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Abstract
Concurrent data-structures, such as stacks, queues, and de-
ques, often implicitly enforce a total order over elements
in their underlying memory layout. However, much of this
order is unnecessary: linearizability only requires that ele-
ments are ordered if the insert methods ran in sequence.
We propose a new approach which uses timestamping to
avoid unnecessary ordering. Pairs of elements can be left
unordered (represented by unordered timestamps) if their
associated insert operations ran concurrently, and order im-
posed as necessary by the eventual remove operations.

We realise our approach in a new non-blocking data-
structure, the TS (timestamped) stack. In experiments on
x86, the TS stack outperforms and outscales all its competi-
tors – for example, it outperforms the elimination-backoff
stack by factor of two. In our approach, more concurrency
translates into less ordering, giving less-contended removal
and thus higher performance and scalability. Despite this,
the TS stack is linearizable with respect to stack semantics.

The weak internal ordering in the TS stack presents a
challenge when establishing linearizability: standard tech-
niques such as linearization points work well when there
exists a total internal order. We present a new stack theo-
rem, mechanised in Isabelle, which characterises the order-
ings sufficient to establish stack semantics. By applying our
stack theorem, we show that the TS stack is indeed correct.
Our theorem constitutes a new, generic proof technique for
concurrent stacks, and it paves the way for future weakly-
ordered data-structure designs.

1. Introduction
This paper presents a new approach to building ordered
concurrent data-structures, a realisation of this approach
in a high-performance stack, and a new proof technique
required to show that this algorithm is linearizable with
respect to sequential stack semantics.

Our general approach is aimed at pool-like data-structures,
e.g. stacks, queues and deques. The key idea is for insertion
to attach timestamps to elements, and for these timestamps
to determine the order in which elements should be removed.
This idea can be instantiated as a stack by removing the
element with the latest timestamp, or as a queue by remov-
ing the element with the earliest timestamp. Both kinds of
operation can be combined to give a deque. For most of this
paper we will focus on the TS (timestamped) stack, given
in high-level pseudocode in Figure 1 (the TS queue / deque
variants are discussed briefly in §8).

One might assume that generating a timestamp and
adding an element to the data-structure has to be done
together, atomically. This intuition is wrong: linearizabil-
ity allows concurrent operations to take effect in any or-

der within method boundaries – only sequential operations
have to keep their order [13]. Therefore we need only or-
der inserted elements if the methods inserting them execute
sequentially. We exploit this fact by splitting timestamp gen-
eration from element insertion, and by allowing unordered
timestamps. Two elements may be timestamped in a differ-
ent order than they were inserted, or they may be unordered,
but only when the surrounding methods overlap, meaning
the elements could legitimately be removed in either order.
The only constraint is that elements of sequentially executed
insert operations receive ordered timestamps.

By separating timestamp creation from adding the ele-
ment to the data-structure, our insert method avoids two ex-
pensive synchronisation patterns – atomic-write-after-read
(AWAR) and read-after-write (RAW). We take these pat-
terns from [2], and refer to them collectively as strong syn-
chronisation. Timestamping can be done by a stuttering
counter or a hardware instruction like the x86 RDTSCP in-
struction, neither of which require strong synchronization.
Timestamped elements can be stored in per-thread single-
producer multiple-consumer buffers, implemented as singly-
linked lists. Such buffers also do not require strong synchro-
nization in the insert operation. Thus stack insertion avoids
strong synchronization, radically reducing its cost.

The lack of synchronization in the insert operation comes
at the cost of contention in the remove operation. Indeed,
[2] proves that stacks, queues, and deques cannot be imple-
mented without some strong synchronisation. Perhaps sur-
prisingly, this problem can be mitigated by reducing the
ordering between timestamps: intuitively, less ordering re-
sults in more opportunities for parallel removal, and thus
less contention. To weaken the element order, we associate
elements with intervals represented by pairs of timestamps.
Interval timestamps allow our TS stack to achieve perfor-
mance and scalability better than state-of-the-art concur-
rent stacks. For example, we believe the elimination-backoff
stack is the current world leader; in our experiments on x86,
the TS stack outperforms it by a factor of two.

Establishing correctness for the TS stack presents a chal-
lenge for existing proof methods. The standard approach
would be to locate linearization points, syntactic points in
the code which fix the order that methods take effect. This
simply does not work for timestamped structures, because
the order of overlapping push operations is fixed by the or-
der of future pop operations. In the absence of pop oper-
ations, elements can remain entirely unordered. We solve
this with a new theorem (mechanised in the Isabelle proof
assistant) which builds on Henzinger et al.’s aspect oriented
technique [11]. Rather than a total order, we need only gen-
erate an order from push to pop operations, and vice versa,
which avoids certain violations. This partial order can be
generated from syntactic points in the TS stack code, allow-
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Listing 1: TS stack algorithm. Implementations for TS buffer
operations are given in Listing 2 on page 8.

1 TS_Stack {
2 TS_Buffer buffer ;
3
4 void push( Element element ) {
5 item = buffer .ins( element );
6 ts = buffer . newTimestamp ();
7 buffer . setTimestamp (item ,ts );
8 }
9

10 Element pop () {
11 ts = buffer . getStart ();
12 do {
13 item = buffer . tryRem (ts );
14 } w h i l e (! item. isValid ());
15 i f (item. isEmpty ())
16 r e t u r n EMPTY ;
17 e l s e
18 r e t u r n item. element ;
19 }
20 }

ing us to show that it is correct. By generalising away from
linearization points, our theorem paves the way for future
correct, weakly-ordered concurrent data-structures.

Contribution. To summarise, our contributions are:
• A new class of data-structure based on timestamping,

realised as a stack, queue, and deque.
• A new optimisation strategy, interval timestamping,

which exploits the weak ordering permitted by timestamp-
ed data-structures.

• A new proof technique for establishing the linearizability
of concurrent stacks, and a mechanisation of the core
theorem in Isabelle.

• A detailed application of this proof technique to show
that the TS stack is linearizable with respect to its
sequential specification.

• An experimental evaluation showing our TS stack out-
performs the best existing concurrent stack.

Artifacts. We have produced two research artifacts:
• The TS stack itself, implemented in C, along with queue

and deque variants, and benchmark code used to test it.
• The Isabelle mechanisation of our stack theorem.

Both artifacts are included with the supplementary material.

Paper structure. §2 describes the key ideas behind our
approach. §3 surveys the related work on concurrent data-
structures. In §4 we describe our aspect-oriented proof strat-
egy, while in §5 we use it to establish that the TS stack is cor-
rect. In §6 we give more details of our algorithm implemen-
tation. In §7 we discuss our experiments, both with different
implementation choices, and with respect to other concur-
rent data-structures. §8 discusses TS queue and deque vari-
ants. §9 concludes. Selected proofs are given in Appendix A.

Longer proofs and other auxiliary material are included
in supplementary appendices: Appendix B discusses the Is-
abelle proof of our core stack theorem. Appendix C discusses
why the core theorem requires an insert-remove order on
methods. Appendix D describes our single-producer buffer

algorithm. Appendix E gives further details about our TS
stack correctness proof. Appendix F gives a proof of correct-
ness for the TS buffer algorithm.

2. Key Ideas
Algorithm structure. Listing 1 shows the high-level
structure of our TS stack. To simplify the presentation,
we define the TS stack using a lower-level structure called
a timestamped buffer (TS buffer). Intuitively, a TS buffer is
a map from identifiers to values, optionally associated with
timestamps. It supports the following operations:

• ins – add an element to the buffer without attaching a
timestamp, and return a reference to the item.

• newTimestamp – generate a fresh timestamp used for
labelling an item in the buffer.

• setTimestamp – attach a timestamp to a given item.
• getStart – generate a timestamp for removing an item.
• tryRem – try to remove or eliminate a maximal item –

the timestamp argument is used to decide which.

Our TS buffer implementation is sketched below, and dis-
cussed in detail in §6.2.

With the TS buffer operations defined, the structure of
Listing 1 should be clear. To push an element, the algorithm
inserts an un-timestamped element into the buffer (line 5),
generates a fresh timestamp (line 6), and sets the new ele-
ment’s timestamp (line 7). To pop an element, the algorithm
repeatedly tries to remove a youngest element (line 13) until
it succeeds or discovers the buffer is empty. The start time
generated on line 11 is used to determine which elements
can be eliminated (see ‘optimisations’ below).

Algorithm correctness. To prove that a stack is lineariz-
able, we need to show that for any execution there exists
a total linearization order satisfying the stack specification.
Intuitively, the TS stack is linearizable because any two push
operations that run sequentially receive ordered timestamps,
and are therefore removed in order. Elements arising from
concurrent push operations can be ordered any way, so this
ensures that elements are removed in a linearizable order.
However, proving the existence of a linearization order di-
rectly is challenging, because the order between parallel push
operations can be fixed by the order on later pop operations,
while the order between parallel pop operations can likewise
be fixed by earlier pushes.

Instead, we present a new theorem for verifying stacks.
Rather than generate a total linearization order directly, this
theorem only requires an order covering all pairs of a push
and a pop – we call this order ir, for ‘insert-remove’. Thus, the
theorem relieves us of the need to resolve the problematic
order between parallel push or parallel pop operations.

The theorem also assumes two other orders on methods:
precedence, pr, which relates methods that run in sequence;
and val, which relates a push to the pop receiving the associ-
ated value. Both of these orders can easily be extracted from
executions of the algorithm. Informally, the stack theorem
says:

If for some trace T of the algorithm there exists
an ir order which, along with pr and val, satisfy the
stack conditions, then T is linearizable with respect to
sequential stack semantics.
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The stack conditions express particular features of stack
behaviour. For example, the following combination of orders
is forbidden.

push(a)

push(b)

pop()→a

pop()→b

pr

val

ir

val

pr

Avoiding this shape enforces LIFO ordering. If push(a) and
push(b) are sequentially ordered, and push(b) is related to
pop()�a in ir, then the two pops cannot also be sequentially
ordered – this would correspond to FIFO behaviour.

Unlike a total linearization order, the insert-remove order
ir can be constructed directly from a TS stack execution. We
use a modified version of the linearization point method:
rather than a single linearization point, we identify multiple
points, each of which generates an order over some of the
method calls. These sub-orders are:

• vis (for ‘visibility’) – the order from ins to getStart.
Informally, if a push(a) and pop are ordered by vis, the
value a inserted by push is necessarily visible to the pop.

• rr (for ‘remove-remove’) – the order between success-
ful tryRem operations. If two operations pop()�a and
pop()�b are ordered in rr, elements a and b are removed
in order from the underlying TS buffer.

The order ir is built by taking vis as a core, and using rr to
correct cases that contradict LIFO order.

Implementation approach. The TS buffer is the data-
structure that underlies the TS stack (see Section 6.2, List-
ing 2 for pseudocode). We implement the TS buffer as a
collection of single-producer multiple-consumer buffers (SP
buffers). Each thread is associated with a SP buffer into
which it inserts, and tryRem searches through all these
buffers to find a maximal element. Elements are removed
using an atomic compare-and-swap (i.e. an AWAR) to write
a ‘taken’ flag; if the CAS fails, the tryRem operation fails.
This contention means that our algorithm is lock-free but
not wait-free; a thread can be forced to wait indefinitely by
contending threads.

Accessing the heads of multiple per-thread buffers im-
poses a cost through cache contention. However, our exper-
iments show that this can be less expensive than contention
on a single location with an opportunistic compare-and-swap
approach. In our experiments, we mitigate contention and
thereby improve performance by introducing a small NOP
delay to the pop search loop. However, even without this
optimisation, the TS stack outperforms the EB stack by a
factor of two.

We have experimented with various implementations for
timestamping itself. Most straightforwardly, we can use a
strongly-synchronised fetch-and-increment counter. We can
avoid strong synchronisation by using a vector of thread-
local counters, meaning the counter may stutter (many
threads get the same timestamp). We can also use a hard-
ware timestamping operation – for example the RDTSCP in-
struction which is available on all modern x86 hardware.
In the past, such instructions have largely been used for
analysis and logging. Our benchmarks show that hardware
timestamping provides the best push performance. However,
the picture is more complicated in the presence of optimisa-
tion.

Optimisations. Timestamping enables several optimisa-
tions of the TS stack, most importantly elimination (a stan-
dard strategy in the literature), and interval timestamping
(contribution of this paper).

In a stack, a concurrent push and pop can always soundly
eliminate each other, irrespective of the state of the stack [9].
Therefore a thread can remove any concurrently-inserted
element, not just the stack top. Unlike [9], our mechanism for
detecting elimination exploits the existence of timestamps.
We read the current timestamp at the start of a pop; any
element with a later timestamp has been pushed during the
current pop, and can be eliminated.

Surprisingly, it is not optimal to insert elements as
quickly as possible. The reason is that removal is quicker
when there are many unordered maximal elements, reduc-
ing contention and avoiding failed CASes. To exploit this,
we define timestamps as intervals, represented by a pair of
start and end times. Overlapping interval timestamps are
considered unordered, and thus there can be many top el-
ements in the stack. To implement this, newTimestamp()
pauses for a predetermined interval after generating a start
timestamp, then generates an end timestamp.

Pausing allows us to trade off the performance of push
and pop: an increasing delay in insertion can reduce the
number of retries in pop (for evidence see §7.2). Though
pausing may make push slower than a single AWAR in-
struction, our experiments suggest what is expensive is not
individual instructions, but rather contention that causes
many instructions to be repeated. Our experiments show
that by weakening the order of stored elements, interval
timestamping can substantially increase overall throughput
and decrease the latency of pops.

Similarly, although interval timestamping increases the
non-determinism of removal (i.e. the variance in the or-
der in which pushed elements are popped), this need not
translate into greater overall non-determinism compared
to other high-performance stacks. A major source of non-
determinism in existing concurrent data-structures is in fact
contention [7]. While interval timestamping increases the po-
tential for non-determinism in one respect, it decreases it in
another.

Performance vs. Elimination-Backoff stack. To the
best of our knowledge the Elimination-Backoff (EB) stack [9]
is the fastest stack previously proposed. In our experiments
(§7.1) the TS stack configured with elimination and interval
timestamping outperforms the EB stack by a factor of two.
Several design decisions contribute to this success. The lack
of insert-contention and mitigation of contention in the
remove makes our stack fast even without elimination. Also,
timestamping allows us to integrate elimination into normal
stack code, rather than in a separate back-off code.

3. Related Work
Timestamping. Our timestamping approach is inspired
by Attiya et al.’s Laws of Order paper [2], which proves that
any linearizable stack, queue, or deque necessarily uses the
RAW or AWAR patterns in its remove operation. While
attempting to extend this result to insert operations, we
were surprised to discover a counter-example: the TS stack.
We believe the Basket Queue [14] was the first algorithm to
exploit the fact that enqueues need not take effect in order
of their atomic operations, although unlike the TS stack it
does not avoid strong synchronisation when inserting.
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Gorelik and Hendler use timestamping in their AFC
queue [6]. As in our stack, enqueued items are timestamped
and stored in single-producer buffers. Aside from the ob-
vious difference in kind, our TS stack differs in several re-
spects. The AFC dequeue uses flat-combining-style consoli-
dation – that is, a combiner thread merges timestamps into
a total order. As a result, the AFC queue is blocking. The
TS stack avoids enforcing an internal total order, and in-
stead allows non-blocking parallel removal. Removal in the
AFC queue depends on the expensive consolidation pro-
cess, and as a result their producer-consumer benchmark
shows remove performance significantly worse than other
flat-combining queues. Interval timestamping lets the TS
stack trade insertion and removal cost, avoiding this prob-
lem. Timestamps in the AFC queue are Lamport clocks [17],
not hardware-generated intervals. (We also experiment with
Lamport clocks – see TS-stutter in §6.1). Finally, AFC queue
elements are timestamped before being inserted – in the TS
stack, this is reversed. This seemingly trivial difference en-
ables timestamp-based elimination, which is important to
the TS stack’s performance.

The LCRQ queue [1] and the SP queue [10] both index
elements using an atomic counter. However, dequeue opera-
tions do not look for one of the youngest elements as in our
TS stack, but rather for the element with the enqueue index
that matches the dequeue index exactly. Both approaches
fall back to a slow path when the dequeue counter becomes
higher than the enqueue counter. In contrast to indices,
timestamps in the TS stack need not be unique or even or-
dered, and the performance of the TS stack does not depend
on a fast path and a slow path, but only on the number of
elements which share the same timestamp.

Our use of the x86 RDTSCP instruction to generate hard-
ware timestamps is inspired by work on testing FIFO
queues [7]. There the RDTSC instruction is used to determine
the order of operation invocations. (Note the distinction be-
tween the synchronised RDTSCP and unsynchronised RDTSC).
RDTSCP has since been used in the design of an STM by Ruan
et al. [23], who investigate the instruction’s multi-processor
synchronisation behaviour.

Correctness. Our stack theorem lets us prove that the
TS stack is linearizable with respect to sequential stack se-
mantics. This theorem builds on Henzinger et al. who have a
similar theorem for queues [11]. Their theorem is defined (al-
most) entirely in terms of the sequential order on methods –
what we call precedence, pr. That is, they need not generate
a linearization order. In contrast, our stack theorem requires
a partial order between inserts and removes. We suspect it
is impossible to define such a theorem for stacks without
an auxiliary insert-remove order. Intuitively, push-pop pairs
contend for the same ‘end’ of the abstract stack, and thus
are more closely dependent than enqueue-dequeue pairs (see
supplementary Appendix C for further discussion).

A stack must respect several non-LIFO correctness prop-
erties: elements should not be lost or duplicated, and pop
should correctly report when the stack is empty. Henzinger
et al. build these properties into their theorem, making it
more complex and arguably harder to use. Furthermore,
each dequeue that returns EMPTY requires a partition ‘be-
fore’ and ‘after’ the operation, effectively reintroducing a
partial linearization order. However, these correctness prop-
erties are orthogonal to LIFO ordering, and so we simply
require that the algorithm also respects set semantics.

Implementation features. Our TS stack implementation
reuses concepts from several previous data-structures.

Storing elements in multiple partial data-structures is
used in the distributed queue [8], where insert and remove
operations are distributed between partial queues using a
load balancer. One can view the SP buffers of the TS buffer
as partial queues and the TS buffer itself as the load bal-
ancer. The TS buffer emptiness check also originates from
the distributed queues. However, the TS stack leverages the
performance of distributed queues while preserving sequen-
tial stack semantics.

Elimination originates in the elimination-backoff stack [9].
However, in the TS stack, elimination works by comparing
timestamps rather than by accessing a collision array. As
a result, in the TS stack a pop which eliminates a concur-
rent push is faster than a normal uncontended pop. In the
elimination-backoff stack such an eliminating pop is slower,
as synchronization on the collision array requires at least
three successful CAS operations instead of just one.

4. Correctness Theorem for Stacks
Linearizability [13] is the standard correctness condition
for concurrent algorithms.1 It ensures that every behaviour
observed by an algorithm’s calling context could also have
been produced by a sequential (i.e. atomic) version of the
same algorithm. We call the ideal sequential version of the
algorithm the specification, e.g. below we define a sequential
stack specification.

Interactions between the algorithm and calling context in
a given execution are expressed as a history.
Definition 1. A history H is a tuple 〈A, pr, val〉 where A
is a finite set of operations (for example, push(5)), and
pr, val ⊆ A × A are the precedence and value relations,
respectively. A history is sequential if pr is total.

A history is extracted from a trace, T , the interleaved
sequence of events that took place during an execution of
the algorithm. To extract the history, we first generate the
set A of executed operations in the trace (as is standard
in linearizability, assume that all calls have corresponding
returns). A pair (x, y) is in pr if the return event of operation
x is ordered before the call event of y in T . A pair (x, y) is
in val if x is an insert, y a remove, and the value inserted by
x was removed by y. Note that we assume that values are
unique.

Linearizability requires that algorithms only interact
with their calling context through invocation and response
events. Therefore, a history captures all interactions be-
tween algorithm and context. We thus define a datastruc-
ture specification as just a set of histories (e.g. Stack is
the set of histories produced by an ideal sequential stack).
Linearizability is defined by relating implementation and
specification histories.
Definition 2. A history 〈A, pr, val〉 is linearizable with
respect to some specification S if there exists a linearization
order prT such that pr ⊆ prT , and 〈A, prT , val〉 ∈ S.

1 Our formulation of linearizability differs from the classic
one [13]. Rather than have a history record the total order on invo-
cations and responses, we convert this information into a partial
order pr. Likewise, linearizability between histories is defined by
inclusion on partial orders, rather than by reordering invocation
and response events. This approach, taken from [4], is convenient
for us because our stack theorem is defined by constraints on
partial orders. However, the two formulations are equivalent.
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An implementation C is linearizable with respect to S if
any history H arising from the algorithm is linearizable with
respect to S.

The problem with linearization points. Proving that
a concurrent algorithm is linearizable with respect to a
sequential specification amounts to showing that, for every
possible execution, there exists a total linearization order.
The standard strategy is to identify linearization points in
the algorithm’s syntax. Conceptually, when a linearization
point is reached, the method ‘takes effect’ and is appended
to the linearization order, prT . Thus the implementation and
specification histories are constructed in lock-step, allowing
the algorithm designer to show they correspond.

It has long been understood that linearization points
are a limited approach. Algorithms may have linearization
points inside other methods or fixed nondeterministically
by future behaviour. The TS stack is a particularly acute
example of this problem. Two push methods that run con-
currently may insert elements with unordered timestamps,
giving no information to choose a linearization order. How-
ever, if the items are later popped sequentially, an order is
imposed on the earlier pushes. Worse, ordering two pushes
can implicitly order other methods, leading to a cascade of
linearizations back in time.

Consider the following history. Horizontal lines represent
execution time, H

| represents invocations, and N| responses.

push(b) pop()→apush(a)

pop()→bpush(c) pop()→c

This history induces the precedence order pr represented by
solid lines in the following graph.

push(b) pop()→apush(a)

pop()→bpush(c) pop()→c
(1)

(2)
(3) (4)

pr pr

pr

pr

pr

pr

First consider the history immediately before the return of
pop()�c (i.e. without order (1) in the graph). As push(b)
and push(c) run concurrently, elements b and c may have
unordered timestamps. At this point, there are several con-
sistent ways that the history might linearize, even given ac-
cess to the TS stack’s internal state.

Now consider the history after pop()�b. Dotted edges
represent linearization orders forced by this operation. As c
is popped before b, LIFO order requires that push(b) has to
be linearized before push(c) – order (2). Transitivity then
implies that push(a) has to be ordered before push(c) –
order (3). Furthermore, ordering push(a) before push(c)
requires that pop()�c is ordered before pop()�a – order (4).
Thus a method’s linearization order may be fixed long af-
ter it returns, frustrating any attempt to choose syntactic
linearization points.

Specification-specific conditions (AKA aspects). For
a given sequential specification, it may not be necessary to
find the entire linearization order to show that an algorithm
is linearizable. A degenerate example is the specification
which contains all possible sequential histories; in this case,
we need not find a linearization order, because any order
consistent with pr will do. One alternative to linearization
points is thus to invent special-purpose conditions for par-
ticular sequential specifications.

Henzinger et al. [11] have just such a set of conditions
for queues. (They call this approach aspect-oriented). One
attractive property of their approach is that their queue
conditions are mostly expressed using precedence order, pr.
In other words, most features of queue behaviour can be
checked without locating linearization points at all.

Stack and set specifications. Our theorem makes use of
two sequential specifications: Stack, and a weaker speci-
fication Set that does not respect LIFO order. We define
the set of permitted histories by defining updates over ab-
stract states. Assume a set of values Val. Abstract states are
finite sequences Val∗. Let σ ∈ Val∗ be an arbitrary state.
In Stack, push and pop have the following sequential be-
haviour (‘·’ means sequence concatenation):

• push(v) – Update the abstract state to σ · [v].
• pop() – If σ = [], return EMPTY. Otherwise, σ must be

of the form σ′ · [v′]. Update the state to σ′, return v′.
In Set, push is the same, but pop behaves as follows:

• pop() – If σ = [], return EMPTY. Otherwise, σ must be
of the form σ′ · [v′] ·σ′′. Update the state to σ′ ·σ′′, return
v′.

The stack theorem. We have developed stack conditions
sufficient to ensure linearizability with respect to Stack.
Unlike [11], our conditions are not expressed using only pr
(indeed, we believe this would be impossible – see supple-
mentary Appendix C). Rather we require an auxiliary insert-
remove order ir which relates pushes to pops and vice versa,
but that does not order pairs of pushes or pairs of pops. In
other words, our theorem shows that for stacks it is sufficient
to identify just part of the linearization order.

We begin by defining the helper orders ins and rem over
push operations and pop operations, respectively. Informally,
ins and rem are fragments of the linearization order that
are imposed by the combination of ir and the precedence
order pr. In all the definitions in this section, assume that
H = 〈A, pr, val〉 is a history. Below we write +a,+b,+c etc.
for push operations, and −a,−b,−c etc. for pop operations.
Definition 3 (derived orders ins and rem). Assume an
insert-remove order ir.

• For all +a,+b ∈ A, +a ins−→ +b if either +a pr−→ +b or
there exists an operation −c ∈ A with +a pr−→ −c ir−→ +b.

• For all −a,−b ∈ A, −a rem−−→ −b if either −a pr−→ −b or
there exists an operation +c ∈ A with −a ir−→ +c ir−→ −b.
Here ins is weaker than rem – note the pr rather than ir

in the final clause. However, our stack theorem also holds if
the definitions are inverted, with rem weaker than ins. The
version above more convenient in verifying the TS stack.

The order ins expresses ordering between pushes imposed
either by precedence, or transitively by insert-remove. Like-
wise rem expresses ordering between pops. Using ins and
rem, we can define order-correctness, which expresses the
conditions necessary to achieve LIFO ordering in stack.
Definition 4 (alternating). We call a partial order r on A
alternating if every pair +a,−b ∈ A consisting of one push
and one non-empty pop is ordered, and no other pairs are
ordered.
Definition 5 (order-correct). We call H order-correct if
there exists an alternating order ir on A, and derived orders
ins and rem, such that:
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1. ir ∪ pr is cycle-free; and
2. Let +a,−a,+b ∈ A with +a val−→ −a and +a pr−→ −a.

If +a ins−→ +b ir−→ −a, then there exists −b ∈ A with
+b val−→ −b and −a 6rem−−→ −b;
Condition (2) above is at the heart of our proof approach.

The key ordering it forbids is as follows:
+a

+b

-a

-b

ins

val

ir

val

rem

As ins, rem and ir are all fragments of the eventual lineariza-
tion order, this shape corresponds to a non-LIFO ordering
that would violate the stack specification.

Order-correctness only imposes LIFO ordering; it does
not guarantee non-LIFO correctness properties. For a stack
these are (1) elements should not be lost; (2) elements should
not be duplicated; (3) popped elements should come from
a corresponding push; and (4) pop should report EMPTY
correctly. The last is subtle, as it is a global rather than
pairwise property: pop should return EMPTY only at a point
in the linearization order where the abstract stack is empty.
Fortunately, these properties are also orthogonal to LIFO
ordering: we just require that the algorithm is linearizable
with respect to Set (simple to prove for the TS stack).
Theorem 1 (stack correctness). Let C be a concurrent al-
gorithm. If every history arising from C is order-correct, and
C is linearizable with respect to Set, then C is linearizable
with respect to Stack.

Proof. Here we only sketch the structure. For full details see
supplementary Appendix B and our Isabelle mechanisation,
provided in supplementary file stackthm.tgz.

The proof has five stages. (1) Order all pop operations
which do not return empty and which are ordered with their
matching push operation in the precedence order. (2) Adjust
the ir order to deal with the definition of ins discussed
above. Again we ignore all push-pop pairs with overlapping
execution times. (3) Order all push operations which remain
unordered after the first two stages and show that the
resulting order is within Stack. (4) Show that push-pop
pairs with overlapping execution times can always be added
to a correct linearization order without violating Stack.
(5) Show that also pop operations which return EMPTY can
always be added to a correct linearization order as long as
they are correct with respect to Set.

Our stack theorem is generic, not tied to the TS stack. It
characterises the internal ordering sufficient for an algorithm
to achieve stack semantics. Intuitively, our theorem seems
close to the lower bound for stack ordering: that is, we would
expect any concurrent stack to enforce orders as strong as
the ones in our theorem. (See supplementary Appendix C
for evidence of this). Thus, Theorem 1 points towards fun-
damental constraints on the structure of concurrent stacks.

For the TS stack, the advantage of Theorem 1 is that
problematic orders need not be resolved. In the example
discussed above, push(a) and push(c) can be left unordered
in ir, removing the need to decide their eventual linearization
order; likewise pop(a) and pop(c). As we show in the next
section, the ir order can be extracted from the TS stack
using an adapted version of the linearization point method.

5. TS Stack Correctness
TS buffer specification. The TS buffer is the underly-
ing data-structure we use to implement our TS stack. Infor-
mally, a TS buffer is a specialised index which associates a
unique identifier with each stored value and timestamp.

The TS buffer is linearizable with respect to the sequen-
tial specification TSbuf (proved in §6.2). As with Stack
and Set, we define TSbuf by tracking updates to abstract
states. Formally, we assume a set of buffer identifiers, ID,
representing individual buffer elements; and a set of time-
stamps, TS, with partial order <TS and top element >.
Many elements in the buffer can be associated with the same
timestamp.

A TSbuf abstract state is a tuple (B,S). B ∈ Buf
is a partial map from identifiers to value-timestamp tu-
ples, representing the current values stored in the buffer.
S ∈ Snapshots is a partial map from timestamps to Buf, rep-
resenting snapshots of the buffer at particular timestamps.

Buf : ID ⇀ (Val× TS) Snapshots : TS ⇀ Buf

We implicitly assume that all timestamps in the buffer were
previously generated by newTimestamp. This lets us simplify
our abstract specification by restricting the set of use-cases.

Snapshots are needed to support globally-consistent re-
moval. To remove from the buffer, pop first calls getStart
to generate a timestamp t – abstractly, [t 7→ B] is added
to the library of snapshots. When pop calls tryRem(t), ele-
ments that were present when t was generated may be re-
moved normally, while elements added or timestamped more
recently than t may be eliminated out of order. The stored
snapshot S(t) determines which element should be removed
or eliminated.

The TS buffer functions have the following specifications,
assuming (B,S) is the abstract state before the operation:

• newTimestamp() – pick a timestamp t 6= > such that for
all t′ 6= > already in B, t′ <TS t. Return t.
(Note that this means many elements can be issued the
same timestamp if the thread is preempted before writing
it into the buffer.)

• ins(v) – Pick an ID i /∈ dom(B). Update the state to
(B[i 7→ (v,>)], S) and return i.

• setTimestamp(i,t) – assume that B(i) = (v,>) and t
was generated by newTimestamp(). Update the abstract
state to (B[i 7→ (v, t)], S).

• getStart() – pick a timestamp t 6= > such that t /∈
dom(S) or t ∈ dom(S) and S(t) = B. If t /∈ dom(S),
update the state to (B,S[t 7→ B]). Return t.

• tryRem(t) – Assume t ∈ dom(S). There are four possible
behaviours:
1. failure. Nondeterministically fail and return INVALID.

This corresponds to a failed tryRemSP caused by an-
other thread pre-empting the removal.

2. emptiness check. If the map is empty (i.e. dom(B) =
∅) return EMPTY.

3. normal removal. Pick an ID i with i ∈ dom(S(t)) ∩
dom(B) and B(i) 7→ (vi, ti) such that ti is maximal
with respect to other timestamps in B, i.e.

@i′, t′. i′ ∈ (dom(S(t)) ∩ dom(B)) ∧B(i′) = ( , t′)
∧ ti <TS t

′
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Update the abstract state to (B[i 7→ ⊥], S) and return
vi. Note that there may be many maximal elements
that could be returned.

4. elimination. Pick an ID i such that i ∈ dom(B),
i /∈ dom(S(t)) and B(i) 7→ (v, ), or i ∈ dom(S(t))
and S(t)(i) 7→ (v,>). Update the abstract state to
(B[i 7→ ⊥], S) and return v.
This corresponds to the case where v was inserted
or timestamped after pop called getStart, and v can
therefore be removed using elimination.

TS stack correctness proof. We now prove that the TS
stack is correct. We first generate two orders vis (‘visibility’)
and rr (‘remove-remove’) from syntactic points inside the TS
stack implementation. This is analogous to the linearization
point method, except that we generate two, possibly con-
flicting orders. The points we choose are TS buffer opera-
tions – as the TS buffer is linearizable, we can treat these
operations as atomic.

• vis – generated from the final ins() in a push to the final
getStart() in a non-empty pop. This order is similar to
ir, but may contradict order-correctness.

• rr – generated between final tryRem() operations in non-
empty pop operations.

As with ins / rem in the stack theorem, it is useful to define a
helper order ts (‘timestamp’) on push operations. This order
is imposed by precedence and insert-remove transitivity.
Informally, if two push operations are ordered in ts their
elements are ordered in <TS.

Definition 6 (derived order ts). Assume a history H =
〈A, pr, val〉 and order vis on A. Two operations +a,+b ∈ A
are related +a ts−→ +b if: +a pr−→ +b; or +a pr−→ −c vis−→ +b
for some −c ∈ A; or +a pr−→ +d vis−→ −c vis−→ −b for some
−c,+d ∈ A.

The following lemma connects vis, rr and ts to the insert-
remove order ir used in our stack theorem.

Lemma 2. Let H = 〈A, pr, val〉 be a history. Assume vis, an
alternating order on A, and rr, a total order on non-empty
pop operations in A. Assume the derived order ts. If:

1. pr ∪ vis and pr ∪ rr are cycle-free; and
2. for all +a,−a,+b ∈ A such that +a val−→ −a, +a pr−→ −a,

and +a ts−→ +b vis−→ −a, there exists −b ∈ A such that
+b val−→ −b and −b rr−→ −a;

then H is order-correct according to Definition 5.

Proof. Follows from the insight that either vis is a witness
that H is order-correct, or vis can be adjusted locally such
that it becomes a witness. Details given in Appendix A.

Lemma 3. TS stack is linearizable with respect to Set.

Proof. Straightforward from the fact that the TS buffer is
linearizable with respect to TSbuf. We take the lineariza-
tion point for push as the call to ins and the linearization
point for pop as the call to tryRem. Correctness follows from
the specification of TSbuf.

Theorem 4. TS stack is linearizable with respect to Stack.

Proof. Lemma 3 deals with the first clause of the stack the-
orem (Theorem 1). The other clause requires the existence
of an ir order that satisfies order-correctness. It suffices to
show that vis, rr, and ts satisfy the conditions of Lemma 2.
The first requirement, that pr∪ vis and pr∪ rr are cycle-free,
follows from the fact that the TS buffer is linearizable with
respect to TSbuf. The second requirement for the lemma
follows from the fact that tryRem removes elements in an or-
der that respects<TS, and the fact that ordering in ts implies
ordering in <TS. More details are given in Appendix A.

Theorem 5. The TS stack is lock-free.

Proof. Straightforward from the fact that the TS buffer
is lock-free. This follows from the structure of tryRem: an
attempt to remove an element can only fail when another
thread pre-empts it.

6. Implementation Details
6.1 Timestamping Algorithms
We have experimented with several different timestamping
strategies.

TS-atomic: This algorithm takes a timestamp from a
global counter using an atomic fetch-and-increment instruc-
tion. Such instructions are available on most modern pro-
cessors – for example the LOCK XADD instruction on x86.

TS-hardware: This algorithm uses the x86 RDTSCP in-
struction [16] to read the current value of the TSC regis-
ter. The TSC register counts the number of processor cycles
since the last processor reset.

An obvious concern is that if TSC is not synchronised
across cores, relaxed-memory effects may lead to stack-order
violations. Aside from RDTSCP, we use C11 sequentially-
consistent atomics throughout, forbidding all other relaxed
behaviours. Ruan et al. [23] have tested RDTSCP on various
x86 systems as part of their transactional memory system.
Our understanding of [23] and the Intel x86 architecture
guide [16] is that RDTSCP provides sufficient synchronisation
to ensure correctness on multi-core and multi-socket ma-
chines. Furthermore, we have observed no violations of stack
semantics in experiments across different machines.

However, it has become clear in recent years that the
memory-order guarantees offered by multi-processors are
often under-specified and inaccurately documented – see e.g.
Sewell et. al.’s work on a formalized x86 model [21] (which
does not cover RDTSCP). One message of the TS stack is
that cheap timestamp generation can form the basis of high-
performance concurrent datastructures. We hope that our
work will motivate further research into TSC, RDTSCP, and
hardware timestamp generation more generally.

TS-stutter: This algorithm uses thread-local counters
which are synchronized by Lamport’s algorithm [17]. To
generate a new timestamp a thread first reads the values of
all thread-local counters. It then takes the maximum value,
increments it by by one, stores it in its thread-local counter,
and returns the stored value as the new timestamp. Note
that the TS-stutter algorithm does not require strong syn-
chronization. TS-stutter timestamping may return the same
timestamp multiple times, but it never returns a timestamp
that already exists in the buffer.
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Listing 2: TS buffer implementation. The SP buffer imple-
mentation is described in supplementary Appendix D.

1 TS_Buffer {
2 ListOfSPBuffers spBuffers ;
3
4 TimestampedItem ins( Element element ) {
5 TimestampedItem item = createItem ( element );
6 SPBuffer buffer = threadSPBuffer ();
7 buffer . insSP (item );
8 r e t u r n item;
9 }

10
11 i n t getStart () {
12 r e t u r n getMaxTimestamp ();
13 }
14
15 void setTimestamp ( TimestampedItem item , t) {
16 item. timestamp = t;
17 }
18
19 TimestampedItem tryRem ( startTime ) {
20 TimestampedItem youngest ;
21 SPBuffer buf;
22 forall ( spBuffer in spBuffers ) {
23 TimestampedItem item = spBuffer . getSP ();
24 // Eliminate item if possible .
25 i f (item. timestamp > startTime ) {
26 i f ( spBuffer . tryRemSP (item ))
27 r e t u r n item;
28 }
29 i f (item. timestamp > youngest . timestamp ) {
30 youngest = item;
31 buf = spBuffer ;
32 }
33 }
34 i f ( empty ( spBuffers )) // Emptiness check .
35 r e t u r n emptyItem ;
36 i f (buf. tryRemSP ( youngest )) {
37 r e t u r n youngest ;
38 }
39 r e t u r n invalidItem ;
40 }
41 }

TS-interval: This algorithm does not return one timestamp
value, but rather an interval consisting of a pair of time-
stamps generated by one of the algorithms above. Let [a, b]
and [c, d] be two such interval timestamps. They are ordered
[a, b] <TS [c, d] if and only if b < c. That is, if the two inter-
vals overlap, the timestamps are unordered. The TS-interval
algorithm is correct because the maximum of any interval
timestamp stored in the buffer is less than the lower limit
generated by calls to TS-interval.

In our experiments we use the TS-hardware algorithm
(i.e. the x86 RDTSCP instruction) to generate the start and
end of the interval, because it is faster than TS-atomic and
TS-stutter. Adding a delay between the generation of the
two timestamps increases the size of the interval, allowing
more timestamps to overlap and thereby reducing contention
during element removal. The effect of adding a delay on
overall performance is analyzed in Section 7.2.

6.2 The TS Buffer
SP buffers. The TS buffer is the data-structure underly-
ing the TS stack. We implement the TS buffer using a list of
SP (single-producer) buffers. Each thread inserts elements

into its own SP buffer but may remove elements from any
thread’s SP buffer. SP buffers support the following opera-
tions:

• insSP – insert an element into the buffer.
• getSP – return the identifier of the maximal element

according to <TS.
• tryRemSP – try to remove an identified element.

Our SP buffer implementation is a singly-linked list design
(see discussion in supplementary Appendix D). Only a single
thread inserts elements, so no strong synchronization is
needed in insSP. Removal is a two-stage process: in a first
stage the thread marks a taken flag to indicate the node
has been removed. In a second stage marked nodes are
unlinked. Unlinking can be done either immediately or by
later operations.

To avoid polluting our benchmarks with memory man-
agement effects, unlinked nodes are not reclaimed. In a real-
world implementation, it would be straightforward to use
garbage collection or hazard pointers [18] for reclamation.

TS buffer operations. Listing 2 shows the pseudocode of
our TS buffer implementation. newTimestamp is not shown
because it is already described in Section 6.1.

All the SP buffers are linked from a list of spBuffers.
Additionally each thread has a thread-local pointer to its
SP buffer. Our implementation supports thread registration
and removal by adding and removing buffers from the list.

The ins operation first retrieves the SP buffer of the ex-
ecuting thread and then inserts the element using its insSP
operation. The setTimestamp operation simply assigns the
timestamp to the timestamp field of the item. The getStart
operation returns a timestamp which is at least as late as
the latest generated timestamp.

Starting at a random TS buffer, the tryRem operation
searches all SP buffers for youngest elements (lines 22–
33). Randomization helps avoid collisions between con-
current tryRem operations. It then tries to remove one of
the youngest elements from the identified SP buffer using
tryRemSP. The startTime given as a parameter is used to
determine if elimination is possible (line 24).

To simplify the presentation, we have omitted the empti-
ness check. Our implementation uses the approach from [8]:
each thread has an array the size of the number of SP buffers.
Whenever a thread encounters an empty buffer, it stores the
top pointer of the buffer in this array. If in two subsequent
executions of tryRem no SP buffer returns an element, and
the top pointers of all SP buffers have not changed, then
tryRem returns EMPTY. Note that this requires an ABA-
counter to avoid the ABA-problem. See [8] for a proof of
correctness.

Correctness argument. The concrete state of the TS
buffer is a partial mapping from a SP buffer ID and buffer
identifier (i.e. the memory address of the node which stores
an element in an SP buffer) to a value-timestamp tuple:

LBuf : (Thr × ID) ⇀ (Val× TS)

For the abstract state of the TS buffer snapshots are also
needed. We can easily reconstruct them by examining the
preceding trace. Snapshots are generated by the state of the
buffer at the point getMaxTimestamp() is called in getStart.
Thread identifiers are erased when mapping to the abstract
state.
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Theorem 6. The TS buffer implementation is linearizable
with respect to the specification TSbuf given in §5.

Proof. Most TS buffer methods consist of a single atomic
SP buffer operation, which is its linearization point. The
exception is tryRem, where the linearization point is the call
to tryRemSP. The operation tryRem always removes a valid
element because any element in the snapshot is guaranteed
to be contained in one of the SP buffers before tryRem starts
its search for the youngest element. More details are given
in the supplementary Appendix F.

7. Performance Analysis
Our experiments compare the performance and scalability of
the TS stack with two high-performance concurrent stacks:
the Treiber stack [22] because it is the de-facto standard
lock-free stack implementation; and the elimination-backoff
(EB) stack [9] because it is the fastest concurrent stack we
are aware of.2

We ran our experiments on two x86 machines:
• an Intel-based server with four 10-core 2GHz Intel Xeon

processors (40 cores, 2 hyperthreads per core), 24MB
shared L3-cache, and 128GB of UMA memory running
Linux 3.8.0-36; and

• an AMD-based server with four 16-core 2.3GHz AMD
Opteron processors (64 cores), 16MB shared L3-cache,
and 512GB of cc-NUMA memory running Linux 3.5.0-
49.
Measurements were done in the Scal Benchmarking

Framework [5]. To avoid measurement artifacts the frame-
work uses a custom memory allocator which performs cyclic
allocation [20] in preallocated thread-local buffers for ob-
jects smaller than 4096 bytes. Larger objects are allocated
with the standard allocator of glibc. All memory is allocated
cache-aligned when it is beneficial to avoid cache artifacts.
The framework is written in C/C++ and compiled with
gcc 4.8.1 and -O3 optimizations.

Scal provides implementations of the Treiber stack and
of the EB stack. Unlike the description of the EB stack
in [9] we access the elimination array before the stack –
this improves scalability in our experiments. We configured
the EB stack such that the performance is optimal in our
benchmarks when exercised with 80 threads on the 40-
core machine, or with 64 threads on the 64-core machine.
These configurations may be suboptimal for lower numbers
of threads. Similarly, the TS stack configurations we discuss
later are selected to be optimal for 80 and 64 threads on the
40-core and 64-core machine, respectively. On the 40-core
machine the elimination array is of size 16 with a delay of
18µs in the high-contention benchmark, and of size 12 with
a delay of 18µs in the low contention benchmark. On the 64-
core machine the elimination array is of size 32 with a delay
of 21µs in the high-contention benchmark, and of size 16
with a delay of 18µs in the low contention benchmark.

On the 64-core machine the Treiber stack benefits from
a backoff strategy which delays the retry of a failed CAS. On

2 Of course, other high-performance stacks exist. We decided
against benchmarking the DECS stack [3] because (1) no imple-
mentation is available for our platform and (2) according to their
experiments, in peak performance it is no better than a Flat Com-
bining stack. We decided against benchmarking the Flat Combin-
ing stack because the EB stack outperforms it when configured
to access the backoff array before the stack itself.

this machine, we configured the Treiber stack with a con-
stant delay which is optimal for the benchmark when exer-
cised with 64 threads. On the 40-core machine performance
decreases when a backoff delay is added, so we disable it.

We compare the data-structures in producer-consumer
microbenchmarks where threads are split between dedicated
producers which insert 1,000,000 elements into the data-
structure, and dedicated consumers which remove 1,000,000
elements from the data-structure. We measure performance
as total execution time of the benchmark. Figures show the
total execution time in successful operations per millisecond
to make scalability more visible. All numbers are averaged
over 5 executions. To avoid measuring empty removal, op-
erations that do not return an element are not counted.

The contention on the data-structure is controlled by a
computational load which is calculated between two opera-
tions of a thread. In the high-contention scenario the com-
putational load is a π-calculation in 250 iterations, in the
low-contention scenario π is calculated in 2000 iterations.
On average a computational load of 1000 iterations corre-
sponds to a delay of 2.3µs on the 40-core machine.

7.1 Performance and Scalability Results
Figures 1a and 1b show performance and scalability in a
producer-consumer benchmark where half of the threads are
producers and half of the threads are consumers. These fig-
ures show results for the high-contention scenario. Results
for the low-contention scenario are similar, but less pro-
nounced – see Figure 3 in the supplementary material.

For TS-interval timestamping we use the optimal delay
when exercised with 80 threads on the 40-core machine,
and with 64 threads on the 64-core machine, derived from
the experiments in Section 7.2. The delay thus depends on
the machine and benchmark. On the 40-core machine the
delay is 7.5µs and 4.5µs in the high and low contention
benchmark, respectively. On the 64-core machine the delay
is 4.5µs for both the high-contention benchmark and the
low contention benchmark. The impact of different delays
on performance is discussed in Section 7.2.

Comparison between implementations. The TS-interval
stack is faster than the other timestamping algorithms in the
producer-consumer benchmarks with an increasing number
of threads. Interestingly the TS-atomic stack is faster than
the TS-hardware stack in the high-contention producer-
consumer benchmark. The reason is that since the push op-
erations of the TS-hardware stack are so much faster than
the push operations of the TS-atomic stack, elimination is
possible for more pop operations of the TS-atomic stack (e.g.
41% more elimination on the 64-core machine, see Table 1
in the supplementary appendix), which results in a factor of
3 less retries of tryRem operations than in the TS-hardware
stack. On the 40-core machine the TS-stutter stack is sig-
nificantly slower than the TS-atomic stack, while on the
64-core machine the TS-stutter stack is faster. The reason
is that on the 40-core machine TS-stutter timestamping is
significantly slower than TS-atomic timestamping.

Comparison with other data-structures. With more
than 16 threads all TS stacks are faster than the Treiber
stack. On both machines the TS-interval stack out-performs
the EB stack by a factor of 2 in the high-contention pro-
ducer consumer benchmark with a maximum number of
threads, on the 64-core machine also the TS-stutter stack
out-performs the EB stack, and the TS-atomic stack is close
to the performance of the EB stack.
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(a) Producer-consumer benchmark, 40-core machine.
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(b) Producer-consumer benchmark, 64-core machine.
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(c) Producer-only benchmark, 40-core machine.
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(d) Producer-only benchmark, 64-core machine.
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(e) Consumer-only benchmark, 40-core machine.
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(f) Consumer-only benchmark, 64-core machine.

Figure 1: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

We believe TS-interval’s performance increase with re-
spect to the EB stack comes from three sources: (a) more
elimination; (b) faster elimination; (c) higher performance
without elimination. As shown in producer-only and consumer-
only experiments, the lack of push-contention and mitigation
of contention in pop makes our stack fast even without elim-
ination. Additional experiments show that the TS-interval
stack eliminates 7% and 23% more elements than the EB
stack in high-contention scenarios on the 40-core and on the
64-core machine, respectively. Thus we improve on EB in
both (a) and (c). (b) is difficult to measure, but we suspect
integrating elimination into the normal code path introduces
less overhead than an elimination array, and is thus faster.

Push performance. We measure the performance of push
operations of all data-structures in a producer-only bench-
mark where each thread pushes 1,000,000 element into the
stack. The TS-interval stack uses the same delay as in

the high-contention producer-consumer benchmark: 7.5µs
on the 40-core machine and 4.5µs on the 64-core machine.

Figure 1c and Figure 1d show the performance and
scalability of the data-structures in the high-contention
producer-only benchmark. The push performance of the
TS-hardware stack is significantly better than the push
of the other stack implementations. With an increasing
number of threads the push operation of the TS-interval
stack is faster than the push operations of the TS-atomic
stack and the TS-stutter stack, which means that the de-
lay in the TS-interval timestamping is actually shorter than
the execution time of the TS-atomic timestamping and the
TS-stutter timestamping. Perhaps surprisingly, TS-stutter,
which does not require strong synchronisation, is slower than
TS-atomic, which is based on an atomic fetch-and-increment
instruction.
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Figure 2: High-contention producer-consumer benchmark
using TS-interval timestamping with increasing delay on the
40-core machine, exercising 40 producers and 40 consumers.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 1e and Figure 1f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance
of the other stack implementations, except for low numbers
of threads. The TS-stutter stack is faster than the other
stack implementations due to the fact that some elements
share timestamps and therefore can be removed in parallel.
The TS-atomic stack and TS-hardware stack show the same
performance because all elements have unique timestamps
and therefore have to be removed sequentially. Also in the
Treiber stack and the EB stack elements have to be removed
sequentially. Depending on the machine, removing elements
sequentially from a single list (Treiber stack) is sometimes
more and sometimes less expensive than removing elements
sequentially from multiple lists (TS stack).

7.2 Analysis of TS-Interval Timestamping
Figure 2 shows the performance of the TS-interval stack
along with the average number of tryRem calls needed in
each pop (one call is optimal, but contention may cause
retries). These figures were collected with an increasing
interval length in the high contention producer-consumer
benchmark on the 40-core machine. We used these results
to determine the delays for the benchmarks in Section 7.1.

Initially the performance of the TS data-structures in-
creases with an increasing delay, but beyond 7.5µs the per-
formance decreases again. After that point an average push
operation is slower than an average pop operation, the num-
ber of tryRem operations increases again and also the num-
ber of pop operations which return EMPTY increases.

The figure also shows that high performance correlates
strongly with a drop in tryRem retries. We conclude from this
that the impressive performance we achieve with interval
timestamping arises from reduced contention in remove. For
the optimal delay we have 1.009 calls to tryRem per pop, i.e.
less than 1% of pop calls need to scan the SP buffer array
more than once. In contrast, without a delay the average
number of retries per pop call is more than 6.

8. TS Queue and TS Deque Variants
In this paper, we have focussed on the stack variant of our
algorithm. However, stored timestamps can be removed in
any order, meaning it is simple to change our TS stack into
a queue / deque. Doing this requires three main changes:
1. Change the timestamp comparison operator in tryRem.
2. Change the SP buffer such that getSP returns the oldest

/ right-most / left-most element.
3. For the TS queue, remove elimination in tryRem. For the

TS deque, enable it only for stack-like removal.
The TS queue performs well, but the lack of elimination
means it does not outperform all competitor algorithms.
In our experiments the TS-interval queue out-performs the
Michael-Scott queue [19] and the flat-combining queue [15]
but is not as fast as the LCRQ [1].

The TS-interval deque is in general slower than the cor-
responding stack / queue. However, it also out-performs
the Michael-Scott queue and the flat-combining queue when
used as a queue, and it out-performs the Treiber stack and
the EB stack when used as a stack.

9. Conclusions and Future Work
We present a novel approach to implementing ordered con-
current data-structures like queues, stacks, and deques; a
high-performance concurrent algorithm, the TS stack; and
a new proof technique required to show the TS stack is cor-
rect. The broad messages that we draw from our work are:

• In concurrent data-structures, total ordering on internal
data imposes a performance cost and is unnecessary for
linearizability.

• However, weakened internal ordering makes establishing
correctness more challenging. Specification-specific theo-
rems such as our stack theorem can solve this problem.

Our work represents an initial step in designing and verifying
timestamped data-structures. In future work, we plan to ex-
periment with relaxing other internal ordering constraints;
with dynamically adjusting the level of order in response to
contention; with correctness conditions weaker than lineariz-
ability; and with relaxing the underlying memory model.
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A. Selected proofs
Lemma 2. Let H = 〈A, pr, val〉 be a history. Assume vis, an
alternating order on A, and rr, a total order on non-empty
pop operations in A. Assume the derived order ts. If:
1. pr ∪ vis and pr ∪ rr are cycle-free; and
2. for all +a,−a,+b ∈ A such that +a val−→ −a, +a pr−→ −a,

and +a ts−→ +b vis−→ −a, there exists −b ∈ A such that
+b val−→ −b and −b rr−→ −a;

then H is order-correct according to Definition 5.

Proof. (Several steps below are proved in more detail in
supplementary appendix E)
We prove the lemma by showing that if vis is not already a
witness for H being order-correct, then it can be adjusted
to become a witness.

By assumption pr∪vis is cycle-free and therefore satisfies
condition 1 of Definition 5. Thus, if vis is not a witness it
must violate condition 2, meaning there exist +a,−a,+b ∈
A such that +a val−→ −a, +a ins−→ +b vis−→ −a; and either

no −b ∈ A exists such that +b val−→ −b, or it exists and
−a rem−−→ −b. Whenever +a ins−→ +b, also +a ts−→ +b. Therefore
by premise 2 of the current lemma there must exist a −b
with −b rr−→ −a. As pr ∪ rr is cycle-free, −a pr−→ −b cannot
hold. Thus −a rem−−→ −b implies there exists a +c ∈ A with
−a vis−→ +c vis−→ −b. We call (−a,+c,−b) a violating triple.

As a first step to eliminating violations entirely, we mod-
ify vis so that no violating triple (−a,+c,−b) has a corre-
sponding −c ∈ A where +c val−→ −c and −c rr−→ −a. For each
such triple we modify vis such that +c vis′

−−→ −a. This ad-
justed vis′ relation satisfies the same assumptions as vis, but
(−a,+c,−b) is no longer violating. Adjustment is guaran-
teed to complete because histories are finite and each step
moves a push forward, while no push operation is ever moved
backward.

After modifying vis, violations of Condition 2 can still ex-
ist. However, for any remaining violating triples (−a,+c,−b)
either there does not exist a −c ∈ A with +c val−→ −c; or
−c ∈ A exists and −a rr−→ −c. For any such violating triple,
we modify vis such that +b is ordered the same as +c. That
is, for all pop operations −d, −d vis′

−−→ +b iff −d vis′
−−→ +c.

This modification moves +b backwards in vis, and no new
violating triples (−e,+b,−f) are created where the violating
triple (−e,+c,−f) did not exist already before the modifi-
cation. Adjustment is guaranteed to complete as it cannot
increase the number of violations in vis and always moves
operations backwards. The result is a vis relation without
violations, which is a witness that H is order-correct.

Theorem 4. TS stack is linearizable with respect to Stack.

Proof. Lemma 3 deals with one clause of the stack theorem,
Theorem 1. To show that there exists an ir order that
satisfies the definition of order-correctness it suffices to show
that the generated vis, rr, and ts orders satisfy the conditions
of Lemma 2.

Assume we have a trace T consisting of calls and returns
to stack methods and atomic calls to the TS buffer methods.
We write a <T b if operations a and b are ordered in T .

Order rr is a subset of <T , and is therefore cycle-free.
Moreover, rr is included in pr, which means that if two pop
operations are ordered in pr, then they are also ordered in
rr. Therefore pr ∪ rr is cycle-free. A similar argument shows
that pr ∪ vis is cycle-free.

Next we show that if two push operations are ordered in
ts, then either (1) the inserted elements are ordered by <TS,
or (2) the second element gets timestamped after the first
element was removed.

Assume two push operations +a and +b are ordered in
ts. Therefore either +a pr−→ +b, or +a pr−→ −c vis−→ +b for
some −c ∈ A, or +a pr−→ +d vis−→ −c vis−→ +b for some
−c,+d ∈ A. Let setTimestamp+a be the setTimestamp
operation of +a, and let ins+b and newTimestamp+b be
the ins and newTimestamp operation of +b, respectively.
In all three cases it holds that setTimestamp+a <T ins+b.
Therefore when +b acquires a new timestamp either element
a is in the buffer with a timestamp assigned, or it has already
been removed.

If a is removed by a pop −a before b is inserted, then
condition 2 cannot be violated because it cannot be that that
+b vis−→ −a. Next we assume that a is removed after b gets
inserted and a <TS b. According to Condition 2 assume that
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+b vis−→ −a, with +a val−→ −a and +a pr−→ −a. This means that
b is inserted into the TS buffer before −a calls its getStart
operation getStart−a. Therefore either b is removed before
−a calls getStart or b is within the snapshot generated by
getStart.

If b is removed before getStart−a then there must exist a
pop operation −b such that its tryRem operation tryRem−b

precedes the tryRem operation tryRem−a of −a, satisfying
Condition 2.

Now assume that b is within the snapshot generated by
getStart−a. +a pr−→ −a implies that a got timestamped be-
fore the snapshot is generated by −a, therefore a is removed
by a normal remove. According to the TSbuf specification,
tryRem removes a maximal element in the TS buffer which
is also in the snapshot. As both a and b are in the snapshot
generated by getStart−a and a <TS b, this means that b
must have been removed before tryRem−a. Therefore there
has to exist a pop operation −b which removes b and its
tryRem operation precedes tryRem−a in T . This completes
the proof.
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A Scalable, Correct Time-Stamped Stack
(supplementary appendices)

The Isabelle mechanization of our core theorem is in the
tarball stackthm.tgz. The theorem itself is in the file
stack_theorem.thy. Supplementary Appendix B describes
the structure of the rest of the proof.

The TS stack, queue, and deque source-code is included
in the tarball scal.tgz – this is a snapshot of the Scal
benchmarking project [5]. The code for the timestamped
algorithms is in the sub-directory:

./scal/src/datastructures/

Follow the instructions in README.md to build the whole Scal
benchmark suite, including the TS stack. Note that this
code has only been tested on Linux. Once the benchmarks
have built, README_TS-Stack.txt describes the parameters
we used in our experiments.

B. Proving the Stack Theorem
This appendix gives more details about the proof of the stack
theorem and its mechanisation in Isabelle. Recall that the
theorem is as follows:
Theorem 1. Let C be a concurrent algorithm implemen-
tation. If every history arising from C is order-correct, and
C is linearizable with respect to Set, then C is linearizable
with respect to Stack.

Axiomatised sequential specifications. For convenience
in the mechanisation, we use axiomatised definitions of the
sequential specifications Stack and Set (these are equiva-
lent to the operational definitions given in the paper body).
In these definitions isPush(a) if a is a push operation,
isPop(b) if b is a pop operation, and emp(e) if e is a pop
operation which returns EMPTY.
Definition 7 (Set). A sequential history 〈A, pr, val〉 is in
Set if and only if the following conditions hold:

1. No operation is both a push operation and a pop opera-
tion:

∀a, b ∈ A. a val−→ b =⇒
¬∃c ∈ A. c val−→ a ∧ ¬∃d ∈ A. b val−→ d

2. An element is removed at most once:

∀a, b, c ∈ A. a val−→ b ∧ a val−→ c =⇒ b = c

3. Each pop operation removes at most one element:

∀a, b, c ∈ A. a val−→ b ∧ c val−→ b =⇒ a = c

4. Elements are inserted before they are removed:

∀a, b ∈ A. a val−→ b =⇒ a
pr−→ b

5. A push operation only returns EMPTY if the set is actu-
ally empty:

∀e, a ∈ A. emp(e) ∧ isPush(a) ∧ a pr−→ e =⇒
∃b. a val−→ b ∧ b pr−→ e

Definition 8 (Stack). A sequential history 〈A, pr, val〉 is
in Stack if and only if the following conditions hold:

1. 〈A, pr, val〉 is in Set

40-core machine 64-core machine
EB stack 92% 76%
TS-hardware stack 46% 65%
TS-interval stack 99% 97%
TS-atomic stack 87% 92%
TS-stutter stack 94% 98%

Table 1: Percentage of elements removed by elimination in
the high-contention producer-consumer benchmark.

2. Elements are removed in a LIFO fashion:

∀+a,−a,+b ∈ A.+a val−→ −a ∧+a pr−→ +b pr−→ −a =⇒
∃−b ∈ A.+b val−→ −b ∧ −b pr−→ −a

Proof structure. In the first stage of the proof mecha-
nisation we show that we can handle pop operations which
return EMPTY independent of the order requirements of the
stack. This means that if a concurrent history 〈A, pr, val〉 is
linearizable with respect to Set, then we can ignore pop op-
erations which return EMPTY for the rest of the proof. This
part of the proof is done in the file empty_stack.thy.

In the second step we show that we can also ignore all
push-pop pair which have overlapping execution times and
are therefore candidates for elimination. This means that
after this stage we can assume for all operations +a,−a ∈ A,
if +a val−→ −a, then also +a pr−→ −a. This part of the proof is
done in the file elimination_stack.thy.

In the third stage we show that if a concurrent history
〈A, pr, val〉 is order-correct, then we can construct a total
order prpop on the pop operations which will be part of
the linearization order. This total order contains rem and
all edges (−a,−b) where −b rem−−→ −a would violate order-
correctness, i.e. there exist +a,+b ∈ A with +a val−→ −a,
+b val−→ −b, and +b ins−→ +a ir−→ −b. The proof details are in
the file remove_relaxed_stack.thy.

In the forth stage we deal with ins. We adjust the ir order
to become part of the final linearization order. Informally
we do this by ordering push operations as late as possible,
even if ir orders them the other way around. Formally a
push operation +a is ordered before a pop operation −b in
the adjusted order ir’ if either

1. +a pr−→ −b or

2. there exist −a,+c,−c ∈ A with +a val−→ −a, +c val−→ −c,
+c ir′
−→ −b, −b prpop

−−−→ −c prpop
−−−→ −a, and +a ir′

−→ −c.

The file insert_pr_relaxed_stack.thy contains this stage
of the proof.

In the final stage we order the remaining unordered push
operations according to the order of their matching pop
operations and show that for the resulting order prT it
holds that 〈A, prT , val〉 ∈ Stack. See file insert_relaxed_
stack.thy for this. The file stack_theorem.thy connects
the lemmas together into the overall proof, while concur_
history_relations.thy contains the basic definitions.

To simplify the proof structure, we assume that in every
execution, all elements which are pushed also get popped.
We justify this by observing that any concurrent history
where some elements do not get popped can be extended to
one where all elements get popped. If the extended history is
linearizable, then also the original history was linearizable.
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(a) Producer-consumer benchmark on the
40-core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

ti
o

n
s
 p

e
r 

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

(b) Producer-consumer benchmark on the
64-core machine.

Figure 3: Performance of the TS stack in the low-contention scenario.

pop()→d

pop()→apush(a)

pop()→b

pop()→c

push(b)

push(c)

push(d)

Figure 4: Example bad execution with non-local behaviour.

C. Stacks and Insert-Remove Order
Our stack theorem (Theorem 1) builds on a similar theorem
for queues proved by Henzinger et al. [11]. As with our
definition of order-correctness (Definition 5), their theorem
forbids certain bad orderings between operations. However,
their forbidden shapes are defined purely in terms of the
precedence order, pr, and value order, val – they do not
require the auxiliary insert-remove order ir.

We believe that any stack theorem similar in structure
to ours must require some additional information like ir
(and as a corollary, that checking linearizability for stacks
is fundamentally harder than for queues). By ‘similar’, we
mean a local theorem defined by forbidding a finite number
of finite-size bad orderings. It is this locality that makes
our theorem and Henzinger’s so appealing. It reduces data-
structure correctness from global ordering to ruling out a
number of specific bad cases.

Our key evidence that the insert-remove order is needed is
the execution shown in Figure 4. This execution as a whole
is not linearizable – this can be seen more clearly in the
following graph, which projects out the pr and val relations.
Here lin is the linearization order forced by LIFO ordering.
The red edges form a cycle, contradicting the requirement
that linearization order includes pr.
push(a)

pop()→a

val

pop()→dpop()→b

push(b)

pop()→c

push(c)

val

push(d)

val val

lin

pr

pr

lin

pr

pr

lin

pr

pr

pr

However, if for any i ∈ {a, b, c, d} the corresponding push(i)–
pop(i) pair is deleted, the execution becomes linearizable.

Intuitively, doing this breaks the cycle in lin∪pr that appears
above. Thus, any forbidden shape based on precedence that
is smaller than this whole execution cannot forbid it – oth-
erwise it would forbid legitimate executions. Worse, we can
make arbitrarily-large bad executions of this form. Thus no
theorem based on finite-size forbidden shapes can define lin-
earizability for stacks. Our insert-remove order introduces
just enough extra structure to let us define a local stack
theorem.

This kind of execution is not a problem for queues be-
cause the insert-remove order does not affect the order of
other operations. Ordering an insert-remove pair cannot
constrain the insert-insert or remove-remove order of any
pair.

D. SP Buffer
An SP buffer consists of a singly-linked list of nodes which
is accessed by a top pointer. The top pointer is annotated
with ABA-counters to avoid the ABA-problem [12]. Each
node contains a next pointer, a data field, and a taken flag.
The next pointer points to the next node in the list, the
data field stores the element, and the taken flag indicates
if the element of the node has been removed from the SP
buffer.

The singly-linked list is closed at its ends by a node
which points to itself with the next pointer. The list is
initialized with a sentinel node. Initially the top pointer
of the SP buffer and the next pointer of the sentinel node
point to the sentinel node. The taken flag is initialised to
false indicating that the sentinel node does not contain an
element.

An element is contained in the SP buffer if (1) there exists
a node in the list that contains the element in its data field,
if (2) the taken flag of that node is not set, if (3) the node
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Listing 3: SP buffer algorithm.
1 SPBuffer {
2 Node {
3 Node *next ,
4 TimestampedItem item ,
5 bool taken
6 };
7 <Node*, i n t > *top; // Pointer with ABA counter .
8 void init () {
9 Node * sentinel =

10 createNode (data =0, taken =true );
11 sentinel .next = sentinel ;
12 top = <sentinel , 0>;
13 }
14 void insSP ( TimestampedItem item) {
15 Node * newNode = createNode (item=item ,
16 taken = false );
17 <Node*, i n t > <topMost , topAba > = top;
18 w h i l e (topMost ->next != topMost
19 && topMost -> taken ) {
20 topMost = topMost ->left;
21 }
22 newNode ->next = topMost ;
23 top = <newNode , topAba +1 >;
24 }
25 <Node*, Node*, i n t > getSP () {
26 <Node*, i n t > <oldTop , topAba > = top;
27 Node* result = oldTop ;
28 w h i l e (true) {
29 i f (! result -> taken )
30 r e t u r n <result , oldTop , topAba >;
31 e l s e i f (result ->next == result )
32 r e t u r n <NULL , oldTop , topAba >;
33 e l s e
34 result = result ->next;
35 }
36 }
37 bool tryRemSP
38 (<Node*, i n t > <oldTop , aba >, Node *node) {
39 i f (CAS(node ->taken , false , true )) {
40 CAS (top , <oldTop , aba >, <node , aba >);
41 r e t u r n true;
42 }
43 r e t u r n false ;
44 }
45 }

is reachable from the top pointer of the SP buffer following
next pointers. If one of the three conditions does not hold,
the element is not considered as contained in the SP buffer.

The nodes in the list are sorted by their insertion time.
The successor of of any node in the list has been inserted
earlier than the node itself. By using this order on the list
it is guaranteed that the youngest element in the buffer
is contained in the top-most node which is not marked as
taken.

Listing 3 shows the pseudocode of the SP buffer. To insert
an element at the top of the buffer with an insSP operation,
first a new node is created with the element stored in its
data field. Initially the taken flag is not set. The insSP
operation then tries to find the top-most node that has not
been marked as taken (line 17-21). In line 22-23 the new
node is inserted right before that right-most node in the
list. If the SP buffer is empty, then the new node is inserted
right before the sentinel node.

The getSP operation iterates over the list (line 28-35)
and returns the first element which has not been marked

as taken (line 30). If the iteration reaches the sentinel node
getTl returns NULL (line 32). Additionally getSP returns the
value of the top pointer at the beginning of its execution.
The value of the top pointer is then used in line 40 in the
second CAS of the tryRemSP operation and in the emptiness
check of the TS buffer.

The tryRemSP operation tries to set the taken flag with a
CAS (line 39) and returns true if it succeeds. Otherwise the
tryRemTl operation returns false. After succeeding in the
first CAS the operation additionally tries to adjust the top
pointer of the SP buffer with a CAS (line 40. The purpose of
that CAS is an optimization which is described below.
Correctness. The correctness of the SP buffer is based on
the invariant that the list is sorted by the insertion time of
its nodes. Thereby the youngest element in the SP buffer can
be found simply by finding the top-most node in the list. As
the SP buffer allows only a single thread to insert elements,
we do not have to care about concurrent insSP operations.
The atomicity of the tryRemSP operations is guaranteed by
using the taken flag to mark the element of a node logically
as removed. Setting the taken flag is done atomically with
a CAS instruction.

The correctness of the getSP operation is more subtle. If
at the time getSP returns an element the returned element
is indeed the youngest element in the SP buffer, then the
return statement is a correct linearization point of getSP.
If during the iteration through the list a new element has
been inserted into the list, then we use the following insight:
If getSP returns an element which is not youngest element at
the time of its return statement, then its iteration started
before the element got inserted. Therefore these getSP can
be linearized right before the linearization point of the insSP
operation which inserted a new element in the meantime. For
the same reasons getSP is correct when it returns NULL.

The second CAS in tryRemSP is an optimization. For the
performance of insSP and getSP it is good to have as few
taken nodes at the top of the SP buffer as possible. In both
line 23 and line 40 the top pointer is changed to reduce the
number of taken nodes in the SP buffer. To guarantee the
correctness of the optimization the top pointer is changed in
tryRemSP only if the top pointer has not been changed since
the remove node got returned by getSP This is guaranteed
by the semantics of CAS and the use of an ABA-counter. In
insSP such a precaution is not necessary. If top is changed
during the execution of insSP after line 17, then this change
is undone in line 23. Undoing these changes is allowed as only
a single thread (the thread which executes insSP) is allowed
to insert into the SP buffer and therefore all these changes
were done within tryRemSP operations. Changes of the top
pointer in tryRemSP, however, could have failed already in
the first place.

E. Proof details for Lemma 2
In this section we provide additional details supplementing
the proof of Lemma 2 given in Appendix A.
Lemma 7 (abcd). Let 〈A, pr, val〉 be a history derived from
a trace T . Given actions a, b, c, d ∈ A, if a pr−→ b and c pr−→ d,
then either a pr−→ d or c pr−→ b.

Proof. Case-split on whether aret
T−→ dinv. If so, a pr−→ d.

Otherwise, because T totally orders events, dinv
T−→ aret. The

premise gives us cret
T−→ dinv

T−→ aret
T−→ binv, which gives us

c
pr−→ b by transitivity.
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Lemma 8. Let +a,+b ∈ A be two push operations. If
+a ins−→ +b, then also +a ts−→ +b.

Proof. Assume +a,+b ∈ A and +a ins−→ +b. Therefore either
+a pr−→ +b or there exists a −c with +a pr−→ −c vis−→ +b. Both
these conditions are also preconditions of the definition of
ts, which completes the proof.

As we described in Appendix B we showed that we can
ignore all push-pop pairs which have overlapping execution
times. The proof is based on the insight that these push-
pop pairs can always be added to a linearization of the
other operations without introduction a violation of stack
semantics. Therefore we assume in the following that for
any +a,−a ∈ A, if +a val−→ −a, then also +a pr−→ −a.

Next we assume the case where there exists a violating
triple (−a,+c,−b), and for all violating triples (−a,+ci,−b)
there exists a −ci ∈ A with +ci

val−→ −ci and −ci
rr−→ −a. We

show that vis can be adjusted, resulting in a vis’ which differs
from vis only in ordering +c vis′

−−→ −a instead of −a vis−→ +c,
and which satisfies the following invariants (these are the
original assumptions on vis):

• pr ∪ vis′ is cycle-free.
• Let ts′ be the ts relation derived from vis′. Let +d,−d,+e ∈
A with +d val−→ −d, +d pr−→ −d, and +d ts′

−→ +e vis′
−−→ −d,

then there exists a −e ∈ A with +e val−→ −e and
−e rr−→ −d.

Lemma 9. pr ∪ vis′ is cycle-free.

Proof. If there exists a cycle in pr∪vis′, then it has to contain
the edge +c vis′

−−→ −a since all other edges existed already in
vis and we assumed that pr∪vis is cycle-free. Therefore there
has to exist a transitive edge from −a to +c in pr∪ vis. The
transitivity of pr, and vis being alternating means that either

1. −a pr−→ +c,
2. −a vis−→ +f pr−→ +c for some +f ∈ A,
3. −a vis−→ +f vis−→ −e vis−→ +c for some +f,−e ∈ A, or
4. −a pr−→ −e vis−→ +c for some −e ∈ A.

Prove by case distinction. Assume item 1 – then there would
exist the cycle −a pr−→ +c pr−→ −c rr−→ −a, which would violate
the assumption that pre ∪ rr is cycle-free.

Assume item 2 – then there exists a push operation +f
with −a vis−→ +f pr−→ +c. Since pr ∪ vis is cycle-free it holds
that +f vis−→ −b and also (−a,+f,−b) is a violating triple.
According to our assumption it holds that there exists a
−f ∈ A with −f rr−→ −a. We only consider finite histories,
therefore there exists a +f ′ ∈ A for which no such +f exists,
and we could deal with the violating triple (−a,+f ′,−b)
before we deal with the other violating triples. Eventually
all violating triples can be resolved.

For item 3 apply the same argument as item 2.
Finally assume that item 4 holds and there exists a

−e ∈ A with −a pr−→ −e vis−→ +c. We assume that there exists
a −c with +c val−→ −c and therefore +c pr−→ −c. Applying
Lemma 7 means that either −a pr−→ −c or +c pr−→ −e. With
the former there exists the cycle −a pr−→ −c rr−→ −a, and
with the later there exists the cycle +c pr−→ −e vis−→ +c, both

violating our assumptions that pr ∪ rr and pr ∪ vis are cycle-
free. Therefore vis’ is cycle-free.

Lemma 10. Let ts′ be the ts relation derived from vis′.
Let +d,−d,+e ∈ A with +d val−→ −d, +d pr−→ −d, and
+d ts′
−→ +e vis′

−−→ −d, then there exists a −e ∈ A with
+e val−→ −e and −e rr−→ −d.

Proof. The current lemma holds for vis, and the only pair
which is different in vis and in vis’ is the +c vis′

−−→ −a.
Therefore we only have to show that +c vis′

−−→ −a is not
part of a violation of this lemma. There exist two ways how
+c vis′
−−→ −a could be part of a violation:

1. +a val−→ −a, +a pr−→ −a, +a ts′
−→ +c vis′

−−→ −a, and either no
−c ∈ A exists with +c val−→ −c or such a −c exists and
−a rr−→ −c. This cannot be true because we assume that
there exists a −c ∈ A with +c val−→ −c and −c rr−→ −a.

2. There exist +e,+f,−e ∈ A with +e val−→ −e, +e pr−→ −e,
+e pr−→ +c vis′

−−→ −a vis′
−−→ +f and therefore +e ts′

−→ +f ,
+f vis′
−−→ −e, and either there does not exist a −f ∈ A

with +f val−→ −f or such a −f exists and −e rr−→ −f .
It cannot be the case that +e ts−→ +f because then the
violation would have already existed in vis. As −b vis−→ +f
would, however, construct +e ts−→ +f , we know that
+f vis−→ −b. Therefore (−a,+f,−b) is also a violating
triple and could be dealt with before (−a,+c,−b).

Therefore with both cases no violation is possible, which
completes the proof.

Next we assume the case where all violating triples
(−a,+c,−b) are resolved for which it holds that for all
violating triples (−a,+ci,−b) there exists a −ci ∈ A with
+ci

val−→ −ci and −ci
rr−→ −a. Therefore it holds that for

any remaining violating triple (−a,+c,−b) there exists a
violating triple (−a,+d,−b) such that either there does not
exist a −d ∈ A with +d val−→ −d, or there exists a −d and
−a rr−→ −d. We show that vis can then be adjusted such
that +b is ordered the same as +d in the adjusted vis′′,
and all other operations are ordered the same as in vis. We
prove now that the adjusted vis′′ relation satisfies the fol-
lowing invariants (the same properties which hold for the
final vis’):

• pr ∪ vis′′ is cycle-free.
• Let ts′′ be the ts relation derived from vis′′. Let +s,−s,+e ∈
A with +s val−→ −s, +s pr−→ −s, and +s ts′′

−−→ +e vis′′
−−→ −s,

then there exists a −e ∈ A with +e val−→ −e and
−e rr−→ −d.

• Let (−s,+f,−e) be a violating triple for vis′′, then there
exists a violating triple (−s,+f ′,−e) such that there
does not exist a −f ′ ∈ A with +f ′ val−→ −f ′, or there
exists such a −f ′ ∈ A and −s rr−→ −f ′.

Lemma 11. pr ∪ vis′′ is cycle-free.

Proof. Assume a cycle exists in pr ∪ vis′′, then the cycle
has to contain +b. As +b is ordered the same as +d in
vis′′, and vis is cycle-free, there exists either a −f ∈ A
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with +b pr−→ −f vis−→ +d, or there exist +g,−f ∈ A with
+b pr−→ +g vis−→ −f vis−→ +d. In both cases +b ts−→ +d and
therefore +b ts−→ +d vis−→ −b and therefore according to
our assumptions there exists a −d ∈ A with −d rr−→ −b.
By the transitivity of rr it holds that −d rr−→ −a, which
contradicts our assumptions. Therefore no cycle in pr ∪ vis′′
is possible.

For the other two assumptions we first show a helping
lemma. In the following, let ts′′ be the ts relation derived
from vis′′.

Lemma 12. Let +s,−s,+e ∈ A with +s val−→ −s, +s pr−→
−s, and +s ts′′

−−→ +e vis′′
−−→ −s, then either also +s ts−→ +e vis−→

−s, or +e = +b and +s ts−→ +d vis−→ −s.

Proof. First we observe that the only difference between vis
and vis′′ is that +b has been moved backwards. Therefore
it holds for any +g,−h ∈ A that if +g vis′′

−−→ −h, than
also +g vis−→ −h. Therefore, if +s ts′′

−−→ +e vis′′
−−→ −s, it also

holds that +s ts′′
−−→ +e vis−→ −s, and in the case of +e = +b

also +d vis−→ −s. Therefore it only remains to show that if
+s ts′′
−−→ +e, then either also +s ts−→ +e, or +e = +b and

+s ts−→ +d. We do a case distinction on the definition of ts′′.

• if +s pr−→ +e, then also +s ts−→ +e.
• if +s pr−→ −k vis′′

−−→ +e for some −k ∈ A, and +e 6= +b,
then also −k vis−→ +e because vis and vis′′ only differ in the
order of +b, and therefore +s ts−→ +e. If +e = +b, then
+d is ordered the same in vis as +b in vis′′ and therefore
+s pr−→ −k vis−→ +d and +s ts−→ +d.

• if +s pr−→ +l vis′′
−−→ −k vis′′

−−→ +e for some +l,−k ∈ A, then,
as we observed already before, it holds that +s pr−→ +l vis−→
−k vis′′
−−→ +e. If +e 6= +b, then also −k vis−→ +e because

vis and vis′′ only differ in the order of +b, and therefore
+s ts−→ +e. If +e = +b, then +d is ordered the same in
vis as +b in vis′′ and therefore +s pr−→ +l vis−→ −k vis−→ +d
and +s ts−→ +d.

Lemma 13. Let ts′′ be the ts relation derived from vis′′.
Let +s,−s,+e ∈ A with +s val−→ −s, +s pr−→ −s, and
+s ts′′
−−→ +e vis′′

−−→ −s, then there exists a −e ∈ A with
+e val−→ −e and −e rr−→ −d.

Proof. Let +s,−s,+e ∈ A with +s val−→ −s, +s pr−→ −s, and
+s ts′′
−−→ +e vis′′

−−→ −s. Assume +e 6= +b, then according to
Lemma 12 also +s ts−→ +e vis−→ −s, and according to our
assumptions there exists a −e ∈ A with +e val−→ −e and
−e rr−→ −s.

Next assume that +e = +b. We have to show that
−s rr−→ −b is impossible. We know from Lemma 12 that
+s ts−→ +d vis−→ −s, and therefore there exists a −d ∈ A with
−d rr−→ −s. From our assumptions we know that (−a,+d,−b)
is a violating triple of vis and therefore −b rr−→ −a, and also
that −a rr−→ −d. Now, if −s rr−→ −b would hold, then there

existed the cycle −s rr−→ −b rr−→ −a rr−→ −d rr−→ −s, which
contradicts our assumptions. Therefore −b rr−→ −s, which
completes the proof.

We also need to preserve the condition after the first proof
step:
Lemma 14. Let (−s,+f,−e) be a violating triple for vis′′,
then there exists a violating triple (−s,+f ′,−e) such that
there does not exist a −f ′ ∈ A with +f ′ val−→ −f ′, or there
exists such a −f ′ ∈ A and −s rr−→ −f ′.

Proof. Let (−s,+f,−e) be a violating triple for vis′′. There-
fore it holds that there exist +s,+e ∈ A with +s val−→ −s,
+s pr−→ −s, and +s ts′′

−−→ +e vis′′
−−→ −s vis′′

−−→ +f vis′′
−−→ −e.

If +e 6= +b, then according to Lemma 12 it holds that
+s ts−→ +e vis−→ −e. If +f 6= +b, then also −s vis−→ +f vis−→ −e
and therefore there exists a +f ′ ∈ A such that (−s,+f ′,−e)
is a violating triple of vis and also of vis′′, and either there
exists no −f ′ ∈ A with +f ′ val−→ −f ′, or there exists such a
−f ′ and −s rr−→ −f ′.

Next assume +f = +b, then also −s vis′′
−−→ +b vis′′

−−→ −e
and therefore also −s vis−→ +d vis−→ −e. This means that
(−s,+d,−e) is a violating triple of vis, and therefore there
has to exist a +f ′ ∈ A such that (−s,+f ′,−e) is a violating
triple of vis and also of vis′′, and either there exists no
−f ′ ∈ A with +f ′ val−→ −f ′, or there exists such a −f ′ and
−s rr−→ −f ′.

Finally assume that +e = +b. Therefore it holds accord-
ing to Lemma 12 that +s ts−→ +d vis−→ −s. If −s vis′′

−−→ +f vis′′
−−→

−b, then also −s vis−→ +f vis−→ −d and there exists a +f ′ ∈ A
such that (−s,+f ′,−d) is a violating triple of vis, and either
there exists no −f ′ ∈ A with +f ′ val−→ −f ′, or there exists
such a −f ′ and −s rr−→ −f ′. This violating triple has not
been resolved in vis′′ and therefore also (−s,+f ′,−b) is a
violating triple of vis′′, which completes the proof.

F. Proof of correctness for the TS buffer
Theorem 6. The TS buffer implementation is linearizable
with respect to the specification TSbuf given in §5.

Proof. Assume a concrete pre-state L and an abstract pre-
state (B,S). We prove the correctness of each method sep-
arately:
newTimeStamp() generates a timestamp greater than those
in the buffer because all such timestamps were originally
generated by newTimeStamp and added by setTimestamp.
The linearization point of ins(e) is the call to insSP. This
call inserts the new element into the SP buffer and thereby
also to the abstract state of the TS buffer.
setTimestamp(i,t) consists of a single assignment which is
its linearization point.
getStart() consists of a single call to the getMaxTimestamp,
which is its linearization point. There are two cases for
the generated timestamp: either t ∈ dom(S) or not. In
the former case, t was generated by a previous calls to
getStart, and there must have been no intervening methods
calls, meaning that B = S(t) as required. Otherwise a new
snapshot is generated in S.
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The case of tryRem() returning INVALID is trivially cor-
rect and the correctness of tryRem() returning EMPTY has
been shown in [8]. In normal removal (case 3) and elimina-
tion (case 4), the linearization points are successful calls to
tryRemSP. Both cases remove an element atomically from
the concrete state, so we only need to show that the correct
element is removed.

First observe that any element in the snapshot S(t)
must have been in a SP buffer before tryRem begins, and
that elements that are not in S(t) are guaranteed to have
timestamps younger than t.

Suppose that tryRem removes an element on line 36 in
listing 2. Comparison with startTime on line 24 ensures that
elements not in the snapshot are not considered for normal
removal. Suppose tryRem removes an element a although
there exists an element b in the snapshot and in B with
a <TS b. Therefore b is contained in an SP buffer and
getSP must have returned b or some even younger element
c. In this case, b or c would be considered younger than a
by the comparison code, and either removed or eliminated,
contradicting our assumption. Note that b would also have
been considered younger if b was timestamped after it got
returned by getSP.

Suppose alternatively that tryRem removes an element
on line 24. If a /∈ dom(S(t)), then the removal of a is
correct because of elimination. If a ∈ dom(S(t)), then the
timestamp of a was generated after the snapshot or the
timestamp was assigned to a after the snapshot. Therefore
the timestamp of a in the snapshot is > and the removal is
correct because of elimination.
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