Concurrent Abstract Predicates

— long version —

(Draft, submitted for publication)

Thomas Dinsdale-Young', Mike Dodds?, Philippa Gardner!,
Matthew Parkinson?, and Viktor Vafeiadis?

! Imperial College, London
2 University of Cambridge

Abstract. Abstraction is key to understanding and reasoning about
large computer systems. Abstraction is easy to achieve if the relevant
data structures are disjoint, but rather difficult when they are partially
shared, as is the case for concurrent modules. We present a program logic
for reasoning abstractly about data structures that gives us a fiction of
disjointness and permits compositional reasoning. The internal details of
a module are completely hidden from the client by concurrent abstract
predicates. We reason about a module’s implementation using separation
logic with permissions, and provide abstract specifications for use by
client programs using concurrent abstract predicates. We illustrate our
abstract reasoning by building two implementations of a lock module on
top of hardware instructions, and two implementations of a concurrent
set module on top of the lock module.

1 Introduction

When designing large physical systems, we use both abstraction and locality
to hide irrelevant aspects of the system. For example, when building a house
in London, we do not consider the gravitational forces exerted by the brick
molecules, nor what the weather is like in Paris. Similarly, we use abstraction and
locality when designing and reasoning about large computer systems. Locality
allows us to consider small parts of a system in isolation, while abstraction gives
us a structured view of the system, because components can be used purely in
terms of their abstract properties.

Locality can be often used directly to achieve a measure of abstraction. Us-
ing separation logic [18] we can prove that a module runs within a particular
structure, disjointly from other modules. If the structure is manipulated only
by module functions, it can be represented just in terms of its abstract proper-
ties, by an abstract predicate [23]. For example, we can implement a set by a
linked list. This set can be represented by an abstract predicate asserting that,
for example, “the set is {5,6}”. A client can then reason about the set without
reasoning about its internal implementation: given “the set is {5,6}”, the client
can infer that, after deleting 6, that “the set is {5}”.

Often, however, fine-grained reasoning at the abstract level cannot be cap-
tured by traditional abstract predicates. It can be captured by the abstract
reasoning introduced by context logic [4, 5], which reasons at the same level of
abstraction as the module. With our set-module example, the client can rea-
son about a set in terms of its individual elements, manipulating the element
6 separately from the rest of the set. This fine-grained abstraction is not sup-
ported using traditional abstract predicates, because locality in the abstraction
need not correspond to locality in the implementation [8]. If the set module is
implemented as a list, then to manipulate individual elements of the set, the im-
plementation traverses the global list structure. Therefore, individual elements
are not represented disjointly in the implementation, and fine-grained reasoning
is not possible using simple abstract predicates.

For concurrency, fine-grained reasoning is essential for compositional rea-
soning about modules shared between threads. For example, we may wish to
manipulate individual elements of the set in separate threads, whereas, in the
implementation, threads may access a shared list structure simultaneously. This
sharing breaks the abstract view of disjointess between the elements. Even the
humble lock breaks disjointness, since acquiring the lock necessarily involves a
race to decide who acquires the lock. Existing systems for concurrent reasoning
either assume locks as primitive or do not provide abstraction for locks.

We present a program logic which allows abstraction in the presence of shar-
ing, introducing concurrent abstract predicates. These predicates present a fiction
of disjointness [8]; that is, they can be used as if each abstract predicate repre-
sents disjoint resource, whereas in fact resources are shared between predicates.
For example, given a set implemented as a linked list we can write abstract
predicates asserting “the set contains 5, which I control” and “the set contains
6, which I control”. Both of these predicates assert properties about the same
shared structure, and both can be used at the same time by separate concurrent
threads: for example, elements can be deleted concurrently from a set.

Concurrent abstract predicates capture information about the permitted
changes to the shared structure. In the case of the set predicates, each pred-
icate gives the thread full control over a particular element of the set. Only the
thread owning the predicate can remove this element. We implement this con-
trol using resource permissions [9], with the property that the permissions must
ensure that a predicate is self-stable: that is, immune from interference from
the surrounding environment. Predicates are thus able to specify independent
properties about the data, even though the data is shared.

With our program logic, a module implementation can be verified using a low-
level specification. This low-level specification can be abstracted to give a high-
level specification expressed using concurrent abstract predicates. Clients of the
module can then be verified purely in terms of this abstract specification, without
reference to the module’s implementation. We demonstrate this methodology by
providing two implementations of a lock library satisfying the same abstract lock
specification, and then using this specification to build two implementations of
a concurrent set satisfying the same abstract set specification. At each level, we

reason entirely abstractly, avoiding reasoning about the implementation of the
preceding level. We therefore demonstrate that concurrent abstract predicates
provide the necessary abstraction for compositional reasoning about concurrent
systems.

In this paper, we use a very simple low-level language with pointers and
functions for exposition. The work naturally extends to object-oriented languages
using Parkinson and Bierman’s logic for Java [23]. The object-oriented features
are orthogonal to concurrency abstraction we present in this paper.

Paper Structure. In §2 we provide an informal development of our approach
using the simple example of an abstract lock specification. We show how our
approach can be used to validate two implementations of a lock. In 3 we give an
implementation of a set, which makes use of a lock conforming to our abstract
specification. We validate the set using our abstract lock specification. In §4
we give a syntax for logical assertions and a proof system for judgements about
programs. We define soundness for our logic and sketch our soundness argument.
Finally, in §5 we draw conclusions and relate our approach to other work.

In this long version we include appendices give full technical details for our
approach. Appendix A defines the operational semantics of our programming
language. This semantics omits logical annotations, and deals purely with con-
crete state. Appendix B gives a full soundness argument for the proof system.

2 Informal Development

We develop our core idea: to define abstract specifications for concurrent modules
and prove that concrete module implementations satisfy these specifications.
We motivate our work using a lock module, one of the simplest examples of
concurrent resource sharing. We define an abstract specification for locks, and
give two lock implementations satisfying the specification.

2.1 Lock Specification

A typical lock module has the functions lock(x) and unlock(x), for acquiring and
releasing a lock respectively. It also has a mechanism for constructing locks, such
as makelock(n), which allocates a lock followed by a contiguous block of memory
of size n. We specify these functions using the following local Hoare triples:

{isLock(z)} lock(x) {isLock(x) * Locked(z)}
{Locked(z)} unlock(x) {emp}

Jx.ret = x AisLock(z) * Locked(x) }

{emp} makelock(n) { s (z4+1)— _%...%x(x+n)—_

This abstract specification, which is independent of the underlying implemen-
tation, is presented by the module to the client.®> The assertions isLock(x) and
Locked(x) are abstract predicates. isLock(x) asserts that the lock can be acquired
by the thread, while Locked(x) asserts that the thread holds the lock. Below we
give a concrete interpretation of these predicates for a simple compare-and-swap
lock. The logical connective * is the separating conjunction from separation logic:
an assertion p* q asserts that the state can be split disjointly into two parts, one
satisfying p and the other satisfying q.

The abstract predicates satisfy the following axioms, which the module also
presents to the client:

isLock(z) <= isLock(x) * isLock(z)
Locked(z) * Locked(z) <= false
The first axiom allows the client to share freely the knowledge that z is a lock
that can be locked.* The second axiom implies that a lock can only be locked
once. With the separation logic interpretation of triples (given in §4.5), the client

can infer that, if lock(z) is called twice in succession, then the program will not
terminate as the post-condition is not satisfiable.

2.2 Example: A Compare-and-Swap Lock

Consider a simple compare-and-swap lock implementation:

I?Ck(}l{)b{ unlock(x) { makelock(n) {

dooca ’ ([x] == 0) local x := alloc(n+1);
(b = 1CAS(&x, 0, 1)) [X]t =1

while(b) return x;

) }

Interpretation of Abstract Predicates. We relate the lock implementation to our
lock specification by giving a concrete interpretation of the abstract predicates.
The predicates are not just interpreted as assertions about the internal state of
the module, but also as assertions about the internal interference of the module:
that is, how concurrent threads can modify shared parts of the internal state.
To describe this internal interface, we extend separation logic with two asser-
tions, the shared region assertion ; @) and the permission assertion [A]-. The
shared region assertion : @ specifies that there is a shared region of memory,
identified by label r, and that the entire shared region satisfies P. The shared

3 This specification resembles those used in the work of Gotsman et al. [13] and Hobor
et al. [17] on dynamically-allocated locks. However, our system is much more general,
as it can reason about abstract specifications other than locks.

4 We do not record the splittings of isLock(z), although we could use permissions [3,
2] to explicitly track this information.

state is indivisible so that all threads mgintain aTconsistent viev;/ of it. This is
expressed by the logical equivalence 1@ * @@ & (@) for shared
regions. The possible actions on the state are declared by the environment I(Z).

The permission assertion [A]7 specifies that the thread has permission 7 to
perform action A over region r, provided the action is declared in the environ-
ment. Following Boyland [3], the permission 7 can be: the fractional permission,
7 € (0, 1), denoting that both the thread and the environment can do the action;
or the full permission, 1, denoting that the thread can do the action but the en-
vironment cannot.® We now have the machinery to interpret our lock predicates
concretely:

isLock(z) = 3r,m. [Lock]y «[(z = 0% [ONLOOKI) Ve 1]
Locked(z) = Ir. [UNLOCK]] I(T,m)

The abstract predicate isLock(z) is interpreted by the concrete, implementation-
specific assertion on the right-hand side. This specifies that the local state con-
tains the permission [LOCK]", meaning that the thread can acquire the lock. It
also asserts that the shared region satisfies the module’s invariant: either the
lock is unlocked (« +— 0) and the region holds the full permission [UNLOCK]] to
unlock the lock; or the lock is locked (x +— 1) and the unlocking permission is
gone (the thread that acquired the lock will have it).

Meanwhile, the abstract predicate Locked(x) is interpreted as the permission
assertion [UNLOCK]] in the local state, giving the current thread full permission
to unlock the lock in region 7, and the shared region assertion, stating that the
lock is locked (z — 1).

The actions permitted on the lock’s shared region are declared in I(r,x).
Actions describe how either the current thread or the environment may change
the shared state. They have the form A: P ~~ @, where assertion P describes
the part of the shared state required to do the action and @ describes the part
of the state after the action. The actions for the lock module are

def Lock: z+— 0% [UNLOCK]] ~ x—1,
I()) =
UNLOCK: z+1 ~» 2~ 0x%[UNLOCK]]

The LOCK action requires that the shared region contains the unlocked lock
(x + 0), and full permission [UNLOCK]] to unlock the lock. The result of the
action is to lock the lock (x +— 1) and to move the full unlock permission to the
thread’s local state ([UNLOCK]] has gone from the shared state). The movement
of [UNLOCK]] into local state allows the locking thread to release the lock af-
terwards. Note that local state is not explicitly represented in the action; since
interference only happens on shared state, actions do not need to be prescriptive
about local state.

® The semantics also contains a zero permission, 0, denoting that the thread may not
do the action but the environment may. However, this is not a useful assertion to
make, so we forbid it.

The UNLOCK action requires that the shared region r contains the locked lock
(x + 1). The result of the action is to unlock the lock (z — 0) and move the
[UNLOCK]] permission into the shared state. The thread must have [UNLOCK]|]
in its local state in order to move it to the shared state as a result of the action.

Notice that UNLOCK is self-referential. The action moves exclusive permission
on itself out of local state. Consequently, a thread can only apply UNLOCK once
(intuitively, a thread can only release a lock once without locking it again). In
84.2, we discuss how our semantics supports such self-referential actions.

The abstract predicates must be self-stable with respect to the actions: that
is, for any action permitted by the module (actions in I(r,z)), the predicate will
remain true. Self-stability ensures that a client can use these predicates without
having to consider the module’s internal interference. For example, assume that
the predicate Locked(x) is true. There are two actions the environment can
perform that can potentially affect the location x:

— Lock, but this action does not apply, as x has value 1 in the shared state
of Locked(z); and

— UNLOCK, but this action also does not apply, as full permission on it is in
the local state of Locked(z).

The module implementer must show that the concrete interpretation of the
predicates satisfies the axioms presented to the client. In our example, the first
axiom, that only a single Locked(z) can exist, follows from the presence in the
local state of full permission on UNLOCK. The second, that isLock(z) can be
split, follows from the fact that non-exclusive permissions can be arbitrarily
subdivided and that x behaves additively on shared region assertions.

Verifying the Lock Implementation. Given the definitions above, the lock imple-
mentation can be verified against its specification; see Fig. 1 and Fig. 2.

For the unlock case, the atomic update ([z] := 0) is allowed, because it can be
viewed as performing the UNLOCK action, full permission for which is in the local
state. The third assertion specifies that the permission [UNLOCK]] has moved
from the local state to the shared region r as stipulated by the unlock action.
This assertion is not, however, stable under intereference from the environment
since another thread could acquire the lock. It does imply the fourth assertion,
which is stable under such interference. The semantics of assertions allows us to
forget about the shared region, resulting in the postcondition, emp.

For the lock case, the key proof step is the atomic compare-and-swap com-
mand in the loop. If successful, this command updates the location [z] in the
shared state region from 0 to 1. This update is allowed because of the permis-
sion [LOCK]” in the local state and the action in I(r,z). The postcondition of
the CAS specifies that either location x has value 1 and the unlock permission
has moved into the local state as stipulated by the LOCK action, or nothing has
happened and the precondition is still satisfied. This postcondition is stable and
so the Hoare triple is valid.

For the makelock case, the key proof step is the creation of a fresh shared
region and its associated permissions. Our proof system includes a repartitioning

{isLock(x)} {Locked(z)}
lock (x) { unlock(x) {

3r, . i {37‘. [UNLOCK]] * IT('r z)}

’ (z — 0 [UNLOCK]]) Va — 1 o) ([x] = 0);)

* [LOCK]}; {Hr.’ x +— 0% [UNLOCK]] , }
local b; I ()
do (z — 0 [UNLOCK]T) |

Ir, . . Va1 I
’ (2 + 0% [UNLOCK]]) V x> 1 o)) ()
* [LOCK] ¢ 0.1] {emp}

(b := 1CAS(&x,0,1));

37“,77.(96"—>1 "

ey ¥ [Lock]} * [UNLOCK]] x b = false) v

(’ (z — 0 [UNLOCK]]) Vx +— 1

i : * [LOCK]; % b = true)

I(r,x
while(b)
{Hr. IT(T o ¥ [LoCK]% * [UNLOCK]] * b = false}
}

{isLock(z) * Locked(z)}

Fig. 1. Verifying the compare-and-swap lock implementation: lock and unlock.

implication =>, which enables us to repartition the state between regions and
to create regions. In particular, we have the implication
s —
P=3r. I(f) x all(I(X))
which creates the fresh shared region r and full permission for all of the actions
defined in I(Z) (denoted by all(I(£))). In our example, we have

T 1= HT';(T 2y * ILOCK]] * [UNLOCK]]

The final postcondition results from the definitions of isLock(z) and Locked(z),

and recalling that ;(T) & ;(r o * ;(r)’

2.3 The Proof System

We give an informal description of the proof system, with the formal details given
in §4. Judgements in our proof system have the form A;I"' - {P}C{Q}, where
A contains predicate definitions and axioms, while I" presents abstract speci-
fications of the functions used by C. The local Hoare triple {P}C{Q} has the
fault-avoiding partial-correctness interpretation advocated by separation logic:
if the program C is run from a state satisfying P then it will not fault, but will
either terminate in a state satisfying) or not terminate at all.

femp}
makelock(n) {
local x := alloc(n + 1);
{z—_x@+1)—_x...x(x+n)—_}
[x] :=1;
{z—1x@+1)—_x...x(x+n)—_}

{Er.;mw) * [LOCK]] * [UNLOCK]] * (x + 1) — _% ... % (x +n) — ,}
return x;

}

{3z.ret = z NisLock(z) * Locked(z) * (x + 1) — _* ... % (z +n) — _}

Fig. 2. Verifying the compare-and-swap lock implementation: makelock.

The proof rule for atomic commands is

FsL {p} C {q} AFP=THIQ Al stable(P,Q)
A ={P}(C){Q}

(AToMIC)

The bodies of atomic commands do not contain other atomic commands, nor do
they contain parallel composition. They can thus be specified using separation
logic. The first premise, Fs. {p} C {q}, is therefore a valid triple in sequential
separation logic, where p, ¢ denote separation logic assertions that do not specify
predicates, shared regions or interference.

The second premise, A - P =1} @, is more complex. It says that the
interference allowed by P enables the state to be repartitioned to @, given the
change to memory given by {p}{q}. In our example, when the CAS performs the
update the change is {x — 0}{z — 1}. We also require that P and @ are stable,
so that they cannot be falsified by concurrently executing threads. Precondition
and postcondition stability is a general requirement that our proof rules have,
which for presentation purposes we keep implicit in the rest of this paper.

The implication P = @) used earlier for constructing a new region is a short-
hand for P =s{empHemp} () i ¢. a repartitioning where no concrete state changes.
We use this implication in the rule of consequence, which we use to move per-
missions between regions.

AFP=P ATH{P}C{Q} ArQ=Q
A I'E{P} C{Q}

(CONSEQ)

We now introduce a rule that allows us to combine a verified module with
a verified client to obtain a complete verified system. The idea is that clients of
the module are verified with respect to the specification of the module, without
reference to the internal interference and the concrete predicate definitions.

Our proof system for programs includes abstract specifications for functions.
In previous work on verifying fine-grained programs [25], interference had to be
specified explicitly for each function. Here we can prove a specification for a

module, and then represent the specification abstractly, without mentioning the
interference internal to the module.

As we have seen, our predicates can describe the internal interference of a
module. Given this, we can define high-level specifications for a module where
abstract predicates correspond to invariant assertions about the state of the
module (that is, they are ‘self-stable’). As these abstract assertions are invariant,
we can hide the predicate definitions and treat the specifications as abstract.

The following proof rule expresses the combination of a module with a client,
hiding the module’s internal predicate definitions. (In §4.5, we show that this
rule is a consequence of more fundamental rules in our proof system).

AF{P}C{@Q1} - AFA{P,}C{Qn}
AFA AP} {Q1) - AR fn{@n} H{PIC{Q}

This rule defines a module consisting of functions fi ... f, and uses it to verify
a client specification { P}C{Q}.% The rule should be read as follows:

If — the implementation C; of f; satisfies the specification {P;}C;{Q;} under
predicate assumptions A, for each i;
— the axioms exposed to the client in A’ are satisfied by the predicate as-
sumptions A; and
— the specifications {P1} f1{Q1}, ..., {Pn} fn{Qn} and just thepredicate as-
sumptions A’ can be used to prove the client {P}C{Q};
then the composed system satisfies {P} let f1 =Cy ... f, = C, in C {Q}.

Using this rule, we can define an abstract module specification and use this
specification to verify a client program. Any implementation satisfying the spec-
ification can be used in the same place. We are only required to show that the
module implementation satisfies the specification.

2.4 Example: A Ticketed Lock

We have shown that our lock specification is satisfied by a simple compare-and-
swap lock. We now consider a more complex algorithm: a lock that issues tickets
to clients contending for the lock. This algorithm is the standard lock algorithm
used in current versions of Linux, and provides fairness guarantees for threads
contending for the lock. Despite the fact that the ticketed lock is quite different
from the compare-and-swap lock, we will show this module also implements our
abstract lock specification.

The lock operations are defined as follows:

5 We could equally have applied this to a class using [23] rather than a set of functions.
However, to keep the presentation simple we just use functions.

lock(x) { unlock(x) { makelock(n) {

(int i := INCR(x.next);) (x.owner-++;) local x := alloc(n+2);
while(i # x.owner) { } } (x+1).owner := 0;
} (x+1).next := 1;

return (x+1);

}

Here field names are encoded as offsets (.next = 0, .owner = —1).

The implementation assumes an atomic operation INCR that reads a location
and increments the stored value. To acquire the lock, a client atomically incre-
ments x.next and reads it into a variable i. The value of i becomes the client’s
ticket. The client waits for x.owner to equal its ticket value i. Once this is the
case, the client holds the lock. The lock is released by incrementing x.owner.

The algorithm is correct because (1) each ticket is held by at most one client
and (2) only the thread holding the lock can increment x.owner.

Interpretation of Abstract Predicates. The actions for the ticketed lock are:

def (TAKE: Jk. ([NEXT(k)]! * x.next — k ~» x.next— (k+ 1)))
T(t,z) =

NExT(k): z.owner — k ~» z.owner — (k + 1) x [NEXT(k)]

Intuitively, TAKE corresponds to taking a ticket value from x.next, and NEXT(k)
corresponds to releasing the lock when x.owner = k. The shared state contains
permissions on NEXT(k) for all the values of k not currently used by active
threads. Note the 3k is required to connect the old and new values of the next
field in the TAKE action.

The concrete interpretation of the predicates is as follows:

t
3k, k'. x.owner — k * z.next — k'’

: _ .
islock(z) = 3t} <k * ®K" > K. [NexT(k")]{ T :)[TAKE]F
Locked(x) = 3t k.|z.owner — k * true ‘;(t o [NEXT(K)]{

(® is the lifting of * to sets; it is the separating (multiplicative) version of V.)

isLock(z) requires values x.next and x.owner to be in the shared state, and
that a permission on NEXT(k) is in the shared state for each value greater than
the current ticket x.next. It also requires a permission on TAKE to be in local
state. Locked(z) requires just that there is an exclusive permission on NEXT(k)
in local state for the current value, k, of x.owner.

Self-stability of Locked(z) is ensured by the fact that the predicate holds
full permission on the action NEXT(k), and the action TAKE cannot affect the
x.owner field. Self-stability for isLock(z) is ensured by the fact that TAKE pre-
serves membership of the invariant for region ¢.

The predicate axioms follow immediately from the predicate definitions, as
for the compare-and-swap lock.

{isLock(x)} {Locked(x)}
{

lock(x) { unlock(x)
3t k, k' [Take], Ak < K 3t k.
. x.onner /»—> Ek x x.nefft to—> K | ’ xr.owner — k % true ‘;(fﬂ)
®k” > K. [NExT(K")]! * true (k) « [NEXT(K)]!
(int i := INCR(x.next);) (x.owner++;)
3, k, k. [TAKE]L * [NEXT()]) Ak <i <k 3t, k.
z.owner — k + z.next — k' * | x.owner — (k + 1) % '

Y| @K > K. [NexT(k”)]{ * true |
while(i # x.owner); }

3t, k' [TAKE]S * [NEXT(9)]] Ad < K {emp}
x.owner — i x z.next — k' *

®kL” > K. [NExT(E")]! * true

(t,z) [NEXT(K) % true

T(t,z)

*

T(t,z)

}
{isLock(z) * Locked(z) }

Fig. 3. Proofs for the ticketed lock module operations: lock and unlock.

Verifying the Lock Implementation. Given the definitions above, the ticketed
lock implementation can be verified against the lock specification, as shown in
Fig. 3. The proofs follow the intuitive structure sketched above for the actions.
That is, lock(x) pulls a ticket and a permission out of the shared state, and
unlock(x) returns it to the shared state. (We omit the proof of makelock, which
is similar to the previous example.)

3 Composing Abstract Specifications

In the previous section we showed that our system can be used to present ab-
stract specifications for concurrent modules. In this section, we show how these
concurrent specifications can be used to verify client programs, which may them-
selves be modules satisfying abstract specifications. We illustrate this by defining
a concurrent set module specification and giving two implementations. The set
implementations depend for their correctness on the lock specification presented
in the previous section.

3.1 A Set Module Specification

A typical set module has three functions: contains(h, v), add(h, v) and remove(h, v).
These functions have the following abstract specifications:

{in(h,v)} (h,v) {in(h,v) * ret = true}
{out(h,v)} (h,v) {out(h,v) * ret = false}
{own(h,v)} add(h,v) {in(h,v)}
(h,v)}

remove(h,v) {out(h,v)}

,v)} contains

v)} contains

)

{own(h, v
Here in(h,v) is an abstract predicate stating that the set at h contains v. Cor-
respondingly, out(h,v) says that the set does not contain v. We define own(h, v)
as the disjunction of these two predicates.

These assertions do not only capture knowledge about the set, but also exclu-
sive permission to alter the set by changing whether v belongs to it. Consequently
out(h, v) is not simply the negation of in(h,v). The exclusivity of permissions is
captured by the module’s axiom:

own(h,v) * own(h,v) = false

We can reason disjointly about set predicates,
even though they may be implemented by {own(h, v1) *x own(h,vs)}
a single shared structure. For example, con- {own(h,v)} || {own(h, va)}

sider the command remove(h,vy) || remove(h,vs)

{out(h,v1)} {out(h,va)}

remove(h,vy) || remove(h, va) fout(h v) * out(h, vs)}

This command should succeed if it has the

permissions to change the values v; and vy Fig. 4. Proof outline for set mod-
(where v; # v5), and it should yield a set ule client.

without v; and wvs. This intuition is captured

by the proof outline shown in Fig. 4.

3.2 Example: The Coarse-grained Set

Consider a coarse-grained set implementation, based on the lock module and the
sequential set operations scontains(y, v), sadd(y,v) and sremove(y, v).

contains(h,v) { add(h,v) { remove(h,v) {
lock (h.lock); lock (h.lock); lock (h.lock);
scontains (h.set ,v); sadd(h.set,v); sremove(h.set,v);
unlock(h.lock); unlock(h.lock); unlock(h.lock);

1 } }

Interpretation of Abstract Predicates. We assume a sequential set predicate
Set(y, xs) that asserts that the sequential set at location y contains values zs.
The predicate Set cannot be split, and so must be held by one thread at once.
This enforces sequential behaviour. The sequential set operations have the fol-
lowing specifications with respect to Set:

{Set(y,vs)} scontains(y,v) {Set(y,vs)xret = (v € vs)}

{Set(y,vs)} sadd(y,v) {Set(y,{v}Uws)}
{Set(y,vs)} sremove(y,v) {Set(y,vs\{v})}

In the set implementation, the predicate Set is held in the shared state when the
lock is not locked. Then when the lock is acquired by a thread, the predicate is
pulled into the thread’s local state so that it can be modified according to the
sequential set specification. When the lock is released, the predicate is returned
to the shared state. The actions for the set module are

Jvs, ws. Set(h.set, vs)
def | SCHANGE(v): * [SGAP(ws)]; A ~ Locked(h.lock)
Cls,h) = vs \ {v} = ws\ {v}
SGAP(ws): Locked(h.ock) ~~ Set(h.set,ws) * [SGAP(ws)]]

The SGAP(vs) action allows the thread to return the set containing vs to the
shared state. The SCHANGE(v) action allows a thread to acquire the set from the
shared state. To do so, the thread must currently hold the lock. It gives up the
permission to release the lock in exchange for the set. The thread also acquires
the permission [SGAP(ws)]5, which allows it to re-acquire the lock permission
by relinquishing the set, having only changed whether or not v is in the set.

To define concrete interpretations for the predicates, we first define Pc(h,v)
and Pg(h,v):

allgaps(s) = ®uws. [SGAP(ws)]}
Py(h,v,8) = Fus. v<vsA ((allgaps(s) + Set(h.set, vs)))

V Locked(h.lock) * ([SGAP(vs)]; —® allgaps(s))
where < =€ ora=¢

The predicate allgaps defines the set of all SGAP permissions. Pc(h,v,s)
asserts that the shared state s contains either the set with contents vs, where
v € vs, and all possible SGAP permissions; or it contains the Locked predicate
and is missing one of the SGAP permissions. The missing SGAP permission
records the contents of the set when it is eventually released. Pg(h,v,s) defines
the case where v ¢ vs.

The concrete definitions of in(h,v) and out(h,v) are as follows:

in(h,v) = 3s.isLock(h.lock) % [SCHANGE(v)]§ | Pe(h, v, 5) “"C(S "
out(h,v) = 3s.isLock(h.lock) * [SCHANGE(v)]] *| Pg(h,v, s) Z(S n)

The in(h, v) predicate gives a thread the permissions needed to acquire the lock,
isLock(h.lock), and to change whether v is in the set, [SCHANGE(v)]5. The shared
state is described by the predicate Pc(h,v,s). The out(h,v) predicate is defined
analogously to in(h,v), but with a negation on the set contains.

in(h,v) and out(h,v) are self-stable. For in(h,v), the only actions available to
another thread are SCHANGE(w), where w # v, and SGAP(vs), where v € vs.
The assertion Pe(h, v, s) is invariant under both of these changes: SCHANGE(w)
requires the disjunct allgaps * Set(h.set,vs) to hold and leaves the disjunct
Locked(h.lock)* ([SGAP(vs)]; —®allgaps(s)) holding; SGAP(vs) does the reverse.
Similar arguments hold for out(h,v).

The predicate axiom holds as a consequence of the fact that exclusive per-
missions cannot be combined.

Verifying the Set Implementation. Given the definitions above, we can verify the
implementations of the set module. Fig. 5 shows a proof of add(h,v) when the
value is not in the set. The case where the value is in the set, and the proofs of
remove and contains follow a similar structure.

The most interesting steps of this proof are those before and after the oper-
ation sadd(h.lock), when the permissions [SCHANGE(v)]§ and [SGAP(vs)]; are
used to repartition between shared and local state. These steps are purely logical
repartitioning of the state.

3.3 The Fine-grained Set

Our previous implementation of a concurrent set used a single global lock. We
now consider a set implementation that uses a sorted list with one lock per node
in the list. Our algorithm (adapted from [15, §9.5]) is given in Fig. 6.

The three module functions use the function locate(h,x) that traverses the
list from the head h up to the position for a node holding value x, whether or
not such a node is present. It begins by locking the initial node of the list. It
then moves down the list by hand-over-hand locking. The algorithm first locks
the node following its currently held node, and then releases the previously-held
lock. The following diagram illustrates this pattern of locking:

33 .. B . (3 ..

No thread can access a node locked by another thread, or traverse past a
locked node. Consequently, a thread cannot overtake any other threads accessing
the list. Nodes can be added and removed from locked segments of the list. If a
thread locks a node, then a new node can be inserted directly after it, as long as
it preserves the sorted nature of the list. Also, if a thread has locked two nodes
in sequence, then the second can be removed.

Since nodes of the list are deleted when an element is removed from the
set, the lock module must provide a mechanism for disposing of locked blocks,
disposelock(x,n). For brevity, we omitted details of this in our exposition. In
order for disposal to be sound, no other thread must be able to access the lock,

{out(h,v)}
add(h,v)

{35. isLock(h.lock) * [SCHANGE(V)]] *| Pg(h, v, s) ;(S h)}
lock (h.lock)

{33. isLock(h.lock) * Locked(h.lock) * [SCHANGE(v)]] | Pg(h, v, s) 2(5 h)}

// use SCHANGE permission to extract Set predicate and SGAP permission
{Els. isLock(h.lock) * [SGAP(vs U {v})]] * [SCHANGE(v)]] * Set(h.set, vs)}

*’ Locked(h.lock) * ([SGAP(vs U {v})]] —® allgaps(s)) ‘

sadd(h.set,v)
{Els. isLock(h.lock) * [SGAP(vs U {v})]] * [SCHANGE(V)]{ * Set(h.set, vs U {v})}

*’ Locked(h.lock) * ([SGAP(vs U {v})]] —® allgaps(s)) ‘
// use SGAP permission to put back Set and SGAP permission
{35. isLock(h.lock) * Locked(h.lock) = [SCHANGE(V)]{ #[Pe(b,v,s) |, h)}
unlock(h.lock)
{3s-isLock(hlock) [SCHANGEMW)]} *[Pe(h v, 5)] 7.,)
}
{in(h, v)}

Fig. 5. Proof of the add(h, v) operation for the coarse-grained set module.

C(s,h)

C(s,h)

remove(h,x) {
local p, c, z;

(p, ¢) := locate(h, x); locate (h, x) {

add(h, x) { if (c.value == x) { local c:
local p, c, z; lock(c); ._ hI.)’ ’
(p, c) = locate(h, x); 7 := c.next; ? ; 7.
if (c.value # x) { p.next := z; 0<L(P)7 t;

z := makelock(2); disposelock(c, 2); zvh_lhf '(rie)v(aiue <x){
unlock(z); } lock(c)
z.value := x; unlock(p); lock D):
z.next := ¢; } un'gcc'(p)7
p-next := z; 5 :: p’next'
} contains(h, x) { } . . 7
unlock(p); local p, ¢, b; :

} (b, ©) = locate(h, x): return(p, c);

b := (c.value == x); }
unlock(p);
return b;

}

Fig. 6. Lock-coupling list algorithm.

and so we require the isLock predicate to record permissions. Creating a lock
gives full permission, locking requires only fractional permission and disposing
a lock requires full permission in this scheme. Lock disposal is specified as

{ isLock(z, 1) x Locked(z)

w(@ 1) k.. k(2 4n) o } disposelock(z,n) {emp}

and for both lock implementations we have given, the function simply deallocates
the memory block.

Interpretation of Abstract Predicates. We first define some basic predicates for
describing the structure of a list. List nodes consist of a lock, a value field and a
link field. Because owning a node gives the permission to lock its successor, our
node predicate includes the isLock predicate of the next node.
link(a,b) = (a.next +— b) xisLock(b, 1) val(a,v) = (a.value — v)
node(a,b,v) = val(a,v) * link(a, b)

The actions for the fine-grained set module are defined by the interference
environment F(s, h), defined by the following assertion:

Locked(n) ~» link(n,t) * [LGAP(n,t,z)];

Locked(n) [LGAP(n,t,x)] * node(y, t, x)
Yoi,va. | *val(n,vy) | ~ * link(n, y) * val(n,v1)
LGAP(n,t,z): * val(t, va) xval(t,vg) * A v <ax<vo

Locked(n) * . [LGAP(n, t,x)]5 *
Locked(t) * val(t, x) [LGAP(t, y, z)]5 * link(n, y)
LCHANGE(z): Vn,t. [LGAP(n,t, z)]5 xlink(n,t) ~» Locked(n)

Intuitively, the LGAP(n,t,x) actions allow a link to be replaced between n
and t, such that it preserves the list’s contents up to inclusion of z. Locked (and
s0, hidden) nodes of the list correspond to permissions on the action LGAP.

The first LGAP action simply puts the link back. The second updates the
link to point to a new node y whose tail is ¢ and value is . We require that
inserting this node maintains the ascending order of the list. This action is the
basis of adding x to the set. The final action allows the link to be updated to
skip an element, if that element is x. This is the basis of removing x from the
set.

The LCHANGE(z) action allows a thread holding the lock to a node n to
access it, by obtaining link(n,t), and to modify it up to adding or removing a
node with value x, by obtaining the permission [LGAP(n,t,x)];.

The predicates Le(h, x, s) and L¢(h, x, s) correspond to lists containing and
not containing x. Their definitions are given in Fig. 7, along with auxiliary

lsg(z,y,5,[]) = 2 =ynS=0

582y, S8 {(2,2)},v 7 v5)
= Locked(z) * val(z,v) x Isg(z,y, S, vs)

Isg(z,y,S,v::vs) = x# yAnode(z,v, z) xIsg(z,y, S, vs)

(
slsg(z,y, S,vs) = lIsg(z,y, S,vs) Asorted(vs) A Jvs'.vs = —o0 :: v5'Q[0]

gaps(S,s) = P (z,y) ¢ S. Pz [LGAP(x, vy, 2)]] *
®(z,y).€ S.Fw. Dz # w. [LGAP(z,y, 2)]5 A
Vo, y,w, 2. (x,y) ESA(w,2) €S = (z=wey=2)
mygaps(z,s) = @z, y. [LGAP(z,y, 2)]] * true

Lo(h,z,s) = s, S. x<axs Aslsg(h,nil, S, zs) * (gaps(S, s) A mygaps(z, s))
where < =€ ora=¢

Fig. 7. Predicates for lock-coupling list.

predicates. The slsg (‘sorted list with gaps’) predicate represents a list with
locked segments. The gaps predicate tracks the unused GAP permissions in the
shared state. In both cases, a carrier set S records the locked sections in the list.

The concrete interpretation of the predicates for this implementation of the
set module are defined as follows:

S

F(s,h)

in(h,z) = 3s.37 > 0.isLock(h, 7) * [LCHANGE(2)]$ *| Le(h, z, s)
out(h,z) = 3s.3m > 0.isLock(h, 7) * [LCHANGE(xz)|] *| Lg(h, z, 5)

F'(s,h)

The predicate axiom holds as a consequence of the fact that exclusive per-
missions cannot be combined.

Verifying the set implementation Fig. 8 gives a sketch-proof for locate(z). The
main loop searches through the list checking if the current element, c, is less
than the element being searched for x. At the start of the loop, the thread has
p locked, signified by having the LGAP(p, ¢, x) permission in its local state. The
first step of the loop locks the new current element c. This is allowed as the
link(p, ¢) predicate contains a isLock permissions for ¢. After, locking the thread
additionally has a Locked(c) predicate in its local state.

The proof then uses the action in the local state LCHANGE(x), to swap the
local Locked predicate, for the LG AP action associate with ¢ and the link between
c and the next node. In some sense, we are publishing that we have locked this
node. This thread now has two nodes locked in the list and can UNLOCK the first.
This unlocking first involves putting the LGAP permission into the shared state,
which returns the Locked predicate for that node to the threads local state. This
allows the previous node to be safely unlocked.

As with the coarse-grained set, locking and unlocking are two-step processes.
First the lock is acquired in local state, then a permission is used to change

locate (h, x) {
{in(h,z)}
p=h;
lock(p);
Cc := p.next;
while (c.value < x) {
(Fu.val(c,v) *v <) A Jxs, S. z € x5 A {(p,c)} C S Aslsg(h, nil, S, zs) |
 (g2p8(S. 5) A (ILGAR(p.c,)i —5 mygaps(z,5))) |,
* link(p, ¢) * [LGAP(p, ¢, x)]] * 3m > 0.isLock(h, 7) * [LCHANGE(z)]]

ds.

lock(c);
(Fu.val(c,v) xv <) A Jxs, S. z € s A{(p,c)} C S Aslsg(h,nil, S, zs) |
 (gaps(S, s) A ([LGAP(p, ¢, z)]] —® mygaps(z, s))) ()
« link(p, ¢) * [LGAP(p, ¢, x)]] * 3w > 0.isLock(h, 7) * [LCHANGE(z)]] * Locked(c)
// By LCHANGE using Locked(c)
(Fv.val(c,v) * v < z)
A3dzs,S. € xsA{(p,c),(c,z)} C S Aslsg(h,nil, S, xs)

e (s Rt |

* link(p, ¢) x [LGAP(p, ¢, z)]] * [LGAP(c, 2z, x)]] * I > 0.isLock(h,)
* [LCHANGE(z)]] * link(c, 2)

ds.

S

// By LGAP(p,c,z)

(Fu.val(c,v) xv < z) AJws, S. = € zs A{(c,2)} C S Aslsg(h, nil, S, zs) |
* (gaps(9, s) A ([LGAP(c, 2, 7)1 —® mygaps(z, 5))) |,

* Locked(p) * [LGAP(c, 2z, x)]] * 3w > 0.isLock(h, 7) * [LCHANGE(z)]] * link(c, 2)

ds, z.

unlock(p);
p =
Cc := p.next;

(Fu.val(p,v) v < x) AJzs,S. z € xs A{(p,c)} C S Aslsg(h, nil, S, zs) |
 (g2p5(S.5) A ([LGAP(p.c.)i — mygaps(a.5)|,
* [LGAP(p, ¢, x)]] * Im > 0.isLock(h, 7) * [LCHANGE(z)]] * link(p, ¢)

ds.

(Fu.val(p,v) v < z) A (F'.val(e,v') x v > z) Adws,S. x € zs A{(p,c)} C S|
N Slsg(l il S, 25) (gaps(5.5) A (ILGAP(p.c.)i~ mygaps(z.s)) |,

* [LGAP(p, ¢,)]] * Im > 0.isLock(h, 7) * [LCHANGE(z)]] * link(p, ¢)

ds.

return(p, c);

}

Fig. 8. Proof for locate(x).

{in(h,z)}
(p, ¢) := locate(x); // Use spec. from Fig. 8
(Ju.val(p,v) v <) A (' val(e,v) v > z) AJzs, S. € xs A{(p,c)} C S|
Aslsg(h, nil, S, xs) * (gaps(S, s) A ([LGAP(p, ¢, z)]] —® mygaps(z, s))) o)

* [LGAP(p, ¢, x)]] * 37 > 0.isLock(h, 7) * [LCHANGE(z)] * link(p, ¢)

ds.

if (c.value == x) {
lock(c);
(val(c, z) * true) A 3zs, S. z € s A {(p,c)} C S Aslsg(h,nil, S, zs) |’
 (gapS(S, 5) A ([LGAR(p. €,)i —® mygaps(a,5))) |,
* [LGAP(p, ¢, x)]] * 37 > 0.isLock(h, 7) * [LCHANGE(z)]] * link(p, ¢) * Locked(c)
// By LCHANGE using Locked(c)
(val(c, z) * true) A Jzs, S. z € zs A {(p,), (¢, 2)} C S Aslsg(h, nil, S, zs) |

Js, 2. . (gaps(s, 5) A ((E“ ﬁﬁﬁi(i j) f)]‘i) B mygaps(m’s)» o

* [LGAP(p, ¢, z)]] * [LGAP(c, 2, x)]7 * link(p, ¢) * link(c, 2)
* 31 > 0.isLock(h,) * [LCHANGE(x)]}

ds.

7 := c.next;
p.next 1= z;
(val(c, z) x true) A Jzs, S. © € zs A{(p, ¢), (¢, 2)} C S Aslsg(h,nil, S, xs) °
ds, z. [LGAP(p, ¢, z)]])))
x| gaps(.S,s) A s | —® mygaps(z, s
(g ps(S, s) ((« [LGAP(c, 2, 2] ygaps(z, s) o

* [LGAP(p, ¢, z)]] * [LGAP(c, 2z, 2)]] * link(p, 2) * isLock(c, 1) * (c.next — z)
* 31 > 0.isLock(h, m) * [LCHANGE(x)]]

// By LGAP(p, ¢,)
ds, z’ s, S. x & xs Aslsg(h,nil, S, xs) = (gaps(S, s) A mygaps(z, s)) ‘

E]

F(s,h)

x Locked(p) * Locked(c) x val(c, z) * isLock(c, 1) * (c.next — z)
« 3 > 0.isLock(h, 7) * [LCHANGE(x)]]

disposelock(c, 2);

}
{Els, z’ Jzs, S. x ¢ xs Aslsg(h, nil, S, xs) * (gaps(S, s) A mygaps(z, s)) ‘;(S h)}

* Locked(p) * 3 > 0.isLock(h, 7) * [LCHANGE(z)]]
unlock(p);

{out(h,z)}

Fig. 9. Proof-sketch for remove(x).

the shared state to reflect this locked status. Similarly, for the unlock, first the
permission is used to extract the knowledge that the node is locked, and then it
is locally unlocked.

4 Semantics and Soundness

4.1 Assertion Syntax

Recall from §2.3 that our proof judgments have the form A, I" + {P} C{Q}.
Here, P and @ are assertions in the the set Assn. We also define a set of basic
assertions, BAssn, which omit permissions, regions and predicates. Regions in
assertions are annotated by interference assertions in the set lAssn. A is an
axiom definition in the set Axioms. Finally, I' is a function specification in the
set Triples. The syntax is defined as follows.

(Assn) P, Qu=emp | Ey—FEy | PxQ | P—-®Q |false | P=Q | 3z. P |
R
(VB ED)IE[[P]] | (Br,... Ey) | @z P

BAssn) p,gu=emp | E1— Ey | pxq | p—®q | false | p=q | Jz.p
|Assn) Ii=~():35. (P~Q) | I,

(
(
(Axioms) Au=g |VZP = Q | VZ.a(X) =P | A1, 4,
(o | I'{P}HQ}

In the above definitions, v ranges over the set of action names, AName; a
ranges over the set of abstract predicate names, PName; x and y range over the
set of logical variables, Var; and f ranges over the set of function names, FName.
We assume an appropriate syntax for expressions, F, R, ™ € Expr, including basic
arithmetic operators.

Triples) I

4.2 Assertion Model

Let (Heap, W,)) be any separation algebra [6] representing machine states (or
heaps). Typically, we take Heap to be the set of finite partial functions from
locations to values, and W to be the union of partial functions with disjoint
domains: the standard separation logic model. We let h denote a heap.

Our assertions include permissions which specify the possible interactions
with shared regions. Hence, we define LState, the set of logical states, which pair
heaps with permission assignments (elements of Perm, defined below).

| € LState & Heap x Perm

Assertions make an explicit (logical) division between shared state, which can
be accessed by all threads, and thread-local state, which is private to a thread and
cannot be subject to interference. Shared state is divided into regions. Intuitively,

each region can be seen as the internal state of a single shared structure, i.e. a
single lock, set, etc.

Each region is identified by a region name, r, from the set RName. A region
is also associated with a syntactic interference assertion, from the set |Assn, that
determines how threads may modify the shared region. A shared state in SState
is defined to be a finite partial function mapping region names to logical states
and interference assertions:

s € SState % RName 2 (LState x |Assn)

A world in World is a pair of a local (logical) state and a shared state, subject
to a well-formedness condition. Informally, the well-formedness condition ensures
that all parts of the state are disjoint and that each permission corresponds with
an appropriate region; we defer the formal definition.

w € World % {(1, s) € LState x SState | wf((l, s))}

Given a logical state [, we write Iy and lp to stand for the heap and permission
assignment components respectively. We also write wy, and wg to stand for the
local and shared components of the world w respectively.

Recall from §2.2 that actions can be self-referential. For example, the ac-
tion UNLOCK moves the permission [UNLOCK]] from shared to local state. Our
semantics breaks the loop by distinguishing between the syntactic representa-
tion of an action and its semantics. Actions are represented syntactically by
tokens, consisting of the region name, the action name and a sequence of value
parameters (e.g. [SCHANGE(v)]5 corresponds to the token (s, SCHANGE, v) with
permission 1):

t, (r,v,7) € Token 4f RName x AName x Val*

The semantics of a token is defined by an interference environment (see §4.4).
Permission assignments in Perm associate each token with a permission value
from the interval [0, 1] determining whether the associated action can occur.

pr € Perm ' Token — [0,1]

Intuitively, 1 represents full, exclusive permission, 0 represents no permission,
and the intermediate values represent partial, non-exclusive permission.”

The composition operator @ on [0, 1] is defined as addition, with the proviso
that the operator is undefined if the two permissions add up to more than 1.
Composition on Perm is the obvious lifting: pr & pr’ def \t pr(t)®pr'(t). Compo-
sition on logical states is defined by lifting composition for heaps and permission

" This is the fractional permission model of Boyland [3]. As in Dodds et al. [9], we
can extend our permission structure with a fourth possibility called a deny: a non-
exclusive permission prohibiting both the environment and thread from performing
the action. This requires only minor changes to the rely and guarantee functions
presented later in this section — other definitions stay the same.

assignments: | @ I’ def (lu Wi, Ip ®1p). Composition on worlds is defined by
composing local states and requiring that shared states be identical:
w D def (wr, ® wi,ws) if wg :wé
€ otherwise.

We write Operm for the empty permission (which assigns zero permission to every
token, i.e. At.0), and [t — 7] for the permission mapping the token ¢ to = and
all other tokens to 0.

The operator |w] collapses a world w to a logical state. Here € is the natural
lifting of @ to sets. The operator |w] further collapses w to a heap:

(w) = wr @ (B, caomue) ws(1)) L) = (lw)

The action domain of an interference assertion, adom([) is the set of action
names and parameters that the specification allows.

adom(Y(z1,...,2,) 1 I (P~ Q) % {(v, (v1,...,v)) | vi € Val)}

adom((Iy, I5)) et adom(I7) U adom(I)

We are finally in a position to define well-formedness for a world, wf(w).

wf (w) &L 31 € LState. 1 = lw] A

Yy, U.lp(r,v,0) > 0 = 3", Lws(r) = (I', 1) A (v,7) € adom(I)

4.3 Assertion Semantics

Fig. 10 presents the semantics of assertions, [P[;,;. We first define a weaker
semantics (Ps,; that does not enforce well-formedness, then define [P[;; by
restricting it to the set of well-formed worlds. The semantics of assertions de-
pends on the semantics of expressions, [—]_ : Expr x Interp — Val. We have
not formally defined this, so we assume an appropriate semantics. The seman-
tics of IAssns can also depend on the semantics of free variables. We define
(—)_ : lAssns x Interp — IAssns to replace the free variables with their values.

The semantics is parameterized by a predicate environment, §, mapping ab-
stract predicates to their semantic definitions, and an interpretation, ¢, mapping
logical variables to values:

5 € PEnv % PName x Val* — P(World)

. def
i € Interp = Var — Val

We assume that RName U (0, 1] C Val, so that variables may range over region
names and fractions.

The cell assertion +—, the separating star * and the existential separating
implication —® are standard. The quantifier ® is infinitary version of *; that is,

(=D__ : Assnx PEnv x Interp — P(LState x SState)

(Er— E2)s; = {(ls)]dom(lu) = {[Er]:} Alu([Er]:) = [E2]:}
lempDy, 2 {((0,0pum),s) | s € SState}
(PrxPas, = {wi@ws|wi € (P, Awz € (Pr)s,}
(Pr—® Py, € {w]| 3w, wews =wdw Aws € (Pi)s, Awz € (Pa)y,}
(®=-p), = Un{®. Wo)|ve.ww) € (Phy oy }

(VB B)IRD, = (@1 [R] [BA, - [BADL) = [7],)), 8) | s € SState}
(7], 1@ 0pam).s) | 3L (1.5) € (P, As(IR]) = (0.(1),))
((Br, . En))s, = O(on[En],, - [Eal,)

[[—}]777 : Assn X PEnv x Interp — P(World)
[Pls, = A{(s) € (P)s, |wf((l,s))}

Fig. 10. Semantics of assertions. The cases for conjunction, implication, existential,
etc. are standard, simply distributing over the local and shared state.

the multiplicative analogue of V. The empty assertion emp asserts that the local
state and permission are empty, but that the shared state can contain anything.

Abstract predicates, a(E1, ..., E,), are used to encapsulate concrete prop-
erties. For example, in the lock specification (§2.1), we used Locked(x) to assert
that x is held by the current thread. The meaning of an abstract predicate is
simply looked up the in the predicate environment, 4.

The permission assertion [y(E1, . ..)|¥ states that the token ([R], , 7, [E1], - -.)
is associated with permission value [7],.

A shared-state assertion f asserts that P holds for region [R], in the
shared state, and that the region’s interference is given by the interference as-
sertion, (I[);. For example, in the compare-and-swap lock implementation (§2.2),
P asserts that the shared state for a lock is either locked or unlocked, and I de-
fines the meaning of actions Lock and UNLOCK. We use (I]); as we need to bind
the location = and region r to the correct values.

Separating conjunction behaves as conventional (non-separating) conjunction
between shared-state assertions over the same region; that is: ; * ; =

;. We permit nesting of shared-state assertions. However, nested asser-
tions can always be rewritten in equivalent unnested form:

r 4
[H; -9, = ;- @

In this paper, we only use nesting to ensure that shared and unshared elements
can be referred to by a single abstract predicate. In future, nesting may be useful
for defining mutually recursive modules.

4.4 Environment Semantics

An interference assertion defines the actions that are permitted over a region.
For example, in the compare-and-swap lock implementation, (§2.2) the assertion
I(r,z) defines the action LOCK as x +— 0 * [UNLOCK]] ~» x> 1.

Semantically, an interference assertion is defined as a map from tokens to
sets of shared-state pairs (what we call an interference environment):

[—]_ : 1Assn x PEnv — Token — P(SState x SState)

A primitive interference assertion defines an interference environment that maps
the token (r,~,?) to an action relation corresponding to transitions from states
satisfying ; to ; The relation does not involve local state, and only the
region r of the shared state changes. The action LOCK defines a relation from
shared states where the lock region is unlocked, to ones where it is locked. Com-
position of interference assertions is defined by union of relations.

Y =yANN £ rs(r)=8(r") A
AU 0, I.os(r) =@ lo, I) A
(@): 37.(P = Q) (7, 7) = {(5.9) §(r) = (U@ lo, I) A
. (1,) GQPDM 71 N
(',s") e(@Q
[11. L.]5(r.7.9) € [D]s(r.7.9) U [Le]g(r. 7. 9)
Given a region name r and an interference assertion I, all(I,r) is the logical

state assigning full permission to all tokens with region r whose semantics is
defined by 1.

T,y—

T
D57[ﬁ»—>177‘77>—>17']

lef .
a”(Iv T) = (Q)v @(fy,ﬁ)e adom(I)[(Tv s 2)) = 1])

The guarantee G5 describes what updates to the world the thread is allowed
to perform. The thread can update its local state as it pleases, but changes to the
shared state must be according to some action for which the thread has sufficient
permission ((wr,)p(r,7y,¥) > 0). For example, in the compare-and-swap lock
proof (§2.2) the thread must hold permission 1 on UNLOCK before unlocking the
shared lock. Without this restriction other threads could potentially unlock the
lock. It is also very important that updates preserve the total amount permission
in the world (|w]p = |w'|p), so that the thread cannot acquire permission to
do an action out of thin air.

Moreover, the thread can create a new region by giving away some of its local
state and gaining full permission on the newly created region. This is described
by G°¢. Conversely, it can destroy any region that it fully owns and grab ownership
of the state it protects (cf. (G¢)71).

¢ def w3 Il e, r ¢ dom(ws) A w§ = ws[r — (61, 1)] A
Gt = {(w’w) 'LUL:€1®£2/\’LU£:€2@3”(I,T)

G5 déf {(w, ’LU/)

.0 (ws, wh) € [ws(M)ls (DAY e oyt
(wL)SP(T,Sfy,ﬁ) >?)/\ Lwép — LleP} UG°U (G)

We now define formally the notion of update implication, P Eép HZ Q. This
states that a rewrite from p to ¢ is permitted in a larger world satisfying P,
and that the resulting world satisfies (). As the definition of update implication
erases the divisions between regions, it permits repartitioning between regions.
Repartitioning is sound provided it is permitted by the guarantee, (Gg)*.

Definition 1 (Update Implication). PEEP}{‘I} Q holds iff, for every world
wy in [P];;, there exists a heap hy in [p]; and a residual heap h' such that

— h1®h = ||w; and

— for every heap hs in [q];, there exists a world wy in [Q];; such that
o ho B A = |ws]; and
o the update is allowed by the guarantee, i.e. (w1, wq) € (Gs)*.

Note that if p = ¢ = emp, then the update implication preserves the con-
crete state, and only allows the world to be repartitioned. Hence we call this
special case repartitioning implication and write P =5 as a shorthand for
P Eéemp} {emp} Q. Recall from the proof of the compare-and-swap lock imple-
mentation (§2.2) that repartitioning implication was used to create a new shared
regions when making a lock.

The rely Rs describes the possible world updates that the environment can
do. Intuitively, it models interference from other threads. At any point, it can
update the shared state by performing one of the actions in any one of the shared
regions 7, provided that the environment potentially has permission to perform
that action. For this to be possible, the world must contain less than the total
permission (|w]|p(r,7,¥) < 1). This models the fact that some other thread’s
local state could contain permission 7 > 0 on the action.

In addition, the environment can create a new region (cf. R¢) or can destroy
an existing region (cf. (R¢)~!) provided that no permission for that region exists
elsewhere in the world.

Re ¥ {(w,w’)

Ir, €, I.r ¢ dom(wg) A wy, = wr, Aw§ = ws[r—¢, 1) A
|w’] defined A (Vv, 7. |w'|p(r,7,0) = 0)

def /
Rs = {(w,w) wr, = wi, A |w]p(r,y,7) <1

37137717' (wSaw/S) € [[('IUS(T))Q]]&(T,"}/,I_f) A } UR°U (Rc)—l

These definitions allow us to define stability of assertions. We say that an asser-
tion is stable if and only if it cannot be falsified by the interference from other
threads that it permits.

Definition 2 (Stability). stable;(P) holds iff for allw, w’, and i, if w € [P]s;
and (w,w'") € Rs, then w' € [Pl ;.

Similarly, we say that a predicate environment is stable if and only if all the
predicates it defines are stable.

Definition 3 (Predicate Environment Stability). pstable(d) holds iff for
all X € rng(d), for all w and w', if w € X and (w,w") € Ry, then w' € X.

Fsu {p} C{q} AFP=WHIQ Fsu {p} C {q}
ATF (P} (0) (@) (ATowrc) ATF () C{q)

A THA{PL} CL{Q1} AT H{P} C2 {Q2} (Par) {P}f{Q} eI’
A;TEAPL x P} O || C2 {Q1 % Q2} A I'{P} F{Q}

(PrIM)

(CaLr)

A, T'={P} C{Q} A;TH{P'}C{Q"}
At stable(R) AFP=P AFQ=0Q
AT {Pr R C{Qr Ry (FRAME) AT F (P} C{Q} (ConseQ)
At stable(R) a ¢ A/ IVP,Q
AR A AT E{PYO{Q} A, (V. a(7) = R); T - {P}C{Q}
AT POy R ATF (P)O(Q) (PrED-E)
AQF'_{Pl} C1 {Ql} A§F'_{Pn} Cn {Qn}

A {P} fL {Qui}, - P} fo {Qn}, ' {P} C{Q}
A;TEA{P}Ylet fi =Ci... fn=C, in C{Q}

(LET)
Fig. 11. Selected proof rules.

A syntactic predicate environment, 4, is defined in the semantics as a set of
stable predicate environments:

[2] % {5 | pstable(5)} [A1, 4] = [A] N [Ae]
[VZ. (%) = P] % {5 | pstable(8) AVT. 5(a, §) = [Pls ze}
VZ. P = Q] def {9 | pstable(d) A V&. [[P]}ﬁy[fHﬂ C [[Qﬂg,[fHa]}

4.5 Programming Language and Proof System

We define a proof system for deriving local Hoare triples for a simple concurrent
imperative programming language of commands:

(Cmd) C = Skip|C|f|<C>|Cl,02 | 01+02 | c* ‘ ClHCQ‘
let flzlen:Cn ll’lC

We require that atomic statements (C) are not nested and that function names
f1... fn for a let are pairwise distinct. Here ¢ stands for basic commands, mod-
elled semantically as subsets of P(Heap x Heap) satisfying the locality conditions
of Calcagno et al. [6].

Judgements about such programs have the form A;I" F {P} C {Q}. This
judgement asserts that, beginning in a state satisfying P, interpreted under
predicate definitions satisfying A, the program C' using procedures specified by
I' will not fault and, if it terminates, the final state will satisfy Q.

A selection of the proof rules for our Hoare-style program logic are shown in
Fig. 11. These rules are modified from RGSep [25] and deny-guarantee [9]. All

of the rules in our program logic carry an implied assumption that the pre- and
post-conditions of their judgements are stable.

The judgement Fsi {p} C {¢} appearing in the ATOMIC and PRIM rules is
a judgment in standard sequential separation logic. The other minor judgments
in the rules are defined semantically to quantify over all § € [A]:

— At P={PH% Q means V§ € [4]. PEEP}{Q} Q@ (and similarly without a
superscript);

— A stable(P) means Vo € [A]. stables(P); and

— At A" means V§ € [A]. § € [4].

To reason about predicate assumptions, we introduce two rules, PRED-I and
PRED-E. The PRED-I rule allows the assumptions about the predicate defini-
tions to be weakened. If a triple is provable with assumptions A’, then it must be
provable under stronger assumptions A. The PRED-E rule allows the introduc-
tion of predicate definitions. For this to be sound, the predicate name o must not
be used anywhere in the existing definitions and assertions. We require that re-
cursively defined predicates are satisfiable; otherwise the premise of a proof rule
could be vacuously true. We ensure this holds by checking that only positive
occurrences of the predicate appear in its definition.

The ATomic and CONSEQ rule were discussed in depth in §2.3. That section
also discussed a rule for modules, which can be derived as follows:

AR A A/;{P1}f1{Q1},...F{P}C{Q}

AEA{P}C{@} A {P} fi{@u}, .. F{P}C{Q}
AFA{P}let f1=Ci...fn =Cr in C {Q}
I—{P}let flzCl...fn:Cn mC{Q}

PRrRED-I

ET

PRrRED-E

The PAR rule is the key rule for disjoint concurrency. In this rule we exploit
our fiction of disjointness to prove safety for concurrent programs. Our set-up
allows us to define a simple parallel rule while capturing fine-grained interactions.

4.6 Judgement Semantics and Soundness

We define the meaning of judgements in our proof system with respect to a tran-

sition relation C,h -5 C', i’ defining the operational semantics of our language.

The transition is parameterised with a function environment, n, mapping func-

tion names to their definitions. We also define a faulting relation C, h - fault.
i € FEnv % FName — Cmd

e

= €OpTrans & P(FEnv x Cmd x Heap x Cmd x Heap)

€

= fault € OpFault % P(FEnv x Cmd x Heap)

To define the meaning of judgments, we first define the notion of a logical con-
figuration (C,w,n, 9,1, Q) being safe for at least n steps:

Definition 4 (Configuration safety). C,w,n,d,i,Q safe, always holds; and
C,w,n,6,i,Q safe, ., iff the following four conditions hold:

1. For allw', if (w,w’) € Rs then C,w’,n,d,i,Q safe,;

2. =((C, |w]) & fault);

8. For allC" and I, if (C,|w])) = (C’, k'), then there there exists w' such that
K= w'], (w,w') € (Gs)*, and C',w',n,d,i,Q safe,; and

4. If C = skip, then there exists w' such that |w] = ||[w']], (w,w’) € (Gs)*,
and w' € [Q];,;-

This definition says that a configuration is safe provided that: (1) changing the
w in a way that respects the rely is still safe; (2) the program cannot fault; (3)
if the program can make a step, then there should be an equivalent step in the
logical world that is allowed by the guarantee; and (4) if the configuration has
terminated, then the post-condition should hold. The use of (Gs)* in the third
and fourth conjuncts allows the world to be repartitioned.

We define the meaning of judgements in terms of configuration safety:

Definition 5 (Judgement Semantics). A;I' = {P} C{Q} holds iff

Vi,n. Vo € [A]. Vn € [I'] Vw € [Pls,;. Cow,n,0,i,Q safe,

n,0,i °

where [[ns: = {n | Y{P}f{Q} € I Yw € [Pl . n(f),w,n,6,i,Q safe,}.

Theorem 1 (Soundness). If A; '+ {P} C{Q}, then A; T = {P}C{Q}.

We prove this by structural induction on the proof rules. See Appendix B for
full details. The most interesting case is the PAR rule. The simplicity of this
rule embodies the compositionality of our logic. To prove it sound, the following
lemma is required.

Lemma 1 (Abstract state locality).

If (C, ||w1 @ wa])) L (C",h) and C,wy,n,8,4,Q safe, 1, then Jwi,wy such
that (C,|lw1]) = (C',|w}]) and h = |w} @& wh] and (wi,w;) € Gs and
(wa,wh) € Ry.

Proof. To prove this, we require that basic commands obey a concrete locality
assumption. We must also prove that rely and guarantee obey similar locality
lemmas. The lemma then follows from the definition of configuration safety. The
full proof is given in Appendix B, Lemma 9. (]

The lemma shows that a program execution only affects the parts of the world
required for it to run safely. The soundness of PAR follows because the lemma
shows that threads are safely contained within their abstract footprints.

5 Conclusions and Related Work

We have presented a logic that provides abstraction in a concurrent setting. It
brings together three streams of research: (1) abstract predicates [23], using pred-
icates to abstract the internal details of a module or class; (2) deny-guarantee [9],
reasoning about concurrent programs using rely-guarantee and separation logic;
and (3) abstract local reasoning [8], formalising the fiction of disjointness ob-
tained when reasoning at the abstract level.

Our work on concurrent abstract predicates has been strongly influenced by
O’Hearn’s concurrent separation logic (CSL) [21]. CSL takes statically allocated
locks as a primitive. With CSL, we can reason about programs with these locks as
if they are disjoint from each other, even though they interfere on a shared state.
CSL therefore provides a key example of the fiction of disjointness. The CSL
approach has been extended to deal with dynamically-allocated locks [13,17] and
re-entrant locks [14], by providing new proofs rules and assertions. This work uses
invariants to abstract the state over which interference acts. Parkinson et al. [22]
have shown how the CSL approach can be used to reason about concurrent
algorithms that do not use locks. However, representing the complex interactions
of concurrent algorithms in a single invariant can require auxiliary state making
proofs less tractable.

Jacobs and Piessens [19] have developed an approach to reasoning abstractly
based on CSL. They use a logic similar to Gotsman [13] to reason about dynam-
ically allocated locks with associated invariants. Their logic uses auxiliary state
to express the temporal nature of interference. To deal with auxiliary state in a
modular way they add a special implication that allows the auxiliary state to be
changed in any way that satisfies the invariant. This implication is remarkably
similar to our repartitioning implication =>. Their implication can be used in
the specification of a module, allowing the auxiliary state of the client to be
updated during the module’s execution. We believe that this technique could be
soundly applied with our repartitioning implication, which would simplify the
use of the lock specification in the two set algorithms.

An alternative approach to using invariants is to abstract interference over
the shared state by relations modelling the interaction of different threads: the
rely-guarantee method [20]. There have been two recent logics that combine RG
with separation logic: RGSep [25] and SAGL [11]. Both logics allow more elegant
proofs of concurrent algorithms than the invariant-based proofs, but they have
the serious drawback that interference on the shared state cannot be abstracted.
Feng’s Local Rely-Guarantee [10] improves the locality of RGSep and SAGL, by
scoping interference with a precise footprint and having special rules for framing
and hiding interference, but this approach still has no support for abstraction.
Meanwhile, Dinsdale-Young, Gardner and Wheelhouse used RGSep to analyse a
concurrent B-tree algorithm [7], and conjectured ideas about abstraction which
led to this current collaboration.

We have built on deny-guarantee reasoning [9], a reformulation of rely-guaran-
tee introduced to reason about dynamically scoped concurrency. This paper has
combined a simplified form of deny-guarantee with the earlier work on RGSep.

Deny-guarantee reasoning is related to the ‘state guarantees’ of Bierhoff et al. [1]
in linear logic, which are also splittable permissions describing how a state can
be updated (e.g., read-only, read-write,...).

The concept of the fiction of disjointness presented here arose from Gardner
et al.’s work on abstract local reasoning about program modules using context
logic [4,5,12]. Recently, Dinsdale-Young, Gardner and Wheelhouse have shown
how to justify such abstract local reasoning about modules by relating it to
separation logic reasoning about their non-local implementations [8]. Reasoning
abstractly about modules thus provides a fiction of separation, which is not
necessarily mirrored in their implementations.

We should point out that proofs in our proof system seem to be slightly
more complex in practice than RGSep and SAGL, as can be seen by comparing
the lock-coupling list proof with the RGSep one [25]. This might just be the
penalty that we pay for having greater modularity although, as we acquire more
experience with doing proofs using concurrent abstract predicates, we expect to
be able to reduce this complexity.

An alternative approach to abstracting concurrent algorithms is to use lin-
earisability [16]. Linearisability provides a fiction of atomicity allowing “rea-
son[ing] about properties of concurrent objects given just their (sequential) spec-
ifications” [16]. With linearisability, we are forced to step outside the program
logic at module boundaries and fall back on operational reasoning. In contrast,
with concurrent abstract predicates we are able to write modular proofs within
the one logical formalism.

Acknowledgements Thanks to Richard Bornat, Alexey Gotsman, Suresh Jagan-
nathan, Mohammad Raza, John Wickerson and Mark Wheelhouse for useful
discussions and feedback. This work was supported by an EPSRC doctoral
training account (Dinsdale-Young), EPSRC grant EP/F019394/1 (Dodds and
Parkinson), an RAEng/EPSRC research fellowship (Parkinson) and a Microsoft
Research Cambridge/RAEng senior research fellowship (Gardner).

References

1. K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In
OOPSLA, pages 301-320, 2007.

2. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, pages 259-270, 2005.

3. J. Boyland. Checking interference with fractional permissions. In SAS, 2003.

4. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL,
2005.

5. C. Calcagno, P. Gardner, and U. Zarfaty. Local reasoning about data up-
date. Festschrift Computation, Meaning and Logic: Articles dedicated to Gordon
Plotkin, 172, 2007.

6. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In Symp. on Logic in Comp. Sci. (LICS’07), pages 366-378, 2007.

7.

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Local reasoning about a
concurrent B*-list algorithm. Talk and technical report, see http://www.doc.ic.
ac.uk/~td202/, 2009.

T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstract local reasoning.
Imperial technical report, 2010.

M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.
In ESOP, 2009.

X. Feng. Local rely-guarantee reasoning. In POPL, 2009.

X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In ESOP, 2007.

P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local reasoning about
dom. In PODS, 2008.

A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for
storable locks and threads. In APLAS, 2007.

C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reentrant Locks.
In APLAS, pages 171-187, 2008.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier, 2008.
M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concur-
rent objects. TOPLAS, 12(3):463-492, 1990.

A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for concurrent
separation logic. In ESOP, 2008.

S. S. Ishtiaqg and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, pages 14-26, Jan. 2001.

B. Jacobs and F. Piessens. Modular full functional specification and verification
of lock-free data structures. Technical Report CW 551, Katholieke Universiteit
Leuven, Department of Computer Science, June 2009.

C. B. Jones. Annoted bibliography on rely/guarantee conditions. http://
homepages.cs.ncl.ac.uk/cliff. jones/ftp-stuff/rg-hist.pdf, 2007.

P. W. O’Hearn. Resources, concurrency and local reasoning. T'CS, 2007.

M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking
stack. In POPL, pages 297-302, Jan. 2007.

M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL,
pages 247-258, 2005.

V. Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD thesis, Uni-
versity of Cambridge, July 2007.

V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.
In CONCUR, pages 256-271, 2007.

A Language Semantics

The operational semantics of our programming language is given in Fig. 12. This
semantics is largely taken from [24]. However, this prior semantics required two
operational semantics — a logical semantics with proof annotations to separate
and a machine semantics erasing such annotations. Using Vafeiadis’s new ap-
proach to soundness of RGSep, Definition 4, we can avoid this requirement for
two semantics.

1—C1... fn—Cn)
Rt St et TN

(c,h) (', 1)
(let fr =C1...fn=Cnin C,h) 5 (let fi =Cy...fn=Cnin C', k)

f € dom(n) c(h,h')
(let ... in skip, h) - (skip, h) (f,h) 2 (n(f), h) (¢,h) 2 (skip, i)

(C,h) = (C1, 1)
(C;C",h) = (C1;C',h') - (skip; G h) = (C,h) (C*,h) = (skip + (C;C*), h)

*

(C,h) %" (skip, h')
(Cy + Ca,h) L (Cy, h) (Cy + Ca,h) L (Ca, h) ((C), h) 2 (skip, h')

(C1,h) 2 (C1, 1) (C2,h) = (C3, ')
(C1]|Ca, k) 2 (C1||Ca, b)) (Ch|Cay k) 5 (Ch|C, k') (skip||skip, h) - (skip, h)

(C1,h) 2 fault (C1,h) 2 fault (C2,h) 2 fault
(C1;C2,h) 5 fault (C1]|C2, k) 2 fault (C1||Co,h) 2 fault

*

f ¢ dom(n) (=3’ . c(h, 1)) (C,h) L fault
(f,h) 2 fault (e, h) 2 fault (CY, h) L fault

Fig. 12. Operational semantics.

We assume a simple Dijkstra-style language with constructs for sequential
composition, nondeterministic choice and looping. Programs in the given in pa-
per can be encoded into this language for proof purposes. Primitive updates in
this language are modelled by a function c¢: States x States.

Theorem 2 (Well-definedness). For any program C, state h and environ-
ment 1), there exists a transition (C,h) % (C',) or (C,h) <> fauit.

Proof. Holds trivially by induction for most cases. The only interesting case is
the rule dealing with atomic commands. For this, we observe that a derivation
sequence beginning with C' cannot result in the program (C), so the derivation
must be well-founded. O

B Soundness of proof system

Lemma 2 (Skip safety). Ifstables(Q) and w =5 Q then skip, w,n,1,0,Q safe,,.

Proof. Prove by induction on n. The 0 case holds by definition. Consider now the
inductive case. By the definition of stability, any w’ such that (w,w’) € Rs must

satisfy w’ = Q. Consequently the first clause holds by the inductive assumption.
Clauses 2 and 3 hold trivially, as no reductions from skip exist in the semantics.
Clause 4 holds trivially by picking w’ as w. O

Assumption 1 (Primitive locality) We assume that elements of the primi-
tive update function c: States x States are local. That is:

1. If no hy exists such that (h1®h, he) € ¢, then no hfy exists such that (h1, h}) €
c, and

2. if (h1 ® h,h2) € ¢ and there exists an hs such that (hy,hs) € ¢ then there
exists an hy such that (hy1,hs) € ¢ and ha = h @ hy.

Lemma 3 (Concrete locality). We need both single-step and multi-step ver-
stons of locality.

— If (C,h@ k) 2 (Cy, ho) and —~((C, h) 2 fault), then 3hl such that (C,h)
(Cy, hy) and hly @ W' = h.

- If (Cchoh) LN (Ca,he) and —=((C,h) o fault), then 3hYy such that
(C,h) 57 (Co, 1) and by & W = hs.

Proof. Proved by induction over the structure of a derivation or derivation se-
quence.

Consider the first case, consisting of of a single derivation (C,h @ h') -
(Cq, ha). For most of the rules, locality holds simply by the first clause of the
inductive assumption. For the two rules dealing with primitive updates, locality
is ensured by Assumption 1. For the rule dealing with atomic statements, locality
is ensured by the second clause of the inductive assumption.

Now cousider the second case, where we have a multi-step derivation (C,h @

h') LA (Ca, ha). Any such derivation consists of k single-step derivations. We
can thus prove the result by appeal to the two inductive assumptions. O

Lemma 4 (Fault locality). If (C,h & h') 5 fault, then (C,h) 5 fault.

Proof. As in the previous lemma, the proof needs both single-step and multi-
step versions of locality. The result is proved by induction over the structure of
a faulting derivation or derivation sequence.

— If (C,h @ ') L fault, then (C,h) L fault.
— If (C,h@ ') L fault, then (C,h) L fault.

The first clause holds when we have a single-step faulting derivation, (C, h @
n) NN fault. For most of the rules, locality holds immediately by the first clause
of the inductive assumption. For the rule dealing with primitive update, locality
is ensured by Assumption 1, as in the previous lemma. For the rule dealing
with atomic statements, locality holds by the second clause of the inductive
assumption.

To prove the second clause, we observe that any faulting derivation sequence

* k
(C,ha@h') L fault must consist of a length-k derivation (C, h&h') 5 (C,h")

and a single derivation (C', h"") -5 fault. We can thus show the result by applying
Lemma 3 and the first inductive assumption. O

Lemma 5 (Guarantee locality).
If (wi,w}) € Gs and wy © wy is defined, then there exists wh such that
(w1 ® wa, w) ® wh) € Gs and wi & wh is defined.

Proof. By the definition of state composition, (w1)s = (w1 @ wa)s and (w))s =
(w} @ wh)s. Also, by permission composition, if ((w1)L)p(r,7,7) € (0,1] then
(w1 ®w2)L)p(r,7,) € (0,1]. For region creation, it follows that the new region
cannot be in the domain of (w;)g. For the region removal, ((w1),)p must contain
all the permissions on the region being removed, hence so will ((w; ® w2)L,)p.
The rest follows immediately by the definition of guarantee. O

Lemma 6 (Guarantee locality II). If (wy,w]) € G5 and (wa,wh) € Rs and
w1 @ we defined and wy G wh defined, then (wi ® wy,w] ® wh) € Gs.

Proof. Similar to previous. O

Lemma 7 (Rely locality).
If w = w1 ® we and (w,w') € Rs then Jwi,wh such that (w1, w})) € Rs and
(wa, wh) € Ry and w' = w) & w).

Proof. By the definition of state composition, (wi)s = (ws2)s = (w1 & wa)s,
and (w})s = (wh)s = (w] @ wh)s . Also, by permission composition, if ((w; @
wa)L)p(r,7,0) € [0,1) then ((wi)L)p(r,y,7) € [0,1) and ((w2)L)p(r,7,7) €
[0,1). If w allows a region to be created or removed, then so will both w; and
wy. The rest follows immediately by the definition of rely. O

Lemma 8 (Containment of rely in guarantee).
If wy ® we is defined and (wy,w]) € Gs then there exists a wh such that
(wa,wh) € Rs and w| & wh is defined.

Proof. By the definition of state composition (wq)s = (w1 © ws)s. By the def-
inition of permission composition, if ((w1)y)p(r,7,7) € (0,1] and wy & wy is
defined, then ((w2)L)p(r,v,7) € [0,1). We define wh as wh = ((w2)L, (w))s).
For region creation this is trivial. For region removal, we know ((w;)r)p must
contain all the permissions for the removed region, therefore ((w2)r,)p cannot
contain any permissions on the region, hence it can be removed. The rest holds
immediately by the definition of rely. O

Lemma 9 (Abstract state locality).

If (C, |w1 & wa])) L (C",h) and C,wy,n,8,4,Q safe, 1, then Jwi,wy such
that (C,|lw1]) = (C',|w}]) and h = |w} & wh] and (wi,w;) € Gs and
(wa,wh) € Rs.

Proof. We first construct a remainder state k' from the local portion of wsg, so
h' = [(w2)1]. By the definition of composition [|w; & ws || = [[w1] & K.

By appeal to Lemma 3 (Concrete single-step locality) there exists a h” such
that C, ||wy] = C’,h" and h/ @ h" = h. By the definition of safety there must
exist a w] such that ||wy | = A" and (w1, w]) € Gs.

We now define wj as ((w2)L, (w])s) — that is, the local state from wy and
shared state from wj. It therefore holds trivially that ||w] | & k' = ||w] & w}]],
proving the main requirement. It remains to prove that (wq,w}) € Rs. This
follows immediately by appeal to Lemma 8. O

Lemma 10 (Parallel safety decomposition).
If w = w1 @& wa, and Cy,w1,n,0,1, Q1 safe, and Ca,wa,n, 6,1, Q2 safe,, and
stables(Q1) and stables(Q2) then C1]|Ca,w,n, 0,1, Q1 * Q2 safe,,.

Proof. By induction. The zero case holds trivially. In the inductive case we must
prove C4]|Ca,w,n,d,i, Q1 * Q2 safe, 1. We break down the definition of safety
as follows (the fourth clause is satisfied trivially as the program is not skip):

1. (w,w') € Ry = C1]|Ca,w’,n,0,i,Q1 * Qo safe,

2. =((C1|C, [w]) > fault)

3. (C1]|Ca, |w]) 2 (€', 1) = Fw'. [|[w'] = W A (w,w') € (Gs)*
A Cl7wl7 m, 577;7 Ql * QQ Safen

For the first clause, we assume that (w,w’) € Rs. By Lemma 7 (Rely locality)
Jwi, wh such that (w1, w]) € Rs and (wq,wh) € Ry and w' = w) ® wh. Hence,
with the assumptions we get Ca, wh,n, 6,1, Q2 safe, and C1,w},n,d,4,Q; safe,.
Hence, by the inductive assumption this proves the clause.

For the second clause, we observe that if the thread faults in a parallel com-
position, then either C7 or Co must have faulted. By Lemma 4 (Concrete fault
locality) the threads must also fault in ||wq]| or ||ws]| respectively. But by the
safety assumptions for C; and Cs this cannot occur.

For the third clause, there are two cases: either C|/Cy = skip||skip, or one
of Cy or Cs is reducible. We first consider the skip case. We pick the value
of w' as w. By the semantics, C = skip and A’ = ||w]]. The first and second
requirements of this clause hold trivially, and the third holds by Lemma 2 (Skip
safety) and the assumptions of safety.

Now consider the case where Cy or Cs is reducible. We only consider Cy; the
O case is identical. It must hold that (C1, ||w])) = (C}, k') and C" = C}||Cs. By
appeal to Lemma 9 (Abstract locality) we have that (C1, w1])) > (Cf, [}]])
and (w1, w]) € Gs and (wa, w) € Rs and [[w] @ wh] = h'. Consequently by the
safety assumptions we have C7,w/,n, 4,4, Q1 safe,. and Co, wh,n,d,1, Qs safe,.
Hence by inductive hypothesis, we have C1||Ca, w| ®wh,n, d,1, Q1 * Qo safe,. By
Lemma 6 (Guarantee locality 1), we get (wy @ we, w] ® wh) € Gy O

Lemma 11. If C,w1,n,0,i,Q safe, and w = wy; @ we and wy,i = F and
stables(F), then C,w,n,d,1,Q x F safe,,.

Proof. By induction on n. The zero case is trivial. In the inductive case we must
prove C,w,n,d,1,Q * I safe,, 11, which we break down as follows

1. (w,w') € R = C,w',n,0,i,Q x F safe,
2. =((C, |w]) 2 fault)
3. (C|w]) 2 (¢ h) = F'.|[w'] =H A (ww) € (Gs)*
ANC W' n,0,1,Q x F safe,
4. C =skip = . (w, ') € (Gs)* A Jw] = [[W]| AW, il=s Q% F

For the first clause, we can assume (w,w’) € Rs which with Lemma 7 (Rely
locality) gives (w1, w]) € Rs and (wq, w)) € Rs and w’' = w] @wj. As F is stable,
we know w}, i = F. By the inductive assumption we thus have C,w},n,d,i, Q *
F safe,,, which completes the case.

The second clause holds by the contrapositive of Lemma 4 (Concrete fault
locality).

For the third clause, we assume a transition C, ||w]| 2 ¢’ W. By appeal to
Lemma 9 (Abstract state locality) there exists a transition C, ||w;] — C’,h"
and there exist worlds w], w} such that ||w] & wh]| = h'. This satisfies the first
requirement. It also holds that (w1, w}) € Gs, so the second requirement follows
by Lemma 5 (Guarantee locality). The third requirement follows immediately
from the inductive assumption.

For the fourth clause assume C' = skip. By assumption we know (w;,w}) €
(Gs)* and ||w1]] = ||w)]| and w},i =5 Q. By Lemma 5 (Guarantee locality) we
know (wy ® wa, w] ®dwh) € (Gs)* and (we,w}) € (Rs)*. As F is stable, we know
wh,i = F, and hence w] @ w},i |= Q * F as required. O

Lemma 12 (Frame safety). If0,n =, {P} C {Q} andstables(F'), then é,n =,
{PxF}C{Q =« F}.

Proof. We pick a w,i such that w,i = P % F. Note that by the definition of
*, Jwy, wy such that wy,i = P, we,i = F, and w = wy & wy. Thus the result
follows directly from Lemma 11. O

Lemma 13.
If 6, =n {P'}C{Q}, and if (w,w') € (Rs)* then there exists w” such that
(w',w") € Gs and |[w'] = ||w"] and w" € [[P’]]i)(;, then C,w,n,d,i,Q safe,,.

Proof. Induction on n. The zero case is trivial. For the inductive case we must
prove C,w,n,d,1,Q safe, 1, which we break down to

1. (w,w') € Ry = C,w',n,d,i,Q safe,
2. ~((C,|lwll) ™ fault)
3. (C|w]) 2 (¢ h) = Fu'.||w'] =H A (w,w') € (Gs)*

ANC' W', n,d,1,Q safe,
4. C =skip = F'. (w,w') € (Gs)* N |w] = [|| A i =5 Q

First clause follows directly from induction. Second and third clauses hold triv-
ially as ||-|| is preserved by guarantee steps. Fourth clause is trivial. O

Lemma 14 (Pre-partitioning safety). If P=>; P’ and 6,1 |, {P'}C{Q}
and stables(P), then §,n =, {P}C{Q}.

Proof. Follows directly from Lemma 13, and the definitions of => and stable. [J
Lemma 15. If C,w,n,0,i,Q’ safe, and Q' =5 Q, then C,w,n,0,i,Q safe,.

Proof. By induction on n. First three clauses of the definition follow trivially.
For the fourth, we can assume

Ju'. (w,w') € (Gs)* ANMw] =[[w' | Aw',i=s Q
We must prove

. (w,w') € (Go)* A L]l = [w']| Auri s Q
This follows by definition of => and transitivity. O

Lemma 16 (Post-partitioning safety). If Q' =>;Q and §,n =, {P}C{Q'},
then 6,n F=n {P}YC{Q}.

Proof. Follows directly from previous lemma. O

Lemma 17 (Atomic safety). Ifts. {p}C{q} andPE({;p}{q} Q, and stables(P)
and stables(Q), then §;n =, {P} (C) {Q}

Proof. By induction on n. The zero case is trivial. For the inductive case we as-
sume a w such that w, i =5 P. We now need to prove that (C), w,), d,i, Q safe, 1,
which we break down as follows (the fourth clause is trivial as the command is
not skip)

1. (w,w') € Rs = (C),w',n,d,i,Q safe,

2. =((0), |w] 2 fault)

3. (O), |lw] % C" W = F. W] =W A(w,w) € (Gs)*
ANC" w18, Q safe,

The first clause holds by the stability of P and the inductive assumption.
By the semantics of g {p}C{q}, for any h such that h |= p, it holds that

=((C, h) a2, fault). By the definition of update implication, there must exist
states b/, h” such that ||w] =k’ & k" and R’ |= p. The second clause therefore
follows by the contrapositive of Lemma 4 (Concrete fault locality).

For clause 3, we assume that there exists a transition (C), |w] - C”, hs. By
reduction rules, C’ = skip. By Lemma 4 (Concrete fault locality) there exists
a transition (C), ' . skip, ha such that hy ® k" = hs. By the semantics of
FsL {p}C{q}, it must hold that h4 |= ¢q. By the definition of update implication,
there exists a wq such that we = Q, (w,ws) € Gs, and hy ® hg = [Jwa].
Consequently hg = ||ws]|, proving the first two requirements. As @ is stable, the
third requirement is ensured by Lemma 2 (Skip safety). O

Lemma 18 (Predicate elimination). If A, VZ. a(z) = R; I+ {P}C{Q} and
ag¢ A P,Q, then A; T {P}C{Q}.

Proof. We first claim that:

§ € [A] < 3.6 € [A,VZ. a(F) = R] A
V. 8[(,7) — L] = o[(a, 7) — L]

when A | stable(R). This can be easily proved by appeal to the predicate defi-
nition semantics. Note that stability is required otherwise the set of ds is empty.

We then make use of this result to prove that for any n, I, and §' € [A],
there exists a d.6 € [A AVZ. «(T) < R] such that

[[F]]n,é’ = [[F]]n,é
and for any assertion P, it holds that
w):5/ P <= w ':5 P

Both results can be proved by simple appeal to the semantics. These results are
sufficient to prove our main result, as other values are unaffected by the selection
of 4. O

Theorem 3 (Soundness). If A; ' {P}C{Q}, then A;I" = {P}C{Q}.

Proof. Proved by induction over proof rules. We consider in detail the Skip,
PaARr, FrRAME, AToMIC, CONSEQ and PRED-E rules. Other rules follow trivially
by the inductive assumption.

AT (P) skip (] OF)

Holds by Lemma 2 (Skip safety).

AT E=A{P} Ci{Q1} AT E{R} G {Q2}
AT AP P}y O || C2 {Q1 + Q2}

(PAR)

Holds by Lemma 10 (Parallel safety decomposition).

A= {P} C{Q} stable(F)
AT E{P*F}C{Q«F}

(FRAME)

Holds by Lemma 12 (Frame safety).

ko {p} C {q} A+P=I1Tq
AT E{P}(C){Q}

(AToMIC)

Holds by Lemma 17 (Atomic safety).

AFP=P ATE{P}C{Q} ArQ=Q
A= {Pr}C{Q}

(CONSEQ)

For simplicity we treat the P and () implications separately - no loss of generality
results. The P case follows from Lemma 14 (Pre-partitioning safety), while the
Q case follows from Lemma 16 (Post-partitioning safety).

stable(R) «a ¢ 1I,A,P,Q
AVT. a(T) = R; I E{P}C{Q}
A= A{PEC{Q}
Holds by appeal to Lemma 18 (Predicate elimination). O

(PRED-E)

