
Intuition
Rely-guarantee is the best approach to reasoning about concurrency.

However, it only deals with parallel composition, not fork and join.

We propose deny-guarantee, a new logic that deals naturally with fork
and join by dynamically splitting interference

Fork and Join
Concurrency theorists have mostly dealt with parallel composition.

C1 ∥ C2

However, real programs use fork and join.

fork(C1); join(C1);

Start a thread C1 with fork, and continue execution. Collect thread
with join.

Simple fork-join example:

Program ensures that x=2 at termination, but this is difficult to prove.

Proving the Example
Suppose we allow interference to be split and joined.

We start with full permission. Full permission on a particular rewrite
means no other thread can do it. Then we split it as follows.

 full

 →

 A1 ∗ A2 ∗ K

Here A1 gives full permission to update x to 1, A2 gives the same per-
mission for x to 2, and K is the ‘remainder’ permission.

We split the full permission A1 to give permission G1, a partial permis-
sion to write 1 into x.

 A1

 →

 G1 ∗ G1

Partial permissions mean other threads may be able to do the rewrite.

Then we can prove the program as follows.

Post-condition x=2 is stable because G1 ∗ G1 ∗ K together give full
permission on all actions, except writing 2 into x.

That is, the only permitted interference is writing 2 to x.

t1 := fork (x := 1);
t2 := fork (x := 2);
join t1;
x := 2;

{G1 ∗ G1 ∗ G2 ∗ G2 ∗ K}
	 	 t1 := fork (x := 1);
{G1 ∗ G2 ∗ G2 ∗ K ∗ Thread(t1, G1)}
	 	 t2 := fork (x := 2);
{G1 ∗ G2 ∗ K ∗ Thread(t1, G1) ∗ Thread(t2, G2)}
	 	 join t1;
{G1 ∗ G1 ∗ G2 ∗ K ∗ Thread(t2, G2)}
	 	 x := 2;
{G1 ∗ G1 ∗ G2 ∗ K ∗ Thread(t2, G2) ∧ x = 2}

The Problem with Rely-guarantee
Rely-guarantee models interference as two relations over states.

• A rely R, the interference from the environment

• A guarantee G, the actions permitted for the program

Rely-guarantee rule for parallel composition:

R1, G1 ⊢ {P1} C1 {Q1} G1 ⊆ R2
R2, G2 ⊢ {P2} C2 {Q2} G2 ⊆ R1 (par-rg)

R1 ∩ R2, G1∪ G2 ⊢ {P1∧P2} C1 ∥ C2 {Q1∧Q2}

Note that the interference is statically scoped - the same before and af-
ter the parallel composition. This can’t cope with fork-join!

Deny-guarantee
For deny-guarantee, we split interference dynamically.

Deny-guarantee defines unified permissions that combine both the rely
and guarantee of

Define a set of permissions PermDG.

PermDG = ({guar} × (0,1)) ⊎ ({deny} × (0,1)) ⊎ {0} ⊎ {1}

Permission pr map actions in State × State to permissions.

pr : State × State → PermDG

Permissions record interference. Given an action a:

• If pr(a) = (guar, π) or 1, program can do action a

• If pr(a) = (guar, π) or 0, environment can do action a

• A deny pr(a) = (deny, π) records that action a cannot occur.

Reasoning About Fork and Join
We can define a separation logic star-operator over a pr.

Define a separation logic for programs with fork and join.

P,Q ::= B | pr | false | Thread(E , P) | P → Q | P ∗ Q | ∃X . P

Assertions define both the state and the permitted interference.

Fork and join rules (simplified).

{P1} C {P2} Thread(x , P2) ∗ P3 → P4
(fork)

{P1 ∗ P3} x := fork C {P4}

(join)
{P ∗ Thread(E , P′)} join E {P ∗ P′}

Deny-guarantee permissions allow us to prove our example.

People
• Mike Dodds, University of Cambridge
• Xinyu Feng, Toyota Technology Institute, Chicago
• Matthew Parkinson, University of Cambridge
• Viktor Vafeiadis, Microsoft Research Cambridge

Deny-Guarantee Reasoning Computer Laboratory
Programming, Logic, and Semantics

