
(P ′ −∗ P) ∗ [GET]r

′
1 ∗

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)

∗ (P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′))

r′

J(i,P ′,π,r)


// Pull into local state and GC GET.{
i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(i)
∗

(P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′)) ∗ (P ′ −∗ P)

}
// Transitivity of −∗.{
i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(i)
∗

(P ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P))

}

The proof for grant, newchan and split are similar to the proofs
for the single-bit case. Once again, the proof of grant depends on
the fact that fut can be split according to the resource held by it.

6. Related Work and Conclusions
Most work on combining separation logic with concurrency con-
structs has considered them as primitive in the logic. This begins
with O’Hearn’s work on concurrent separation logic [20], which
takes statically allocated locks as a primitive. CSL has been ex-
tended to deal with dynamically-allocated locks [11, 14, 15] and
re-entrant locks [12]. Others have extended separation logic or sim-
ilar logics with primitive channels [13, 1, 24, 18], and event driven
programs [17].

Concurrent abstract predicates [6] combine the explicit treat-
ment of concurrent interference from rely-guarantee [16, 10, 23]
and abstraction through abstract predicates [21], with a concurrent
fiction of disjointness [7] supported by capabilities [8]. In this paper
we have combined concurrent abstract predicates with higher-order
separation logic [3]. We used our higher-order logic to define and
verify a specification for barriers that enforce complex data and
control dependencies in concurrent programs.

Although we have focussed in this paper on barrier constructs
used for deterministic parallelism [25, 2, 4, 19], our logic is in-
tended as a general approach to specifying concurrency constructs.
Our syntactic approach has the advantage that concurrency con-
structs of different kinds combine transparently. For example, lock
predicates defined in [6] can be transferred through our channel
predicates without changing the semantics or proofs of correctness
for either module. In addition, we can verify that concrete imple-
mentations of constructs satisfy their specification.

Acknowledgements Thanks to the anonymous referees, Richard
Bornat, Matko Botinčan, Thomas Dinsdale-Young, Philippa Gard-
ner, Neel Krishnaswami, Daiva Naudžiūnienė, Viktor Vafeiadis and
John Wickerson.

References
[1] C. J. Bell, A. Appel, and D. Walker. Concurrent separation logic for

pipelined parallelization. In SAS, 2009.

[2] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
multithreaded programming for C/C++. In OOPSLA, 2010.

[3] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines,
higher-order separation logic, and abstraction. TOPLAS, 29(5), 2007.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel Java. In OOPSLA
’09, pages 97–116. ACM, 2009.

[5] J. Boyland. Checking interference with fractional permissions. In
SAS, 2003.

[6] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, 2010.

[7] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstraction and
refinement for local reasoning. In VSTTE, 2010.

[8] M. Dodds, X. Feng, M. J. Parkinson, and V. Vafeiadis. Deny-
guarantee reasoning. In ESOP, 2009.

[9] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reasoning
for deterministic parallelism. Computer laboratory technical report,
University of Cambridge, 2010.

[10] X. Feng, R. Ferreira, and Z. Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In
ESOP, 2007.

[11] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS, 2007.

[12] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s
Reentrant Locks. In APLAS, pages 171–187, 2008.

[13] C. A. R. Hoare and P. W. O’Hearn. Separation logic semantics for
communicating processes. ENTCS, 212:3–25, 2008.

[14] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for
concurrent separation logic. In ESOP, 2008.

[15] B. Jacobs and F. Piessens. Modular full functional specification and
verification of lock-free data structures. Technical Report CW 551,
Katholieke Universiteit Leuven, Dept. of Computer Science, 2009.

[16] C. B. Jones. Tentative steps toward a development method for
interfering programs. TOPLAS, 5(4):596–619, 1983.

[17] N. R. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-
driven programs using ramified frame properties. In TLDI, 2010.

[18] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and
locks. In ESOP, 2010.

[19] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static Scheduling
for Safe Futures. In PPoPP, pages 23–32. ACM, 2008.

[20] P. W. O’Hearn. Resources, concurrency and local reasoning. TCS,
2007.

[21] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction.
In POPL, pages 247–258, 2005.

[22] M. C. Rinard and M. S. Lam. Semantic Foundations of Jade. In
POPL, pages 105–118. ACM, 1992.

[23] V. Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD
thesis, University of Cambridge, July 2007.

[24] J. Villard, É. Lozes, and C. Calcagno. Tracking heaps that hop with
heap-hop. In TACAS, pages 275–279, 2010.

[25] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for Java. In
OOPSLA, pages 439–435, 2005.

