
Abstraction Refinement
for Separation Logic Program Analyses

Matko Botinčan1, Mike Dodds2, and Stephen Magill3

1 University of Cambridge, matko.botincan@cl.cam.ac.uk
2 University of York, mike.dodds@york.ac.uk

3 stephen.magill@gmail.com

Abstract. Abstract domains based on separation logic allow the compositional
analysis of heap-manipulating programs, and their effectiveness on real-world
software has been extensively demonstrated. Tractability is achieved by applying
abstraction, restricting invariants to a finite set of formulae. In standard analy-
ses this set cannot vary, and loss of information through abstraction can cause an
analysis to fail even when a proof is possible in the underlying logic. In this pa-
per, we propose a method for automated refinement of separation logic analyses,
geared towards checking the existential shape-based properties of data structures.
Our approach is based on abduction, a technique for inferring sufficient precon-
ditions for commands. We use abduction to work backwards from a spurious
error, identify the location at which necessary information was lost, and refine
the forward analysis so that this information is preserved in further iterations. We
demonstrate our approach with several case studies, including code adapted from
Redis, Azureus and FreeRTOS.

1 Introduction

Abstraction is often needed to automatically prove safety properties of programs. Find-
ing the right abstraction is difficult, however. Techniques based on CEGAR (counter-
example-guided abstraction refinement) [10, 19] have gained a lot of attention as they
can automatically synthesise an abstraction that is sufficient for proving a given prop-
erty. Particularly successful has been the application of CEGAR to predicate abstrac-
tion [14], enabling automated verification of a wide range of (primarily control-flow
driven) safety properties [1, 9, 18].

Meanwhile, separation logic has emerged as a useful domain for verifying shape-
based safety properties [2, 3, 8, 13, 25]. Its success stems from its ability to composi-
tionally represent heap operations. The domain of separation logic formulae is infinite,
so to ensure termination, program analyses abstract them by applying a function with
a finite codomain [12]. Although this approach has proved effective in practice, it does
not provide a means to recover from spurious errors caused by loss of precision during
abstraction.

This paper proposes a method for automated tuning of abstractions in separation
logic analyses. We focus on proving existential properties, where we need to track some
elements of a data structure more precisely than the others. Instead of a single abstrac-
tion, our method works with families of abstractions parameterised by multisets, and,

in a nutshell, tries to find the multiset parameter for which the analysis will converge.
Expanding the multiset refines the abstraction by making it more precise.

Fig. 1. Proposed abstraction refinement method.

Our method uses a forward analysis
that computes a fixpoint using the current
parameterised abstraction, and a back-
ward analysis that refines this abstrac-
tion by expanding the multiset parame-
ter (see Fig. 1). To identify the cause of
the error and propagate that information
backwards along the counter-examples,
we use abduction, a technique for calcu-
lating sufficient preconditions of program
commands [8]. We use the difference in symbolic states generated during forward and
the backward analysis to select new elements to add to the multiset.

1.1 Related Work

As in Berdine et al. [4] we wish to automate the process of ‘tweaking’ shape abstrac-
tions. [4] passes abstract counter-examples to an SMT solver, which produces concrete
counter-example traces. These traces determine so-called doomed states, which are the
same states singled out for refinement by our procedure. The advantage of using abduc-
tion is that it already forms the basis of an approach to compositional verification with
demonstrated efficiency [8].

Our approach operates lazily, but in contrast to lazy abstraction [18], we do not re-
compute the abstract post operator each time we refine the abstraction. The intermediate
formulae we compute during backward analysis can be seen as interpolants [21], but
rather than taking these directly for refining the abstraction, we use them to select new
parameters which have the effect of refining the abstraction. Such automatic discovery
of parameters for parameterised domains is similar to the approach of Naik et al. [22],
however, instead of analyzing concrete tests, we analyze abstract counter-examples.

The notion of abstraction function that we use is similar to widening [11]. How-
ever, refining the abstraction by replacing it with the least upper bound (as Gulavani
and Rajamani [16]) would not converge in our case due to the presence of recursive
data structures. Refinement with an interpolated widen [15], while similar to ours, is
also not applicable as we do not work in a complete lattice that is closed under Craig
interpolation. Shape analyses such as TVLA [23] have been adapted for abstraction re-
finement [5, 20], however, we believe these approaches could not automatically handle
verification of existential properties such as those in §6.

2 Intuitive Description of Our Approach

We now illustrate how over-abstraction can cause traditional separation-logic analyses
to fail, and how our approach recovers from such failures. Our running example is
shown in Figure 2. The program constructs a linked list of arbitrary length, pointed
to by variable r (we use * to denote non-deterministically-chosen values). It picks

2

r = nil;
while (*) {
r = new Node(r,*);

}
x = *;
r = new Node(r,x);
while (*) {
r = new Node(r,*);

}
t = r; res = 0;
while(res==0 && t!=nil){
d = t->data;
if (d==x) res = 1;
t = t->next;

}
assert(res==1);

start
r=nill1

l2

r=new Node(r,*) assume(true)

assume(true)

assume(true)

r=new Node(r,*)

assume(true)

l6

l5

l4

l3

r=new Node(r,x)

x=*

assume(res==0 && t!=nil)

d=t->data

assume(t==nil || res!=0)

end

assert(res==1)

t=r; res=0

assume(d!=x)

l11

l12

l10

l9

l8

l7

t=t->next

res=1

assume(d==x)

l13

Fig. 2. Left: running example. Right: associated control-flow graph. Nodes where abstraction
occurs are shaded.

an arbitrary value for x, and creates a node storing this value. It extends the list with
arbitrarily more nodes. Finally, it searches for the node storing x and faults if it is absent.

The problem. Suppose our abstract domain consists of the predicates emp, represent-
ing empty heap, node(x, y, d), representing a linked list node at address x with next
pointer y and data contents d, and list(x, y), representing a non-empty list segment of
unrestricted length starting at address x and ending with a pointer to y. Nodes and list
segments are related by the following recursive definition:

list(x, y) , node(x, y, d′) ∨ (node(x, n′, d′) ∗ list(n′, y))

(Primed variables—x′, y′, etc.—indicate logical variables that are existentially quanti-
fied). A traditional analysis, e.g. [12], starts with the pre-condition emp and propagates
symbolic states over the control-flow graph (right of Fig. 2). Consider the execution of
the program that adds a single node in the first while loop (node l1) then adds x to the
list, skips the second loop, and then searches for x (node l8). Following the two list
insertions (node l5) we obtain symbolic state

node(r, r′, x) ∗ node(r′, nil, d′)

As is typical, assume the analysis applies the following abstraction step:

node(x, y, d1) ∗ node(y, z, d2) list(x, z)

That is, it forgets list length and data values once there are two nodes in the list. The
analysis thus rewrites node(r, r′, x) ∗ node(r′, nil, d′) to list(r, nil). At the head of the

3

third while-loop (node l8) it unfolds list(r, nil) back to the single-node case, yielding
node(r, nil, x′). Since this state is too weak to show that x = x′, the path where res is
not set to 1 appears feasible. The analysis now faults since it cannot prove the validity
of assert(res==1).

Our solution. The analysis has failed spuriously because it has abstracted away the
existence of the node containing x. We cannot remove abstraction, as the analysis would
not converge without it. We also cannot pick a tailored abstraction a priori, because
the appropriate abstraction is sensitive to the target program and the required safety
property. Instead, we work with a parameterised family of abstractions. Starting with
the coarsest abstraction, we iteratively modify its parameters based on spurious failures,
automatically tailoring the abstraction to the property we want to prove.

To fix our example, we augment the domain with a family of predicates list(, , {d}),
representing a list where at least one node holds the value d (this multiset-parametric
domain is defined in §5.1). Upon failing to prove the final assert safe, our backwards
analysis looks for extensions of symbolic states that would satisfy assert(res==1),
and so avoid the failure. Technically, this is achieved by posing successive abduction
queries along the counter-example. If an extension is found, then the difference between
the formulae from forward and the backward analysis identifies the cause of the spuri-
ous failure. In our example, the analysis infers that the failure was due to the abstraction
of the node storing x. The analysis refines the abstraction to rewrite nodes containing x

to list(, , {x}), “remembering” the existance of x. This suffices to avoid the spurious
fault, and to prove the program correct.

3 Technical Background

Symbolic heaps. A symbolic heap ∆ is a formula of the form Π ∧ Σ where Π (the
pure part) and Σ (the spatial part) are defined by:

Π ::= true | false | e = e | e 6= e | p(ē) | Π ∧ Π
Σ ::= emp | s(ē) | Σ ∗ Σ

Here e ranges over (heap-independent) expressions (built over program and logical vari-
ables), p(ē) over pure predicates and s(ē) over spatial predicates. Logical variables
are (implicitly) existentially quantified; the set of all such variables in ∆ is denoted
by EVars(∆). The separating conjunction ∗ expresses disjointness of partial states—
Σ1∗Σ2 holds if the state can be split into two parts with disjoint domains, one satisfying
Σ1 and the other Σ2. A disjunctive symbolic heap is obtained by combining symbolic
heaps (both the pure and spatial part) with disjunction. We identify a disjunctive heap
with the set of its disjuncts, and also denote such heaps with∆. The set of all consistent
(resp. disjunctive) symbolic heaps is denoted by SH (resp. P(SH)).

Abstract domain. Our abstract domain is the join-semilattice (P(SH)>,`,t,>), where
P(SH)> , P(SH) ∪ {>}, the partial order is given by the entailment relation `, the
join t is disjunction, and the top element, >, represents error.

4

We assume a sound theorem prover that can deal with entailments between symbolic
heaps, frame inference, and abduction queries (square brackets denote the computed
portion of the entailment):

– ∆1 ` ∆2 ∗ [∆F] (frame inference): given ∆1 and ∆2, find the frame ∆F such that
∆1 ` ∆2 ∗ ∆F holds;

– ∆1 ∗ [∆A] ` ∆2 (abduction): given∆1 and∆2, find the ‘missing’ assumption∆A

such that ∆1 ∗ ∆A ` ∆2 holds.

Specifications. We assume that each atomic command c ∈ Cmd is associated with a
specification {P} c {Q}, consisting of a precondition P and a postconditionQ in SH (in
fact, our case studies use specifications expressed by using points-to and (dis)equalities
only). We define assume(e) , {true} {e} and assert(e) , {e} {e}. Specifications are
interpreted using standard partial correctness: {P} c {Q} holds iff when executing c
from a state satisfying P , c does not fault, and if it terminates then the resulting state
satisfies Q. As is standard in separation logic, we also assume specifications are tight:
c will not access any resources outside of the ones described in P .

Programs. We represent programs using a variant of intra-procedural control-flow
graphs [18] over the set of atomic commands Cmd. A CFG consists of a set of nodes
N containing distinguished starting and ending nodes start, end ∈ N, and functions,
succ : N → P(N) and cmd : N × N ⇀ Cmd, representing node successors and edge
labels. All nodes either have a single successor, or all outgoing edges are labelled with
command assume(e) for the condition e that must hold for that edge to be taken.

Forward transfer function. We define the abstract forward semantics of each atomic
command c by a function JcK : SH → P(SH)>. The function JcK, fusing together rear-
rangement (materialisation) and symbolic execution [23, 2, 12, 8], is defined using the
frame rule, which allows any triple {P} c {Q} to be extended by an arbitrary frame∆F

that is not modified by c:

JcK(∆) ,

{
> if @∆F . ∆ ` P ∗ ∆F

{Q ∗ ∆F | ∆ ` P ∗ ∆F } otherwise.

When there is no ∆F such that ∆ ` P ∗ ∆F , the current heap ∆ does not satisfy the
precondition P of the command, and so execution may result in an error. We assume
that the prover filters out inconsistent heaps. Lifting disjunctions to sets on the left-hand
side is justified by the disjunction rule of Hoare logic. We lift JcK to a forward transfer
function P(SH)> → P(SH)> by mapping > to > and a set of symbolic heaps to the
join of their JcK-images.

Backward transfer function. We use abduction to transfer symbolic heaps backwards:
given a specification {P} c {Q} and disjunctive symbolic heap ∆, if ∆A is such that
Q ∗ ∆A ` ∆ then {P ∗ ∆A} c {∆}, i.e., we can “push” ∆ backwards over c to obtain
P ∗ ∆A as a pre-state. This gives rise to a backward transfer function JcK← : P(SH)→
P(SH) defined by:

JcK←(∆) , choose({P ∗ ∆A | Q ∗ ∆A ` ∆})

5

We use a heuristic function choose to select a “good” solution, as generally there can be
many solutions to the abduction query (e.g. a trivial one, false). For some fragments best
solutions are possible: e.g. the disjunctive points-to fragment with (dis)equalities [8],
a variation of which we use in our backward analysis. Along assume-edges we have
Jassume(e)K←(∆) = wp(assume(e), ∆) = ¬e ∨ ∆.

3.1 Forward Analysis, Abstraction Function, and Parametricity

Forward analysis attempts to compute an inductive invariant N → P(SH)>. It gradu-
ally weakens the strongest property by propagating symbolic heaps along CFG edges
using the forward transfer, and joining the obtained JcK-images at each CFG node. Since
(1) our abstract domain is infinite (even though the number of program variables is
bounded, there can be unboundedly many existential variables), and (2) the transfer
functions are not necessarily monotone, forward propagation alone may not reach a
fixpoint in a finite number of steps, or may not even converge to a fixpoint.

Abstraction. To ensure termination, (1) propagated symbolic heaps are abstracted into
a finite set, and (2) the propagation process is made inflationary.4 Abstraction is realised
by a function abs : SH → CSH whose codomain is a finite subset CSH of SH. At each
step,5 abs replaces the propagated symbolic heap with a logically weaker one in CSH∪
{>}. We require abs to be inflationary, i.e., that it soundly over-approximates symbolic
heaps with respect to `. Making the propagation inflationary means that instead of com-
puting the (least) fixed-point of the functional Φ : (N→ P(SH)>)→ (N→ P(SH)>),
we compute the inflationary fixed-point of the functional X 7→ X ∪ Φ(X).

Definition 1. We call a pair (SH, abs) an analysis.

Definition 2 (analysis comparison). Let abs : SH → CSH and abs′ : SH → CSH′ be
abstraction functions. We say that abs′ refines abs, written abs � abs′, if CSH ⊆ CSH′

and for every ∆ ∈ SH, abs′(∆) ` abs(∆). We say that (SH, abs′) is more precise than
(SH, abs) if abs � abs′.

Multiset-parametric analyses. In §4 we work with a family of analyses whose abstrac-
tion functions are parameterised by a multiset (such analyses are parametric in the sense
of [22]). For any such family (SH, absS)S∈M, where M is some family of multisets
and absS : SH → CSHS , we require that if S ⊆ S′ then absS � absS′ . In §5 we
describe three analyses with this property.

4 Forward-Backward Abstraction Refinement Algorithm

We now define our analysis formally. This version of the analysis is intra-procedural,
but we believe it could be made inter-procedural without substantial difficulties (see
§7).

4 A function f : (A,v)→ (A,v) is inflationary if for every a, we have a v f(a).
5 In fact, it suffices to ensure that every cycle in the dependency graph contains at least one

abstraction step, allowing more efficient iteration strategies [7].

6

1 S := ∅; t0 := (start, emp); k := 0; ET = ∅; T = ({t0}, ET , t0);
2 while nodes atT (k) 6= ∅ do
3 foreach t = (n,∆) ∈ nodes atT (k) do
4 foreach n′ ∈ succ(n) do
5 D′ := Jcmd(n, n′)K(∆);
6 if D′ = > then
7 Add (t, (n′,>)) to ET ;
8 k, S := Refine((n′,>), S);
9 Break to the outermost while-loop;

10 else
11 foreach ∆′ ∈ D do
12 ∆′abs := absS(∆

′);
13 if ∆′abs 6v invT (n

′) then
14 Told := T ;
15 Add (t, (n′,∆′abs)) to ET ;
16 invT := invTold [n

′ 7→ invTold(n
′) t∆′abs];

17 k := k + 1;

Algorithm 1: Forward analysis with abstraction refinement.

Let (SH, absS)S∈M be a family of analyses parameterised by a multiset. Our method
for abstraction refinement starts with the analysis (SH, abs∅), and iteratively refines the
abstraction by adding terms to the multiset S. The goal is to eventually obtain S such
that using the analysis (SH, absS) we can compute a sufficient inductive invariant.

Forward analysis. Algorithm 1 shows forward analysis (§3.1) extended with abstraction
refinement. The algorithm computes a fixpoint by constructing an abstract reachability
tree (ART). An ART is a tree T = (T,E, t0) ∈ ART where T is the set of nodes, E the
set of edges and t0 the root node. We write ET to refer to the set of edges associated
with a particular ART T . Nodes in T are of the form (n,∆) ∈ N×SH and represent the
abstract states visited during the fixpoint computation. We use the following functions
to deal with the ART: parentT : T \ {t0} → T returning the unique parent of a node,
depthT : T → N0 returning the length of the path from t0 to t, and nodes atT : N0 →
P(T) returning the set of all nodes at the given depth. For T = (T,E, t0) and T ′ =
(T ′, E′, t′0), we write T ⊆ T ′ to indicate that T is a subtree of T ′, i.e., that T ⊆ T ′,
and E ⊆ E′, and t0 = t′0. We write cmd(n, n′) to represent the command labelling the
edge between nodes n and n′ and spec(n, n′) for the corresponding specification.

The algorithm iteratively propagates J·K-images of previously-computed abstract
states along CFG edges, applies abstraction if the result is consistent, and joins each
newly computed state with the previously-computed states at the same node. We store
the invariant computed at each step using a map inv : ART→ (N→ P(SH)>), reflect-
ing the fact that the invariant at a control point can be recovered from the node labels of
the ART. If we have nodes at(k) = ∅ for the current depth k, then we have successfully
computed an inductive invariant without reaching an error.

Suppose at some point the transfer function returns >, i.e., the forward analysis
fails to prove a property (e.g., a pure assertion or a memory safety pre-condition of

7

1 Refine(t> : T , S :M) : N0 ×M
2 begin
3 k := depth(t>)− 1;
4 tcurr := t>; tprev := parent(t>);
5 {P} { } := spec(tprev.n, tcurr.n);
6 Solve tprev.∆ ∗ [∆A] ` P ∗ true;
7 ∆′prev := tprev.∆ ∗ ∆A;
8 pathfwd := tprev.∆;
9 pathbwd := ∆′prev;

10 while k > 0 do
11 tcurr := tprev; tprev := parent(tcurr); ∆′curr := ∆′prev;
12 ∆′prev := Jcmd(tprev.n, tcurr.n)K←(∆′curr);
13 pathfwd := tcurr.∆ · pathfwd;
14 pathbwd := ∆′curr · pathbwd;
15 if tprev.∆ ` ∆′prev then
16 S := S ∪ SelectSymbols(pathfwd, pathbwd);
17 Delete tcurr-subtree of T ;
18 return k − 1, S;
19 k := k − 1;
20 throw “error”;

Algorithm 2: Backward analysis of counter-example by abduction.

t0 : (start, emp)
t1 : (l1, r = nil)
t2 : (l2, r = nil)
t3 : (l1, node(r, nil,))
t4 : (l3, node(r, nil,))
t5 : (l4, node(r, nil,))
t6 : (l5, list(r, nil))
t7 : (l7, list(r, nil))

t8 : (l8, list(r, nil) ∧ t = r ∧ res = 0)
t9 : (l9, list(r, nil) ∧ t = r ∧ res = 0)
t10 : (l10, node(r, nil, d

′) ∧ t = r ∧ res = 0 ∧ d = d′)
t11 : (l12, node(r, nil, d

′) ∧ t = r ∧ res = 0 ∧ d = d′ ∧ d 6= x)
t12 : (l8, node(r, nil, d

′) ∧ t = nil ∧ res = 0 ∧ d = d′ ∧ d 6= x)
t13 : (l13, node(r, nil, d

′) ∧ t = nil ∧ res = 0)
t14 : (end,>)

Fig. 3. Abstract counter-example for the running example (§2).

a heap-manipulating command). This can happen due to either a true violation of the
property, or a spurious error caused by losing too much information somewhere along
the analysis. The algorithm then invokes Algorithm 2, Refine, to check for feasibility
of the error and, if it is spurious, to refine the abstraction.

Backward analysis. Algorithm 2, Refine, operates by backward analysis of abstract
counter-examples. Rather than using weakest preconditions as in CEGAR, Refine uses
abduction to propagate formulae backwards along an abstract counter-example and
check its feasibility. Once a point in the path is found where forward analysis agrees
with the backward analysis, the mismatch between the symbolic heaps from forward
and backward analyses is used to update the multiset S that determines the abstraction.

Definition 3. An abstract counter-example is a sequence (n0, ∆0) . . . (nk, ∆k) with:

8

– n0 = start and for all 0 < i ≤ k, ni ∈ succ(ni−1);
– ∆0 = emp, for all 0 < i ≤ k, ∆i ∈ absS(Jcmd(ni−1, ni)K(∆i−1)) and ∆k = >.

Figure 3 shows the abstract counter-example for the error discussed in §2. This is the
sequence of symbolic heaps computed by the analysis on its way to the error. This
counter-example covers the case where the list contains just one node. The error results
from over-abstraction, which has erased the information that this node contains the
value 0 (this can be seen in the last non-error state, t13).

Refine begins by finding a resource or pure assumption sufficient to avoid the ter-
minal error in the counter-example. Let (n0, ∆0) . . . (nk,>) be an abstract counter-
example with cmd(nk−1, nk) = {Pk} ck {Qk}. Since JckK(∆k−1) = >, ∆k−1 misses
some assumption required to satisfy Pk. To find this, Refine solves the following ab-
duction query (line 6)—here ∆k−1 is a rearrangement of ∆k−1, for example to expose
particular memory cells:

∆k−1 ∗ [∆A] ` Pk ∗ true.

The resulting symbolic heap ∆A expresses resources or assumptions that, in combi-
nation with ∆k−1, suffice to guarantee successful execution of ck. If ∆A is false then
∆k−1 ∗ [∆A] is inconsistent; if this happens then the analysis will have to find a refine-
ment under which (nk−1, ∆k−1) can be proved to be unreachable.

Letting ∆′k−1 := ∆k−1 ∗ ∆A, Refine computes a sufficient resource for the pre-
ceding state (line 12):

∆′k−2 := Jcmd(nk−2, nk−1)K←(∆′k−1).

If ∆k−2 ` ∆′k−2 then in the step from ∆k−2 to ∆k−1 a loss of precision has hap-
pened, and we use the additional information in ∆′k−1 to refine the abstraction (line
15). Otherwise, we continue pushing backwards, and generate ∆′k−3, ∆′k−4, etc.

Eventually, Refine either halts with ∆i ` ∆′i for some i ≥ 0, or in the last step
obtains ∆0 6` ∆′0. In the former case, Refine invokes the procedure SelectSymbols,
passing it the forward and the backward sequence of symbolic heaps leading to the error
(line 16). The symbols it generates are added to the multiset S, refining the abstraction.
In the latter case, we did not find a point for refining the abstraction, so Refine reports
a (still possibly spurious) error (line 20). Note that in this case the computed heap ∆′0
is a sufficient pre-condition to avoid this particular abstract counter-example.

If Refine calls SelectSymbols to update the abstraction, it discards the current node
and all its descendants from the ART (line 17). The ART below the refinement point
will be recomputed in subsequent iterations using (possibly) stronger invariants.

Theorem 1 (Soundness). If the algorithm terminates without throwing an error, the
computed map invT is an inductive invariant not containing >.

Proof. The refinement of abstraction in Alg. 1 is achieved by augmenting the multiset
S with new elements selected by SelectSymbols. Since absS � absS′ for S ⊆ S′,
our analysis is immediately sound. Any remaining nodes in the ART not recomputed
straight away will either be recomputed at some later stage, or never be discarded. The
latter case implies that the analysis may find an invariant weaker than the strongest
invariant expressible under a more refined abstraction—but still sufficient for proving
the safety property. ut

9

Refinement heuristic. SelectSymbols is the heuristic function which refines the ab-
straction. It takes two sequences of symbolic heaps, pathfwd and pathbwd: the former
corresponds to the current counter-example, and the latter to a path sufficient to avoid
the error. By comparing the two, SelectSymbols tries to identify symbols which would
prevent the parametric abstraction function from causing the error.

As SelectSymbols is a heuristic function, it could be implemented many different
ways (in a sense, it is a simpler analogue of predicate discovery heuristics [1, 18]). Our
implementation works by examining the structure of formulae ∆ and ∆′ that are as-
sociated with the same ART node. The heuristic exhaustively searches for equalities
in ∆′ (transitively) containing program variables that can be used to strengthen ∆. It
preserves the common syntactic parts of ∆ and ∆′ by explicitly maintaining the substi-
tutions, and searches for equalities in the congruence class associated with each term.
Intuitively, because they are mentioned in the calculated sufficient resource, the identi-
fied equalities will likely be significant for program correctness. The variables are added
to the multiset to strengthen the abstraction. We found this heuristic to work well in our
case studies (see §6).

Running example revisited. In §2 we saw a spurious error caused by over-abstracting
values in the list. To fix this, we augmented the domain with predicates list(, , {d}),
representing a list that has at least one node with value d. We now show the refinement
step in this domain. The backward analysis begins by solving the abduction query

(node(r, nil, d′) ∧ x = d ∧ t = nil ∧ res = 0) ∗ [∆A] ` res = 1 ∗ []

This yields ∆A = false as the only solution. The analysis then generates the following
sequence of symbolic heaps (compare with the abstract counter example in Fig. 3; here
∆′i corresponds to node ti):

∆′13 = false

∆′12 = (t 6= nil ∧ res = 0 ∧ true)

∆′11 = (t′ 6= nil ∧ res = 0 ∧ node(t, t′, d′) ∗ true)

∆′10 = ((d = x ∧ true) ∨ (t′ 6= nil ∧ res = 0 ∧ node(t, t′, d′) ∗ true))

∆′9 = ((node(t, t′, x) ∗ true) ∨ (t′ 6= nil ∧ res = 0 ∧ node(t, t′, d′) ∗ true))

∆′8 = (((res 6= 0 ∨ t = nil) ∧ true) ∨ (node(t, t′, x) ∗ true) ∨
(t′ 6= nil ∧ res = 0 ∧ node(t, t′, d′) ∗ true))

∆′7 = ((r = nil ∧ true) ∨ (node(r, t′, x) ∗ true) ∨ (t′ 6= nil ∧ node(r, t′, d′) ∗ true))

∆′6 = ((r = nil ∧ true) ∨ (node(r, t′, x) ∗ true) ∨ (t′ 6= nil ∧ node(r, t′, d′) ∗ true))

∆′5 = (r = t′ ∧ true)

The algorithm stops at ∆′5, since ∆5 ` ∆′5, and calls SelectSymbols to augment the
abstraction. Our implementation looks for equalities in each ∆′ that can be used to
strengthen ∆. In this case, in ∆′10 the heuristic identifies d = x to strengthen the cor-
responding ∆10 = node(r, nil, d′) ∧ t = r ∧ res = 0 ∧ d = d′. Thus the heuristic
selects the variable x to augment the abstraction’s multiset.

In the unrefined analysis, any predicate list(, , S) will be abstracted to list(, , ∅)
(equivalent to list(,)). Adding x to the multiset means that predicates of the form
list(, , {x}) will be protected from abstraction.

10

We restart the forward analysis from t5 with the new abstraction. This time the error
is avoided. We obtain the following abstract states:

t′6 = (l5, list(r, nil, {x})) . . .
t′9 = (l9, list(r, nil, {x}) ∧ t = r ∧ res = 0)

Executing from l9 to l10 gives two possible post-states: node(r, r′, d′) ∗ list(r′, nil, {x})∧
t = r ∧ res = 0 ∧ d = d′ and node(r, r′, x) ∗ list(r′, nil, ∅) ∧ t = r ∧ res =
0 ∧ d = x. From the first state we reach a contained state at the head of the loop. From
the second, we get the following abstract states:

t′10 = (l10, node(r, r
′, x) ∗ list(r′, nil, ∅) ∧ t = r ∧ res = 0 ∧ d = x) . . .

t′15 = (end, node(r, t, x) ∗ list(t, nil, ∅) ∧ res = 1 ∧ d = x)

Ending with t′15, the analysis has explored all successors of t5 without reaching an error.
In fact, the new abstraction is sufficient to prove the absence of errors on all paths, and
complete the analysis. Other examples may need multiple refinement steps, of course.

5 Example Multiset-Parametric Analyses

We describe in detail linked lists with value refinement (used in our running example)
and sketch two other families—linked lists with address refinement, and sorted linked
lists with value refinement. Details for the latter two can be found in Appendix B. All
three families are experimentally evaluated in §6. Some abstractions proposed by other
authors could be straightforwardly formulated as multiset-parametric, e.g. [24].

5.1 Linked Lists with Value Refinement

This is the analysis family used in our running example (§2). List segments are instru-
mented with a multiset representing the lower bound on the frequency of each variable
or constant. The abstraction function is parameterised by a multiset controlling which
symbols are abstracted. By expanding the multiset, the preserved frequency bounds are
increased, and so the abstraction is refined.

The domain SHmls contains spatial predicates node(·, ·, {d}) and list(·, ·, S) for all
S and d ∈ S. Here x, y are locations, d is a data value, S is a multiset:

– node(x, y, {d}) holds if x points to a node whose next field contains y and data
field contains d, i.e., node(x, y, {d}) , x 7→ {next : y, data : d}.

– list(x, y, S) holds if x points to the first node of a non-empty list segment that ends
with y, and for each value d ∈ dom(S), there are at least S(d) nodes that store d.

The recursive definition of list in SHmls is shown in Fig. 4. We use these equivalences
as folding and unfolding rules when solving entailment queries in SHmls.

11

case S = ∅: list(e, f, ∅) , node(e, f,) ∨ (node(e, x′,) ∗ list(x′, f, ∅))
case S = {d}: list(e, f, {d}) , node(e, f, {d}) ∨ (node(e, x′, {d}) ∗ list(x′, f, ∅))

∨ (node(e, x′,) ∗ list(x′, f, {d}))
case |S| > 1, d ∈ S: list(e, f, {S}) , node(e, x′, {d}) ∗ list(x′, f, S \ {d})∨

node(e, x′,) ∗ list(x′, f, S)

Fig. 4. Recursive definition of the list predicate in domain SHmls.

∆ ∧ x′ = e mls
T ∆[e/x′]

∆ ∗ σ(x′, e,) mls
T ∆ ∗ true if x′ /∈ EVars(∆)

∆ ∗ σ1(x
′, y′,) ∗ σ2(y

′, x′,) mls
T ∆ ∗ true if x′, y′ /∈ EVars(∆)

∆ ∗ σ1(e1, x
′, S1) ∗ σ2(x

′, e2, S2) mls
T ∆ ∗ list(e1, nil, prT (S1 ∪ S2, Π))

if x′ /∈ EVars(∆, e1, e2) ∧∆ ` e2 = nil(
∆ ∗ σ1(e1, x

′, S1) ∗
σ2(x

′, e2, S2) ∗ σ3(e3, f, S3)

)
 mls

T

(
list(e1, e2, prT (S1 ∪ S2, Π))

∗∆ ∗ σ3(e3, f, S3)

)
if x′ /∈ EVars(∆, e1, e2, e3, f) ∧∆ ` e2 = e3

∆ ∗ list(e, f, S) mls
T list(e, f, prT (S,Π))

Fig. 5. Abstract reduction system mls
T defining the abstraction function absmls

T . (In the rules,
σ, σi range over {node, list}. The pure assumption Π is supplied by the analysis.)

Abstraction. Let T be a finite multiset of program variables and constants. In Fig. 5,
we define a parametric reduction system mls

T , which rewrites symbolic heaps from
SHmls to canonical heaps whose data and multiset values are congruent to elements of
T . Except for the final rule, the relation mls

T resembles the abstraction for plain linked
lists developed by Distefano et al. [12, table 2].

The final reduction rule replaces every predicate list(e, f, S) with the bounded pred-
icate list(e, f, prT (S,Π)). The operator prT extracts the maximal subset of S such that
no element appears more frequently than it does in T (modulo given pure assumptions
Π). Let ∼Π be the equivalence relation x ∼Π y , Π ` x = y. Fix a representative for
each equivalence class of∼Π , and for a multiset S, denote by S/Π the multiset of∼Π -
representatives where the multiplicity of a representative x is

∑
x∼Πy

S(y). Writing
x · n for a multiset element x occurring with multiplicity n, we define prT by

prT (S,Π) , {x·n | x·k′ ∈ S/Π ∧ ∃d′·m′ ∈ T/Π . Π ` x = d′ ∧ n = min(k′,m′)}.

It is easy to show that mls
T has no infinite reduction sequences. Thus, mls

T gives
rise to an abstraction function absmls

T which is obtained by exhaustively applying the
rules to a given symbolic heap until no more rules apply.

Lemma 1 (Finiteness). If T is finite and there are only finitely many program variables
then the domain CSHmls

T , {∆ | ∆ 6` false ∧ ∆ 6 mls
T } is finite.

Lemma 2 (Soundness). As ∆ mls
T ∆′ implies ∆ ` ∆′, absmls

T : SH → CSHmls
T is a

sound abstraction function.

Lemma 3 (Monotonicity). If T1 ⊆ T2 then absmls
T1
� absmls

T2
.

12

5.2 Linked Lists with Address Refinement int remove(Node x) {
// ... (border cases)
p = hd; c = p->next;
while (c!=nil) {
if (c==x) {
p->next = c->next;
return 1;

}
p = c; c = p->next;

}
return 0;

}

Rather than preserving certain values in the list, we
might need to preserve nodes at particular addresses.
For example, to remove a node from a linked list we
might use the procedure shown on the right. Given
pre-condition list(r, x) ∗ node(x, n′,) ∗ list(n′, nil)
the procedure will return 1. However, the standard
list abstraction will forget the existence of the node
pointed to by x, making this impossible to prove.

To preserve information of this kind, we combine
the domain of linked lists, SHrls, with a multiset re-
finement that preserves particular addresses. Because node addresses are unique, the
domain contains just list and node predicates, rather than predicates instrumented with
multisets. The reduction system rls

T protects addresses in the multiset T from abstrac-
tion. As before, refinement consists of adding new addresses to the multiset.

5.3 Sorted Linked Lists with Value Refinement

We can apply the idea of value refinement to different basic domains, allowing us to deal
with examples where different data-structure invariants are needed. In our third analysis
family, we refine on the existence of particular values in a sorted list interval, rather
than a simple segment. The domain SHsls contains the predicate list≤, parameterised
by an interval of the form [α, β〉, which stores the bounds of the values in the list, and
a multiset S, which bounds on the frequency of particular values in the interval. The
abstraction function sls

T works in a similar way to SHmls: the operator prT caps the
frequency set S, limiting the number of values that are preserved by abstraction.

6 Experimental Evaluation

To evaluate our abstraction refinement analysis, we implemented Algorithm 1 and ab-
stract domains SHmls, SHrls and SHsls in the separation logic tool coreStar [6]. Aside
from superficial tweaks, we used an identical algorithm and SelectSymbols heuristic
for all of our case studies. We ran the analysis against client-oriented specifications
[17] describing datastructures from Redis (a key-value store), Azureus (a BitTorrent
client) and FreeRTOS (real time operating system). Table 1 shows the obtained results.

Set, Multiset and Map. The first three segments in Table 1 correspond to a set of syn-
thetic benchmarks based on client-oriented specifications for Redis [17]. These speci-
fications check various aspects of functional correctness—for example, that following
deletion a key is no longer bound in the store. Furthermore, we check these specifi-
cations across dynamic updates which may modify the data structures involved—for
example, by removing duplicate bindings to optimize for space usage.

The Set and Multiset benchmarks apply operations add (add an element), del (delete
an element) and mem (test for membership) to a list-based set (multiset, respectively) in
the order indicated by the benchmark name. The symbols ∗, ∗¬del and ∗¬x respectively
denote applying all operations any number of times with any argument, all operations

13

No Benchmark Result Dom |T | #Refn |ART| #Quer
Set
1 add(x)–∗–mem(x) X SHmls 1 1 83 162
2 ∗–add(x)–∗¬del–mem(x) X SHmls 1 1 104 193
3 ∗¬del–mem(x)–∗¬x–mem(x) X SHmls 1 1 165 280
4 ∗add(x)–all equal to x ∞ SHmls

5 ∗add(x)–all sorted > SHmls

Multiset
6 add(x)–add(x)–del(x)–mem(x) X SHmls 2 1 67 91
7 ∗–add(x)–∗¬del–mem(x) X SHmls 1 1 112 205
8 ∗¬del–mem(x)–∗¬x–mem(x) X SHmls 1 1 171 312
9 ∗–add(x)–∗¬del–add(x)–∗¬del–del(x)–mem(x) X SHmls 2 2 219 458

Map
10 ∗–put(k, v)–∗¬k–get(k) X SHmls 1 1 118 215
11 ∗–rem(k)–bound(k) X SHmls 1 1 92 168
ByteBufferPool
12 Property 1 X SHrls 1 1 154 231
13 Property 2 X SHrls 2 (1) 1 189 270
14 Property 3 X SHrls 6 (2) 4 316 511
FreeRTOS list
15 Property 4 X SHmls 1 1 91 158
16 Property 5 X SHsls 6 5 425 971

Table 1. Experimental Results. The benchmarks that were successfully verified are marked with
X, those where the analysis threw an error with> and those where the analysis did not terminate
with∞. Dom is the domain used for the analysis, |T | is the size of the multiset T after the final
refinement (the number in parentheses denotes the size of the minimal sufficient T), #Refn is the
number of refinement steps, |ART| is the number of symbolic states in the final ART, and #Quer
is the total number of queries sent to the prover.

except del, and all operations but excluding x as an argument. For Map benchmarks
the operations put (insert a key-value pair), get (retrieve a value for the given key), rem
(remove a key with the associated value) and bound (check if the key is bound) are to
a list-based map. For benchmarks 1,2,6,7,9,10 the goal was to prove that the last oper-
ation returns true; for benchmark 11 that it returns false; and, for benchmarks 3 and 8
that the two mem operations return the same value. Benchmark 4 illustrates a universal
property that causes our analysis in SHmls to loop forever by adding x to T at each
refinement step. Benchmark 5 is a universal property for which our analysis in SHmls

fails to find an inductive invariant due to the ordering predicate (using SHsls on the same
benchmark loops forever). We discuss existential vs. universal properties in §7.

ByteBufferPool. Azureus uses a pool of ByteBuffer objects to store results of network
transfers. In early versions, free buffers in this pool were identified by setting the buffer
position to a sentinel value. The ByteBufferPool benchmarks check properties of this
pool. Property 1 checks that if the pool is full and a buffer is freed, that just-freed
buffer is returned the next time a buffer is requested. Property 2 checks that if the pool
has some number of free buffers, then no new buffers are allocated when a buffer is
requested. Property 3 checks that if the pool has at least two free buffers, then two
buffer requests can be serviced without allocating new buffers.

14

FreeRTOS list. FreeRTOS list, used by FreeRTOS scheduler for task management, is
a sorted cyclic list with a sentinel node. The value of the sentinel marks the end of the
list—for instance, on task insertion the list is traversed to find the right insertion point
and the guard for that iteration is the sentinel value. To check correctness of the shape
after insertion (Property 4) it suffices to remember that the sentinel value is in the list.
To check that tasks are also correctly sorted according to priorities (Property 5) we need
to keep track of list sortedness and all possible priorities as splitting points.

7 Analysis Properties, Limitations and Conclusions

We have presented a CEGAR-like abstraction refinement scheme for separation logic
analyses, aimed at proving existential properties of programs, in which we want to track
some elements of a data structure more precisely than the others.

Without further assumptions, Algorithm 1 might diverge, or report a spurious coun-
ter-example which is in fact not feasible. If the forward transfer function is exact (i.e.,
returns the strongest post-condition) and the backward transfer function is precise (i.e.,
for any c and ∆, JcK(JcK←(∆)) ` ∆) then the algorithm makes progress relative to the
refinement heuristic. Intuitively, if SelectSymbols always picks a symbol such that the
refined abstraction rules out the spurious counter-example then that counter-example
will never reappear in subsequent iterations. However, we are skeptical that our current
heuristic satisfies this condition. For a more formal discussion, see Appendix A.

We have presented an intra-procedural version of our analysis, but believe that it
could be made inter-procedural without substantial further research (although it would
make our algorithm much more complex). Abduction is already known to work well
in an inter-procedural setting [8]. We envisage augmenting the analysis from [8] with
abstraction refinement. Counter-example analysis could either reuse the generated pro-
cedure summaries or refine them by diving into the procedures using abduction.

Our backward analysis, Refine, is heavily dependent on the success of abduction. In
the case studies we considered, Refine uses abduction in what is effectively the points-
to fragment with (dis)equalities, for which abduction can obtain provably-optimal so-
lutions (making the backward transfer precise) and for which there are heuristics that
work well in practice [8]. In general (e.g., if we were to introduce procedures), we may
end up repeatedly refining the same spurious path, resulting in non-termination.

All the refinement domains considered in §5 can be seen as representing existential
properties, e.g. “the list segment contains at least certain values”. It would be straight-
forward to define domains for other existential properties, e.g. “the list contains a par-
ticular subsequence”. However, universal properties, such as “all nodes contain a par-
ticular value”, are hard to capture in our approach. This bias towards existential prop-
erties is a result of our analysis structure. When forward execution fails spuriously, we
look for portions of the symbolic state sufficient to avoid the fault, and seek to protect
them from abstraction. This is intrinsically an existential process.

The refinement process in our approach assumes a parameterised domain of sym-
bolic heaps which can be refined by augmenting the multiset of parameters. Compared
to predicate abstraction, where the abstract domain is constructed and refined automat-
ically, in our approach we first have to hand-craft a parameterised domain. In part this

15

reflects the intrinsic complexity of shape properties compared to properties verifiable
by standard predicate abstraction. Our work represents a step forward from current sep-
aration logic analyses, which typically fix the domain for the whole run of the analysis.

References

1. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN, 2001.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic. In
APLAS, 2005.

3. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code. In CAV,
2011.

4. J. Berdine, A. Cox, S. Ishtiaq, and C. M. Wintersteiger. Diagnosing abstraction failure for
separation logic-based analyses. In CAV, 2012.

5. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In CAV, 2006.
6. M. Botinčan, D. Distefano, M. Dodds, R. Grigore, D. Naudžiūnienė, and M. Parkinson.

coreStar: The Core of jStar. In Boogie, 2011.
7. F. Bourdoncle. Efficient chaotic iteration strategies with widening. In Formal Methods in

Programming and their Applications, volume 735 of LNCS, 1993.
8. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape analysis by

means of bi-abduction. J. ACM, 58(6), 2011.
9. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software

components in C. In ICSE, 2003.
10. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In CAV, 2000.
11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In POPL, 1977.
12. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.

In TACAS, 2006.
13. D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java. In OOPSLA,

2008.
14. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In CAV, 1997.
15. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically refining

abstract interpretations. In TACAS, 2008.
16. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for abstract interpre-

tation. In TACAS, 2006.
17. C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster. Specifying and verifying the

correctness of dynamic software updates. In VSTTE, 2012.
18. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, 2002.
19. R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-

theoretic approach. Princeton University Press, 1994.
20. A. Loginov, T. W. Reps, and S. Sagiv. Abstraction refinement via inductive learning. In CAV,

2005.
21. K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.
22. M. Naik, H. Yang, G. Castelnuovo, and M. Sagiv. Abstractions from tests. In POPL, 2012.
23. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. TPLS,

24(3), 2002.
24. V. Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI, 2009.
25. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn. Scal-

able shape analysis for systems code. In CAV, 2008.

16

A Relative Progress and Completeness

Without further assumptions, the abstraction refinement algorithm might diverge, or re-
port a spurious counter-example which is in fact not feasible. The following idealised
assumptions suffice to ensure progress and completeness (we are skeptical that condi-
tion (c) holds for our current realisation of the analysis—see below).

(a) The forward transfer function is exact (i.e., J·K-image is the strongest post-condition
in the given abstract domain).

(b) The backward transfer function is precise (so we are able to identify spurious
counter-examples). Formally, for any c and ∆, we have JcK(JcK←(∆)) ` ∆.

(c) When called with a (pathfwd, pathbwd)-pair of the counter-example and the path
sufficient to avoid the error, the procedure call SelectSymbols(pathfwd, pathbwd)
picks symbols A for augmenting S such that the spurious counter-example ending
with pathfwd is eliminated by the abstraction absS∪A.

Alg. 1 then makes progress by ensuring that a counter-example, once eliminated, re-
mains eliminated in all subsequent iterations.

Theorem 2 (Relative progress). Let γj be the counter-example processed in the j-th
refinement step. Then for all j ≥ 1, |γj | ≤ |γj+1|, where | · | denotes the length of the
counter-example. In addition, if γj is processed with value k in the while-loop on line 2
of Alg. 1 then the program being analysed has no counter-examples of length less than
k.

Proof. Let S(j) denote the multiset from the j-th iteration of Refine. Since absS(j) �
absS(j+1), no new counter-examples can appear in the part of the ART that is recom-
puted in the (j+1)-th step (invariants computed in CSHS(j+1) will be at least as strong
as those in CSHS(j)). Since (c) guarantees that the previous counter-example has been
eliminated, if a new counter-example is found then the corresponding value of k in the
while-loop will be either the same as in the j-th step or larger. ut
Theorem 3 (Relative completeness). If the safety property is implied by an induc-
tive invariant expressible in CSHS for some finite multiset S and assuming that those
elements would eventually be selected from counter-examples by SelectSymbols then
Alg. 1 terminates without throwing an error.

Proof. Since Alg. 1 proceeds in a breadth-first fashion and counter-examples to safety
properties are finite, all counter-examples leading to picking elements of S will eventu-
ally be processed, enabling Alg. 1 to compute an invariant in CSHS′ for some S′ ⊇ S.

ut
Assumptions (a) and (b) can be satisfied (although for implementation efficiency we
may choose not to). Assumption (c) is more problematic.

Forward transfer. Without exactness, a spurious counter-example may never be elimi-
nated, because our analysis refines only the abstraction function. Since separation logic
analyses effectively calculate strongest post-conditions,6 we in fact have exact forward
transfer, meaning spurious counter-examples can always be eliminated.

6 modulo deallocation—although even for that case the forward transfer is tight in actual imple-
mentations.

17

Backward transfer. In our analysis abduction is performed on finite unfoldings of predi-
cates, modulo an arbitrary frame, fixed along the counter-example. As a result, counter-
examples are always expressed as data-structures of a particular size (rather than e.g.
general lists which could be of any size). This means that counter-examples can be ex-
pressed in the points-to fragment of separation logic, in which optimal solutions are
possible [8]. Thus in principle we can satisfy (b) and make backward transfer precise.
However, such a complete abductive inference is of exponential complexity since it
has to consider all aliasing possibilities. In our implementation, we use a polynomial
heuristic algorithm (similar to [8]) which may miss some solutions, but in practice has
roughly the same cost as frame inference.

Selecting symbols. Due to its heuristic nature, it is unlikely that our implementation
of SelectSymbols satisfies assumption (c). Furthermore, we are unsure whether it is
generally possible to construct SelectSymbols that would satisfy (c) for an arbitrary
parametric domain. While at least in principle we could employ a trivial heuristic which
enumerates all multisets of symbols, that would be impractical. The problem of picking
symbols which are certain to eliminate a particular counter-example seems uncomfort-
ably close to selecting predicates for predicate abstraction sufficient to prove a given
property. Many effective heuristics used in this area are incomplete (in that they may
fail to find an adequate set of predicates when one exists), and there has been only a
limited progress in characterising complete methods.7 Unfortunately, all such complete
predicate refinement methods rely on interpolation, a luxury which we do not (yet) have
in separation logic. More work is needed to understand the intrinsic complexity of ways
for doing refinement in separation logic analyses such as the one proposed in this paper
in relation to the logical properties of separation logic domains.

B Details of Other Multiset-Parametric Domains

Here we give detailed definitions of the two analysis families that we sketched in §5.

B.1 Linked Lists with Address Refinement

This analysis allows refinement on protecting particular addresses, rather than values.
We work with the domain of linked lists, which we denote SHrls, built from plain spatial
predicates node and list.

Our abstraction works similarly to the abstraction for plain linked lists [12] except
that it can be refined to preserve nodes at particular addresses. Fig. 6 shows rewrite
rules realising the abstraction absrlsT . The rules are guarded by a finite set of terms T
representing locations—each rule is enabled only if the spatial object triggering the
rule is not among the locations in T .

Lemma 4. CSHrls
T , {∆ | ∆ 6` false ∧ ∆ 6 rls

T } is finite and absrlsT : SH→ CSHrls
T is a

sound abstraction.
7 See Ranjit Jhala, Kenneth L. McMillan. A Practical and Complete Approach to Predicate

Refinement. In TACAS, 2006, for an instance of such complete predicate refinement method
(for difference bound arithmetic over the rationals).

18

∆ ∗ σ1(e1, x
′) ∗ σ2(x

′, e2) rls
T ∆ ∗ list(e1, nil)

if x′ /∈ EVars(∆, e1, e2) ∧∆ ` e2 = nil ∧ ∀t ∈ T .∆ 0 e1 = t

∆ ∗ σ1(e1, x
′) ∗ σ2(x

′, e2) ∗ σ3(e3, f) rls
T ∆ ∗ list(e1, e2) ∗ σ3(e3, f)

if x′ /∈ EVars(∆, e1, e2, e3, f) ∧∆ ` e2 = e3 ∧ ∀t ∈ T .∆ 0 e1 = t

Fig. 6. Abstract reduction system rls
T defining the abstraction function absrlsT . First three rules

(not shown) are the same as in Fig. 5. In the shown rules, σ, σi range over {node, list} and the
data field is elided.

S = ∅:
list≤(e, f, [α, β〉, ∅) , α ≤ d′ < β ∧ (node(e, f, {d′})∨

node(e, x′, d′) ∗ list≤(x
′, f, [d′, β〉, ∅))

S = {d}:
list≤(e, f, [α, β〉, {d}) , node(e, f, {d})∨

d = α ∧ node(e, x′, {d}) ∗ list≤(x
′, f, [d, β〉, ∅)∨

d 6= α ∧ α ≤ d′ < β ∧ node(e, x′, d′) ∗ list≤(x
′, f, [d′, β〉, {d})

|S| > 1, d ∈ S:
list≤(e, f, [α, β〉, S) , d = α ∧ node(e, x′, {d}) ∗ list≤(x

′, f, [d, β〉, S \ {d})∨
d 6= α ∧ α ≤ d′ < β ∧ node(e, x′, d′) ∗ list≤(x

′, f, [d′, β〉, S)

Fig. 7. Recursive definition of the list≤ predicate in domain SHsls.

Lemma 5. If T1 ⊆ T2 then absrlsT1
� absrlsT2

.

B.2 Sorted Linked Lists with Value Refinement

Lastly, we present an analysis that works in the domain of sorted linked lists. Our ab-
straction can be refined to preserve particular values in the list, as with the analysis
described in §5.1. However, the domain consists of ordered lists segments.

Domain. The predicate list≤(x, y, [α, β〉, S) holds if x points to a sorted non-empty
list segment ending with y whose data values are all greater than or equal to α and less
than β, and for each d ∈ dom(S), there are at least S(d) nodes in the list with value d.
Parameters α, β and S satisfy the invariant I : ∀d ∈ dom(S) . α ≤ d < β. Sorted lists
can be split according to the following rule:

list≤(e, f, [α, β〉, S) = list≤(e, x′, [α, γ〉, S ∩ [α, γ〉) ∗ list≤(x′, f, [γ, β〉, S ∩ [γ, β〉).

Folding/unfolding rules for exposing/hiding are similar to the rules for list (Fig. 4), but
in addition keep track of the involved inequalities. New rules for list≤ are shown in
Fig. 7. Note that each rule maintains the invariant I .

Abstraction. In the abstraction, we proceed similarly as in Fig. 5 but also maintain the
invariant I . Fig. 8 shows rewrite rules corresponding to the fourth rule of Fig. 5 for
σ1 = σ2 = node and σ1 = σ2 = list≤. The rest of the cases for σi are analogous to
the fourth rule, and the fifth rule of Fig. 5. The resulting abstraction absslsT satisfies the
following lemmas:

19

∆ ∗ node(e1, x
′, {d1}) ∗ node(x′, e2, {d2}) sls

T

∆ ∗ list≤(e1, nil, [d1, d2 + 1〉, prT ({d1, d2}, Π))

if x′ /∈ EVars(∆, e1, e2) ∧∆ ` e2 = nil

∆ ∗ list≤(e1, x
′, [α1, β1〉, S1) ∗ list≤(x

′, e2, [α2, β2〉, S2) sls
T

∆ ∗ list≤(e1, nil, [α1, β2〉, prT (S1 ∪ S2, Π))

if x′ /∈ EVars(∆, e1, e2) ∧∆ ` e2 = nil ∧ β1 ≤ α2

Fig. 8. Selected rules of the abstract reduction system sls
T defining the abstraction function absslsT .

Lemma 6. For CSHrss
T , {∆ | ∆ 6` false ∧ ∆ 6 sls

T }, abs
sls
T : SH→ CSHrls

T is a sound
abstraction. If the domain of values is finite then CSHrss

T is also finite.

Lemma 7. If T1 ⊆ T2 then absslsT1
� absslsT2

.

For infinite value domains, the set CSHrss
T is infinite since we have infinite ascending

chains of intervals as parameters to list≤. We could recover convergence in such cases
by using widening on the interval domain [11].

20

