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Synchronisation constructs lie at the heart of any reliable concurrent program. Many such constructs
are standard — e.g., locks, queues, stacks, and hash-tables. However, many concurrent applications require
custom synchronisation constructs with special-purpose behaviour. These constructs present a significant
challenge for verification. Like standard constructs, they rely on subtle racy behaviour, but unlike standard
constructs, they may not have well-understood abstract interfaces. As they are custom-built, such constructs
are also far more likely to be unreliable.

This paper examines the formal specification and verification of custom synchronisation constructs. Our
target is a library of channels used in automated parallelization to enforce sequential behaviour between
program statements. Our high-level specification captures the conditions necessary for correct execution;
these conditions reflect program dependencies necessary to ensure sequential behaviour. We connect the
high-level specification with the low-level library implementation, to prove that a client’s requirements are
satisfied. Significantly, we can reason about program and library correctness without breaking abstraction
boundaries.

To achieve this, we use a program logic called iCAP (impredicative Concurrent Abstract Predicates) based
on separation logic. iCAP supports both high-level abstraction and low-level reasoning about races. We use
this to show that our high-level channel specification abstracts three different, increasingly complex low-
level implementations of the library. iCAP’s support for higher-order reasoning lets us prove that sequential
dependencies are respected, while iCAP’s next-generation semantic model lets us avoid ugly problems with
cyclic dependencies.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Correctness

proofs; D.3.3 [Programming Languages|: Language Constructs and Features— Concurrent programming
structures

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Separation Logic, Concurrent Abstract Predicates, Concurrency

1. INTRODUCTION

Concurrent programming is challenging because it requires programmers parcel work into
useful units, and weave suitable concurrency control to coordinate access to shared data.
Coordination is generally performed by synchronisation constructs. In order that program-
mers can build and reason about concurrent programs, it is essential that these synchronisa-
tion constructs hide implementation details behind specifications, allowing clients to reason
about correctness in terms of abstract, rather than concrete, behaviour.
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For standard synchronisation constructs — e.g. locks, queues, stacks — abstract specifica-
tions are well-understood. However, many concurrent applications depend on non-standard,
custom synchronisation constructs. These may have poorly-defined abstract interfaces, while
at the same time depending on complex racy implementation behaviour. Verifying these con-
structs requires a technique that can build up strong abstractions, reason about the logical
distribution of data between threads, and at the same time deal with the intricacies of
low-level concurrency. This is our objective in this paper.

Our target is to verify one such custom concurrency construct: barriers used for automated
parallelisation. In deterministic parallelisation, code regions in a sequential program are
executed concurrently. While the parallelized program is internally nondeterministic, control
constructs are used to ensure that it exhibits the same deterministic observable behaviour as
its sequential counterpart. Automatic parallelisation of this kind has been well-studied for
loop-intensive numerical computations. However, it is also possible to extract parallelism
from irregularly structured sequential programs [Bocchino et al. 2009; Rinard and Lam
1992; Welc et al. 2005].

One way to implement deterministic parallelism is through compiler-injected barri-
ers [Navabi et al. 2008]. We can think of these barriers enforcing the original sequential
program dependencies on shared resources. A resource could be any program variable, data
structure, memory region, lock, etc. for which ownership guarantees are essential in order
to enforce deterministic semantics. While the intuition behind using such barriers is quite
simple, there are many possible implementations, and verifying that an implementation
enforces the correct behaviour is challenging for several reasons:

— Clustom data-structures. To enable the maximum level of parallelism, barriers are imple-
mented using custom data-structures that collect and summarise signals.

— Non-local signalling. The patterns of signalling in a barrier implementation are highly
non-local. To access a resource, a barrier must wait until all logically preceding threads
have indicated that it is safe to do so. However, threads are locally unaware of this context.

— Out-of-order signalling. The parallelisation process will strive to identify the earliest point
in a thread’s execution path from where a resource is no longer required. In some cases,
this means threads can release resources without ever acquiring them, so that subsequent
signalling of this resource by its predecessor can bypass it altogether.

— Shared read access. Barriers may treat reads and writes differently to ensure preservation
of sequential behaviour. Although many reads can be performed concurrently, they must
be sequentialized with respect to writes. Moreover, reads must be sequentialized with
respect to other reads, if there is an intervening write.

— Higher-order specifications. Abstractly, channels can be used to control access to any kind
of resource for which ownership is important. Thus, the natural specification is higher-
order: the resource is a parameter to the specification. Channels may control access to
other channels, or even later stages of the same channel.

In this paper, we show how to tackle these verification challenges. We use impredicative
concurrent abstract predicates (1ICAP), a recent program logic that enables abstract, higher-
order reasoning about concurrent libraries [Svendsen and Birkedal 2014a]. This allows us
to reason about both high-level properties and low-level implementation details. iICAP sup-
ports fine-grained reasoning about concurrent behaviour, meaning that each thread can be
permitted exactly the behaviour it needs. Furthermore, reasoning in iCAP is local, meaning
even shared state can be encapsulated and abstracted.

The result of our work is a verified high-level specification for barriers, independent of
their low-level implementation. Using iCAP, we have proved that three very different low-
level implementations satisfy the same high-level specification. In the presence of runtime
thread creation and dynamic (heap-allocated) data, our specification must be both generic
and dynamic, since it must be possible to construct barriers at runtime that control access



to arbitrary resources. To allow this, we use iCAP’s higher-order quantification mechanism
to encode complex patterns of resource redistribution. It is worth emphasising that the
barriers we look at were not designed with verification in mind; we have developed the
specification to suit the application, not vice versa.

In this paper we focus on just the verification problem for barriers, but in a companion pa-
per, we define a parallelising program analysis which injects appropriate barriers [Botin¢an
et al. 2013]. Our work here contributes to the eventual goal of a fully specified and veri-
fied system for deterministic parallelism. More generally, access to concurrent data is often
controlled by custom synchronisation constructs, and our work in this paper demonstrates
how to reason soundly about such bespoke concurrency constructs.

Contribution

This paper substantially revises and expands our conference paper [Dodds et al. 2011]. Our
main contributions relative to [Dodds et al. 2011] are as follows:

— A revised higher-order abstract specification for the custom synchronisation barriers used
in deterministic parallelism. Our new specification is cleaner and more general.

— New proofs of this specification for simplified, out-of-order and summarising barrier im-
plementations, written using the iCAP proof system [Svendsen and Birkedal 2014a]. The
first two implementations were proved correct in [Dodds et al. 2011], while the proof of
the summarising version is entirely novel.

— An encoding in iCAP of constructs we call saved propositions. These serve some of the
functions of auxiliary variables capable of storing propositions, and allow us to reason
about resource transfer and splitting without altering the proof system.

— A new application of explicit stabilization [Wickerson et al. 2010] to reason about the
stability of complex separation logic assertions (see §3.5).

This paper also corrects a subtle logical problem in [Dodds et al. 2011], discovered by
Svendsen a year after publication. As is often true in logic, this problem arose as a result of
self-reference — in this case, a circularity in the model of higher-order propositions rendered
several important reasoning steps unsound. The details are discussed in §8, but we emphasise
that this problem could not have been solved by the higher-order separation logics available
in 2011. The development of iCAP was in part motivated by resolving this kind of problem;
in this paper, we show that iCAP can be used to verify tricky practical algorithms.

Paper Structure

§2 discusses related work. §3 introduces the behaviour of barriers informally, and defines our
abstract specification. §4 gives a very simple barrier implementation, and shows how it can
be verified with respect to the core of the specification. §5 discusses how the specification
can be extended to cover the splitting of resources offered by a channel. §6 gives a more
complicated implementation where channels are arranged into chains, and verifies the full
abstract specification. §7 gives an optimised implementation where signals between channels
are summarised, and verifies it. §8 explores the problems with our conference paper [Dodds
et al. 2011], and how we have addressed them. Some of the subsidiary lemmas are proved
in full in the appendices.

2. RELATED WORK

iCAP is a new logic for verifying complicated concurrent algorithms [Svendsen and Birkedal
2014a; 2014b]. Although we have focussed in this paper on barriers used for deterministic
parallelism [Welc et al. 2005; Berger et al. 2010; Bocchino et al. 2009; Navabi et al. 2008],
our intention is to illustrate how iCAP can be used to specify and verify novel concurrency
constructs in general.



Prior to 2011, most work on concurrent separation logic considered concurrency con-
structs as primitive in the logic. This begins with O’Hearn’s work on concurrent separation
logic [O’Hearn 2007], which takes statically allocated locks as a primitive. CSL has been
extended to deal with dynamically-allocated locks [Gotsman et al. 2007; Hobor et al. 2008;
Jacobs and Piessens 2009] and re-entrant locks [Haack et al. 2008]. Others have extended
separation logic or similar logics with primitive channels [Hoare and O’Hearn 2008; Bell
et al. 2009; Villard et al. 2010; Leino et al. 2010], and event driven programs [Krishnaswami
et al. 2010]. There are important disadvantages to handling each distinct concurrency con-
struct with a new custom logic:

— Developing a custom logic might be acceptable for standard synchronisation constructs
such as locks, but it is infeasible for every domain-specific construct.

— Embedding each construct as primitive in the logic provides no means for verifying im-
plementations of the construct.

— Each custom logic handles one fixed kind of construct, with no means of verifying programs
that use multiple concurrency constructs.

iCAP solves all three problems. New synchronisation constructs can be introduced as li-
braries and given abstract specifications that abstract over the internal data representation
and state through abstract predicates. Implementations can be verified against these ab-
stract specifications by giving these predicates concrete definitions (our paper does precisely
this for barriers). As new constructs can be freely introduced as libraries, clients are free to
combine multiple concurrency constructs as needed. Furthermore, using iCAP’s higher-order
quantification, specifications can abstract over arbitrary predicates, including those defined
by other concurrency constructs. This allows us to support separate reasoning about each
construct, while still allowing them to interact cleanly. For instance, abstract lock predicates
defined by a lock library can freely be transferred through our channels.

iCAP descends from our earlier Concurrent Abstract Predicates (CAP) logic [Dinsdale-
Young et al. 2010]. CAP combined the explicit treatment of concurrent interference from
rely-guarantee [Jones 1983; Feng et al. 2007; Vafeiadis 2007] and abstraction through ab-
stract predicates [Parkinson and Bierman 2005], with a rich system of protocols based on
capabilities [Dodds et al. 2009]. iCAP extends CAP with higher-order propositions and
an improved system of concurrent protocols [Svendsen and Birkedal 2014a]. iCAP’s step-
indexed semantics is supported by an underlying theory called the topos of trees [Birkedal
et al. 2012].

Recent years have seen a great deal of work on concurrent logics, many of which take in-
spiration from CAP. Complex concurrency constructs have been verified before in CAP-like
logics, e.g. concurrent B-trees in [da Rocha Pinto et al. 2011]. The proof in [da Rocha Pinto
et al. 2011] is mostly concerned with complex manipulations of the B-tree structure. In com-
parison, our barrier implementations are relatively simple, and a large proportion of our
proof concerns changes in ownership to support our higher-order specification. The verifica-
tion of the Joins library in [Svendsen et al. 2013] has similarities to our work. Both papers
deal with barriers using higher-order separation logic. However, the implementations and
specifications are substantially different — for example our implementation permits chains of
channels, and our specification deals with resource-splitting. We share two co-authors with
[Svendsen et al. 2013], and iCAP was largely developed as a improvement on the HOCAP
logic it uses.

The most significant alternative logics to iCAP are CaReSL [Turon et al. 2013] and
TaDA [da Rocha Pinto et al. 2014]. Like iCAP, both extend CAP with richer protocols.
Unlike iCAP, both are primarily aimed at proving atomicity / linearizability, and confine
themselves to second-order logic only. This makes them less suitable for our purposes. It is
plausible that many of the proofs in this paper could be recast into these logics. However,
we would have to constrain the higher-order parameters from our specification with some



kind of explicit stratification. We would expect proofs to be significantly more complex as
a result of the bookkeeping needed to track this stratification.

3. A SPECIFICATION FOR DETERMINISTIC PARALLELISM

In this section, we describe the intuitive behaviour of a library of barriers for enforcing
deterministic parallelism that forms our case study. Based on this, we define a high-level
specifications for barriers — the full abstract specification is given in §3.4. These barriers are
based on the ones used for deterministic parallelism in [Navabi et al. 2008]. In [Botincan
et al. 2013] we use our abstract specification in a proof-based parallelizing analysis that is
guaranteed to preserve sequential behaviour.

We assume that code sections believed to be amenable for parallelization have been
identified, and the program split accordingly into threads. We assume a total logical ordering
on threads, such that executing the threads serially in the logical order gives the same result
as the original (unparallelized) program.

Barriers are associated with resources (e.g., program variables, data structures, etc.) that
are to be shared between concurrently-executing program segments. There are two sorts
of barriers. A signal barrier notifies logically later threads that the current thread will no
longer use the resource. A wait barrier blocks until all logically prior threads have signalled
that they will no longer use the resource (i.e., have issued signals).

We assume barriers are injected by an analysis which ensure that all salient data depen-
dencies in the sequential program are respected. For example, suppose we run two instances
of the function f in sequence (here sleep(rand()) waits for an unknown period of time).

void f(int *x, int *y, int v) { *x = 0;
if(xx < 10) { xy = 0;
¥y = Xy + vy
XX = *X + V3 f(x,y,5);
sleep(rand()); f(x,y,11);
} else {
sleep(rand());
}
}

When this program terminates, location x and y will both hold 16.

The second call to £ will wait for the first call to finish its arbitrarily long sleep, even
though the first call will do nothing more once it wakes. An analysis could parallelize this
function by passing control between the two earlier. The parallelized functions £1 and £2
are given below. We run both concurrently, but require that £1 passes control of x and y to
£2 before sleeping, allowing £2 to continue executing.

FUNCTION DEFINITIONS: PROGRAM BODY:
fi(x,y,v,i) { f2(x,y,v,1i) { *x = 0; *xy = 0;
if(xx < 10) { wait(i); chan *i = newchan();
Xy = *y + v; if(xx < 10) {
*X = *x + V; xy = *y + v; fi1(x,y,5,1) Il f2(x,y,11,1i);
signal(i); *X = *X + V;
sleep(rand()); sleep(rand());
} else { } else {
signal(i); sleep(rand());
sleep(rand()); }
} }

3



The barriers in £1 and £2 ensure that the two threads wait exactly until the resources
they require can be safely modified, without violating sequential program dependencies.
The correct ordering is enforced by barriers that communicate through a channel; in the
example, newchan creates the channel i. Assuming the barriers are correctly implemented,
the resulting behaviour is equivalent to the original sequential program, with x and y both
holding 16.

3.1. Verifying a Client Program

How can we verify that our parallelized program based on £f1 and f£2 satisfies the same
specification as the original sequential program? Typically (e.g. in [Navabi et al. 2008])
one would incorporate signalling machinery as part of a parallelization program analysis.
Clients would then reason about program behaviour using the operational semantics of the
barrier implementation. Validating the correctness of parallelization with respect to the
sequential program semantics would therefore require a detailed knowledge of the barrier
implementation. Any changes to the implementation could entail reproving the correctness
of the parallelization analysis.

In contrast, we reason about program behaviour in terms of abstract specifications for
signal, wait and newchan. Such an approach has the advantages that (1) implementors
can modify their underlying implementation and be sure that relevant program properties
are preserved by the implementation, and (2) client proofs (in this case, proofs involving
compiler correctness) can be completed without knowledge of the underlying implementa-
tion.

We will reason about £1 and £2 using separation logic, which lets us precisely control the
allocation of resources to threads over time. Assertions in separation logic denote resources:
heap cells and data-structures, but also abstract resources like channel ends. For example,
we write the following assertion to denote that x points to value v and y to value v':
x — v xy +— v The separating conjunction * asserts that x and y are distinct. As well as
capturing information about the current state of resources, assertions in separation logic
also capture ownership. Thus the assertion x — v *y + v/ in an invariant for a thread
implicitly states that the thread has exclusive access to x and y.

To reason about the parallel composition of threads, we can use the PAR rule of concurrent
separation logic [O’Hearn 2007]:

(P} Ci{Q:1} {2} C2 {Q2}
{P1* P} C||Co {Q1 * Q2}

PARrR

To verify £1 and £2, we must encode the fact that £1 gives up access to x and y by calling
signal (i), while £2 retrieves access to them by calling wait (i). We encode these two facts
with two predicates, recv and send, corresponding to the promised resource, the resource
that can be acquired from logically earlier threads, and the required resource, the resource
that must be supplied to logically later threads. We read these as follows:

recv(i, P) — By calling wait on i, the thread will acquire a resource satisfying
the assertion P.

send(i, P) — By calling signal on i when holding a resource satisfying P, the
thread will lose the resource P.



{XHO*yHO*Send(i,XH5*yr—>5)} {recv(i,xH5*yr—>5)}

f1(x,y,5,1) { f2(x,y,11,1)

if (xx < 10) { wait(i); // Channel spec.
5=y 5 s ex e 5 L any o5}
{xn—>5*y+—>5*send(i,xr—>5*y+—>5)} if(*x < 10) {
signal(i); // Channel spec. xy = *y + 11; *x = *x + 11;
{emp} {x — 16y — 16}
sleep(rand()); sleep(rand());

} else ... // Contradicts z<10. } else ... // Contradicts z<10.

} }

{emp} {x — 16 xy — 16}

Fig. 1. Proofs for £1 (left) and £2 (right).

These predicates are abstract; each instantiation of the library will define them differently.
The client only depends on an abstract specification that captures their intuitive meaning;:

{emp} i = newchan() {send(i,P)xrecv(i,P)}
{send(i, P) x | P|} signal (i) {emp}
{recv(i, P)} wait (i) {[P1}

The specification of newchan is implicitly universally quantified for all assertions P, meaning
that we can construct a channel for any assertion.! The assigned variable i stands for
newchan’s return value — i.e. the address of the new channel (we also use this notation in
the specification of extend, below).

New recv and send predicates can be constructed at run-time using newchan, meaning we
can construct an arbitrarily large number of channels for use in the program. Given these
two predicates, we can give the following specifications for £1 and £2. (Here we specialise
to the particular parameter values of 5 / 11; it would be easy to generalise).

{x—0*xy—0xsend(i, x—5*xy—5)} fi(x,y,5,i) {emp}
{recv(i, x —~ 5*xy—5)} £2(x,y,11,i) {x— 16xy+ 16}

The send predicate in the specification for £1 says that the thread must supply the resources
x and y such that they both contain the value 5. The specification for £2 says that the
thread can receive x and y containing the value 5. Fig. 1 gives sketch-proofs for these two
specifications.

Given this specification, the proof for the main program goes through as follows:

In iCAP, assertions can be shared between multiple threads. In this case we need to establish that each
assertion is stable, i.e. invariant under changes performed by other threads. The explicit stabilisation oper-
ators |—| and [—] in the specification are needed because P might contain assertions about shared state.
These are discussed further at the end of the section, in §3.5. For the moment, note that if P is a thread-local
assertion such as z +— v, then |P| <= P <= [P].



{X»—),*yl—>,}
*x = 0; *y = 0; chan *i = newchan();

{x»—>0*yn—>0*send(i,xn—>5*y'—>5)*recv(i7xn—>5*yn—>5)}
{x»—)O*y|—>0*send(i7x»—>5*y»—>5)} {recv(i,xH5*yH5)}
f1(x,y,5,1) f2(x,y,11,1)
{emp} {x»—> 16 xy — 16}
x— 16%xy+— 16

PAR rule
application.

This proof establishes that the parallelized version of the program satisfies the same speci-
fication as the sequential original.

3.2. Splitting waiters

It is often useful for several threads to receive resources via the same channel. This kind of
sharing is safe as long as the promised resources are split disjointly. It would be unsafe for
two threads to both gain access to x at the same time, but it is safe for one thread to access
x while another accesses y. Consider the following three threads:

*x = xy + 1;
signal (i)

wait(i);

Z = *X *y = 4

wait(i);

The first thread signals on i to indicate that it has finished with both x and y. The other two
threads both wait on this signal, and each use a different aspect of the promised resource.

To support splitting, we add a property to the specification allowing threads to divide
promised resources:

{recv(a, P) % |[P] = (P * P5)]} (skip) {recv(a, P;)*recv(a,Py)}

This axiom states that when a thread has been promised a resource P, access can be split
between two threads, potentially before the resource is available. The specification uses sep-
aration logic’s separating implication operator — (separating implication and separating
conjuction have a similar relationship shared by classical implication, =, and classical con-
junction, A, i.e. they are adjoint). The assertion P — (Py*xP,) asserts ownership of a resource
that when combined with P can be split into P; and P». As the resource P is promised by
the recv predicate, the result of applying this property is two new recv predicates, one of
which promises P;, and the other Ps.

Note that this property is not a logical entailment — applying it requires an opera-
tional step, skip. This is because the property manipulates a shared higher-order resource:
recv(a, P). To avoid problems with self-reference, iCAP requires that such manipulations
correspond with operational steps. This anomaly is discussed when we introduce iCAP in
84.1. To use this property, we have to assume that every application in a proof is associated
with a skip. We discuss whether this assumption is justified in §4.1.

3.3. Chains and renunciation

To allow many threads to access related resources in sequence, we can construct a chain
of channels. A wait barrier called on a channel waits for signal barriers on all preceding
channels. We use the ordering in a chain to model the logical ordering between a sequence
of parallelized threads. A chain initially consists of a singleton channel constructed using
newchan. We introduce an operation extend which takes as its argument an existing channel,
and creates a new channel immediately preceding it in the chain.



Connecting channels into chains creates a new opportunity for parallelism: the ability to
renounce access to a resource without acquiring it first. In the simple specification given
above, a thread can only call signal if it has acquired the required resource from its
predecessors. However, this is often unnecessary. For example, if we take the second branch
of the conditional in £, we do not need the heap location y. It is safe to notify future threads
that y is available, conditional on all logically prior threads releasing it, even though the
thread itself never acquired access to the resource. Without renunciation the thread would
have to wait for all the logically earlier threads to signal before it could proceed.

Chains. To support chains, we introduce an order predicate ‘- < _” which represents the
order between links in the chain. x < y asserts that the channel z is earlier in the chain
than channel y. We use two axioms about the ordering of channels:

rT<y = r<y*xr <Yy (duplication)
T<LYyxy<z — xr <2 (transitivity)

The abstract specification of extend takes a send predicate and a set of order predicates
about earlier channels F, and a set of order predicates about later channels L. The function
returns a pair of channels (a,b), that are later than all the channels before x and before
all the channels after x, and a is before b in the chain. It also creates recv, send, and order
predicates representing the new channel.

{send(x, P) x } (2, b)=extend (x) { send(a, Q) * recv(a, @) * send(b, P) }

Pecpe<x*xPcpx =<1 xa<bxP.cpe<arxP b=l

Renuncation. To support renunciation, we add an axiom allowing threads to satisfy re-
quired resources using earlier promised resources:

{recv(z, P) xsend(y,Q) xx <y} (skip) {send(y,P @)}

Using this specification, we can partially discharge a send using the preceding recv predicate.
The assertion P — Q stands for the resource which gives Q) if combined with a resource
satisfying P. Thus, combining it with the predicate recv(x, P) provides Q. In other words,
the thread gives up the ability to ever acquire the resource, and instead forwards this ability
to logically later threads. When the resource becomes available from prior threads, the next
thread in the order will receive it (unless it, too, renounces the resource).

3.4. Full abstract specification

Figure 2 shows our full abstract specification for deterministic parallelism. It introduces the
extra predicates and axioms to support chains, renunciation and splitting.

Example parallelisation. Suppose we want to run many copies of the function f in se-
quence, for example over an array of values vs.

for(j = 0; j < max; j++){
f(x,y,vs[iD);
}

To parallelize this program, we define £p (left of Fig. 3) a version of £ which is safe to run in
parallel with many copies of itself. To do this, £ is modified to call both signal and wait.
Each call to f receives the resource from logically earlier threads (those invoked in earlier
loop iterations) with wait, then releases it to logically later threads (those invoked in later
loop iterations) using signal.

In the original transformation involving £f1 and f£2, we did not distinguish between the
resources x and y. However, we need to gain access to y only if we take the first branch



SPECIFICATIONS:
{emp} i = newchan()  {recv(i, P) xsend(i, P)}

{send(i, P) * | P]} signal(i) {emp}
{recv(i, P)} wait (i) {[PT}
send(x, P) send(a, Q) * recv(a, Q) * send(b, P)
,b) = d
{®56E6-<x*®l€Lx-<l} (a,b) = extend(x) {*a<b*®e€Ee<a*®l€Lb-<l

AXIOMS: r<y = z<yxr<y

rT<Yyxy <z - r <z
{recv(z, P) xsend(y, Q) xx < y} (skip) {send(y,P = Q)}
{recv(a, P) x |[P] = (P, x P»)|} (skip) {recv(a,P))x*recv(a,P)}

Fig. 2. Full abstract specification for deterministic parallelism.

FUNCTION DEFINITION: PROGRAM BODY:
fp(x,y,v,ix,iy,ixp,iyp) { ixf = newchan();
wait(ixp); (ixn,ixf) = extend(ixf);
if (xx < 10) { signal(ixn) ;
wait (iyp); iyf = newchan();
Xy = *y + v; (iyn,iyf) = extend(iyf);
signal(iy); signal(iyn);
*X = *X + V; for(j = 0; j < max; j++){
signal (ix); v = vs[jl;
} else { ixl = ixn;
signal(ix); (ixn,ixf) = extend(ixf);
signal(iy); iyl = iyn;
sleep(rand()); (iyn,iyf) = extend(iyf);
T fork( fp(x,y,v,ixn,iyn,ix1l,iyl) );
} }

wait(ixn);
wait(iyn) ;

Fig. 3. Example parallelization of £ and a client.
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{recv(ixp,x — _) xsend(ix, x — _) x recv(iyp,y — -) x send(iy,y — _) * iyp < iy}

fp(x,y,v,ix,iy,ixp,iyp) {
wait (ixp);

{x — _xsend(ix, x — _) x recv(iyp,y — _) x send(iy,y — _) x iyp < iy}

if (xx < 10) {
wait(iyp);

x»—>,*y»—>,>}<send(ix,x»—>,)*Send(iy,yH,)}
Xy = ¥y + v
signal(iy);

{x — _*send(ix, x — ,)}

XX = *X + V;

signal (ix);
} else {

signal(ix);

{recv(iyp,y — _) xsend(iy,y — _) * iyp < iy}
signal(iy);
{emp}

sleep(rand());
}

Fig. 4. Proof for parallelized program fp.

of the conditional. Otherwise we can release y to logically future threads. To realise this
parallelism in the new version of f, we use two chains of channels: one for x, and one for
y. The function takes arguments ix and iy representing the next points in the two chains,
and ixp and iyp representing the previous points.

In Fig. 4, we verify fp against the following specification:

recv(ixp,x — _) * send(ix, x — _) x
) ) } ) fp(...) {emp}
recv(iyp,y — _) *send(iy,y — _) x iyp < iy

Note that we only prove basic memory safety, but we could easily verify stronger invariants.

Line 16 in Fig. 4 is noteworthy. There, the precondition does not assert that the thread
has access to y — _; rather, it asserts it can acquire access by calling wait. Instead of doing
this, the thread renounces access to the resource without ever holding it.

The parallelized version of the client program is given on the right of Fig. 3; a proof of
correctness is given in Fig. 5. The predicates send(ixf,true) and send(iyf, true) represent
the logically last element of the chain, while array() stands for the array holding processed
values.

Thus, using our abstract specification, we have shown that our parallelized version of the
program is memory-safe. With a little more effort, we could verify the behaviour of the
program. Crucially, even though this program features many threads running at once, with
complex communication between threads, each individual thread is able to reason locally,
without dealing with other threads or the implementation of the barriers. While the example
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{x kY ok array(vs,max)}
ixf = newchan();

(ixn,ixf) = extend(ixf);
signal(ixn);

{y — _* array(vs,max) * recv(ixn, x — _) * send(ixf, true) % ixn < ixf}

iyf = newchan();
(iyn,iyf) = extend(iyf);
signal(iyn);

{array(vs,max) x recv(ixn, x — _) x send(ixf, true) x ixn < ixf}
9
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11
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« recv(iyn, y — ) x send(iyf, true) x iyn < iyf
for(j = 0; j < max; j++){
ixl = ixn;
(ixn,ixf) = extend(ixf);
array(vs,max) * recv(ixl, x — _) * send(ixn, x — _)
« recv(ixn, x — _) x send(ixf, true) * ixn < ixf
« recv(iyn, y — _) x send(iyf,true) * iyn < iyf
iyl = iyn;
(iyn,iyf) = extend(iyf);
array(vs, max) * recv(ixl, x — _) * send(ixn, x — _)
xrecv(ixn, x — _) x send(ixf, true) x ixn < ixf
« recv(iyl, y — _) xsend(iyn, y — _) x iyl < iyn
x recv(iyn, y — _) x send(iyf,true) * iyn < iyf
fork( fp(x,y,vs[jl,ixn,iyn,ixl,iyl) ); // apply function spec.
}
wait (ixn) ;
wait(iyn);

{array(vs,max) KKy kY > ,}
Fig. 5. Proof of fp client program.

given here is trivial, in [Botin¢an et al. 2013] we use the same mechanism as the basis for a
general parallelisation analysis.

3.5. Explicit Stabilisation

Our abstract specification includes the assertion |P| in the precondition to signal(), and
[P] in the postcondition to wait (), as well as similar assertions in the axiom for splitting.
|—] and [—] are explicit stabilisation operators [Wickerson et al. 2010].

In iCAP assertions can refer to resources shared between threads. Any such assertion in
the proof of one thread could potentially be invalidated by interference from other threads.
Therefore, any assertion in iCAP must be stable, meaning invariant under the worst-case
interference from other threads (we inherit this terminology from Jones’s rely-guarantee
logic). In our abstract specification, higher-order arguments such as P could include asser-
tions about shared state. Thus, P and similar assertions must be provably stable.

In our conference paper [Dodds et al. 2011] we used a predicate stable(P) to explicitly
assert stability of P the specification. However, this predicate is hard to manipulate in proofs



struct chan { signal(chan *x) {

int flag; x->flag := 1;
¥ ¥
chan *newchan() { wait(chan *x) {
chan *x := new(chan); while(x->flag == 0)
x->flag := 0; skip;
return x; }
}

Fig. 6. Implementation of the barrier library.

because it satisfies few distribution properties. This is especially problematic for assertions
containing separating implication, —. In this paper, we instead use explicit stabilization
operators, which strengthen or weaken an assertion until it is stable:

— | P| stands for the weakest assertion stronger than P that is stable.
— [ P] stands for the strongest assertion weaker than P that is stable.

Two properties of explicit stabilization operators make them easy to remove if not needed:

—If P is already stable, then |P| <= P <= [P]. This holds by default if P contains
no shared assertions nor predicate variables.
—|P] = P = [P].

Furthermore, explicit stabilisation operators are semi-distributive over separating conjunc-
tion. As a result, they are easy to move around in proofs.

— P * Q] = |PxQ]
—[PxQ] = [P]*[Q].

The predicate stable is much harder to use in proofs, because the only one of these properties
that holds is the first one, elimination if the assertion contains no shared assertions or
predicate variables. The properties are especially useful when combined with separating
implication. We use — extensively, but are aware of no other approach that would allow
reasoning about the stability of complex assertions that include separating implication. The
following Lemma provides the common pattern of our usage:

LEMMA 3.1. If P stable and P x@Q = R, then P = |Q —« R|.

4. PROOF STRATEGY FOR THE SIMPLIFIED SPECIFICATION

This section provides an intuitive introduction to our general proof approach, and to iCAP,
the reasoning system our proofs are based on. To motivate this, we define a very simple
channel implementation and verify it with respect to just the first three axioms of our
abstract specification:

{emp} i = newchan() {recv(i, P) *send(i, P)}
{send(i, P) * |P]} signal(i) {emp}
{recv(i, P)} wait (i) {IP]}

By avoiding splitting, chain extension, and renunciation, we can illustrate the basic features
of iCAP in a straightforward manner. In §5 and §6 we reintroduce the necessary extra
reasoning to verify our full abstract specification.



Figure 6 gives a simple barrier implementation. Each channel has a flag field representing
the current state of the channel. Each send / recv pair is associated with one such structure
in the heap. The signal simple sets the flag, while the wait loops until the flag is set.

4.1. Introduction to iCAP

Before we can present our verification, we need to sketch the key details of the logic we use:
Impredicative Concurrent Abstract Predicates (1ICAP). iCAP is a separation logic variant
intended for verifying concurrent higher-order programs. Full details are given in [Svendsen
and Birkedal 2014a].

To handle concurrency, iCAP extends separation logic with regions containing resources
shared between threads. Resources stored in a region must be modified atomically in a way
that satisfies the expectations of the other threads. An assertion about a region has the
following form:

region(R, T, I,r)

In this assertion, R is the set of abstract states which the region could currently occupy.
These possible states are taken from a larger set, fixed when the region is created. I maps
from abstract states to invariants, also written in iCAP’s assertion language. Intuitively,
I(x) describes the resources the shared region owns in the abstract state z € R. To allow
multiple distinct regions, r is a unique identifier for this region.

The remaining field, T, is a transition relation over abstract states, with transitions
labelled with actions. T and I express the protocol that all threads must adhere to when
accessing the region. Threads are only allowed to move a region from one abstract state
to another if there exists a path in the labelled transition system 7' labelled with actions
owned by the given thread. Ownership of actions is tracked using tokens. For instance, the
following assertion asserts ownership of a set and change token: [set]* * [change]’*. Here 7
and ry are the identifiers for the associated regions, while ¢ and j are fractional parameters
tracking how ownership of each token is shared.

Tokens are linear objects created at the same time as a region — by issuing threads with
different tokens, we grant them different abilities over the shared region. A token with full
permission (i = 1) asserts exclusive ownership of the action and thus ensures that no other
thread can use the given action to change the abstract state of the shared region. Tokens
can be split arbitrarily: [a]], ; < [a]} *[a]]. In contrast, region assertions can be duplicated
arbitrarily:

region(R,T,1,7) = region(R,T,I,r) *region(R,T,1I,r)

Thus, each region assertion should be interpreted as one view on a resource shared between
many threads. Such a region assertion, region(R, T, I,r) is stable (i.e., closed under possible
inference from the environment) if the set R is closed under all transitions in T labelled
with actions potentially owned by the environment.

As well as information about the underlying memory cells, the abstract state of region
captures auxiliary state representing the way threads can interact. To manipulate this auxil-
iary state, iICAP uses the view-shift operator C. View-shift generalises standard implication
to allow creation, destruction and manipulation of regions.

As a convenience, we assume that we can garbage collect unwanted portions of assertions.
As we mostly apply this to logical constructs, this assumption loses little generality, and in
any case could easily be lifted at the cost of larger proofs.

Higher-order assertions and ‘later’. The features discussed above could equally be ex-
pressed in prior logics such as RGSep [Vafeiadis and Parkinson 2007]. The distinction with
iCAP is that it is based on a higher-order separation logic and supports shared higher-order
resources — i.e., shared regions containing shared resources.



It is well-known that reasoning about shared higher-order resources is difficult (for exam-
ple, see the problems with our previous paper discussed in §8). Intuitively, this is because
the semantics of protocols is defined in terms of the semantics of assertions, but assertions
are defined in terms of protocols. To avoid this problematic circularity, iCAP stratifies the
construction of the semantic domain of protocols using step-indexing. To capture this strati-
fication in the logic, iICAP introduces a ‘later’ modality, written >. Intuitively, >P expresses
that the assertion P holds after one step of execution. To ensure that protocols defined in
iCAP are well-defined they are implicitly interpreted one step later. The region assertion
region({z},T,I,7) thus expresses that the shared region r currently owns the resources
described by >I(zx).

If an assertion P holds now, then it also holds after one step of execution. This is expressed
by the (SMono) rule given below. In general, if >P holds now, it is not the case that P
also holds now. Instead, > operators can be eliminated by taking an execution step, as
expressed by the frame rule for atomic commands (AFrame). Using (SMono) and the rule
of consequence, one can derive the standard CAP frame rule.

P = P (SMonNo)
atomic(C') Astable(R) A{P} C {Q} = {P=*>R} C {Q* R} (AFRAME)

The effect of this is that accesses to shared resources in regions coincide with operational
steps in the program. This breaks the circularity and gives iCAP a well-defined semantics.
However, it also means that splitting and renunciation must be associated with an explicit
skip instruction to justify the transfer of shared resources in and out of regions. While
these skip instructions are crucial to the well-definedness of protocols, they can typically
be eliminated once we consider a whole program. In particular, for pre- and postcondi-
tions expressible in first-order separation logic, iCAP is adequate with respect to first-order
separation logic [Svendsen and Birkedal 2014b] and in first-order separation logic skip
instructions can freely be eliminated. Hence, if P and @ are expressible in first-order sepa-
ration logic and F;cap {P} C {Q}, then Fgr, {P} C {Q}, where C is C stripped of skip

instructions.

Properties of ‘later’. The later operator commutes over conjunction, disjunction and sep-
arating conjunction and semi-commutes over implication and separating implication:

>(PAQ) < pPAPQ, >(PVQ) < >pPV>Q, >(PxQ) < >pPx>Q (LBIN)
>(P = Q) = pP =1Q, (P Q) = pP —*>Q (LIMPL/LWAND)

Later also commutes over existential and universal quantification over non-empty types 7:
>dz: 7. P(x) <= Jz:7. > P(z), pVr:7. P(x) <= Vo :7. > P(z) (LQUANT)

In proof outlines we often apply these properties silently. Lastly, later can be moved freely
in and out of stabilization brackets.

>[P] < [>P], > P| < [pP] (LCEIL/LFLOOR)

Reasoning about shared regions. All statements that access resources owned by shared
regions must be atomic and obey the protocols of the regions in question. To illustrate how
this is expressed formally, we consider a simplified proof rule for reasoning about shared
regions. We refer to the iCAP technical report [Svendsen and Birkedal 2014b] for the general
proof rules.

We reason about shared regions using rules that allow us to treat the shared resources as
local reasources for the duration of an atomic statement. We refer to these rules as “region
opening” rules and as entering and exiting a shared region in proof outlines. To illustrate,
consider the verification of an atomic statement C' that changes the abstract state of a



shared region r from x to y:

{region({z},T,I,r) * [a], * P} C {region({y},T,I,7)* Q}

To prove that this triple holds, we must first prove that we own sufficient permissions
to change the abstract state from x to y. In this case we own non-exclusive permission
to the « action. We thus have to prove that there is an a-labelled path from z to y in
the transition system 7. Furthermore, we have to prove that C' does indeed transform
the resources associated with abstract state x to those associated with abstract state y,
according to I. Since protocols are implicitly interpreted one step later, we have to prove
the following triple:

{PI(z) * [al + P} C {>1(y) * Q}

Here P and @ can be used to transfer local resources in and out of the shared region as
appropriate.

Imagine that I = Av. [ — v and C' is the atomic statement [ := y. Then we would be left
with the following proof obligation (after instantiating P and @ with emp).

Pl—=a)x[al} =y {Pl—y}

Conceptually, this is provable because primitive points-to assertions, such as | — =z, are
independent of the step-indexing. This is capture by the structural (LPOINTS) rule given
below, which allows us to remove a later from the pre-condition of a points-to assertion.

atomic(C) A{z — y} C {Q} = {pz—y} C {Q} (LPOINTS)

4.2. Verifying the Simple Implementation

Verifying the implementation shown in Figure 6 with respect to the abstract specification
amounts to giving concrete definitions to the abstract predicates send and recv, and then
using iCAP to prove that the resulting concrete specification is satisfied.

We begin by defining the structure of the shared region. There are three possible abstract
states: either the flag is low, or the flag is high and the sent resource is available, or the flag
is high and the resource has been taken (we call this ‘done’). We define three corresponding
states: {Low, High, Done}. Each abstract state is associated with an invariant by Iy, defined
as follows:

Iy(z, P)(Low) = x.flag—0
Iy(z, P)(High) = z.flag+ 1% [P]
a

Iy(z, P)(Done) z.flag — 1

Here z is the location of the channel, while P is the resource controlled by the channel.
Note that moving from Low to High requires the resource [P] and setting the flag, while
moving from High to Done removes [P].

To ensure that these regions are invariant in concurrent contexts, we need to show that the
interpretation of each abstract state, High, Low and Done, is stable. For these definitions,
this is simple. Stability distributes over separating conjunction, so we can consider each
conjunct separately. Points-to assertions are automatically stable. Furthermore, the higher-
order parameter P is wrapped in explicit stabilization operators [—], ensuring that it is
also stable.

The transition relation 7} has the following form. Each transition corresponds to an
operation that can be performed on the channel.
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{send(x, P) = |P|}
signal(chan *x) {
// definition of send.

{region({Low},Tb7 Iy(x, P),r) * [set]] = LPJ}

// enter the region.
{D(x.ﬂag — 0) * [set]] x LPJ}

// drop > using LPoints
{x.ﬂag — 0 * [set]] * LPJ}

x->flag := 1;

x.flag — 1 % [set]] * LPJ}

// flip explicit stabilization with |P] — [P].
{x.ﬁag — 1% [set]] * (PW}

// close region and delete set token.
{ region({High}, Tv, Tu(x, P),) |
// stabilise the region’s abstract state.
{region({High, Done},Tb,Ib(x,P),r)}
}

{om)

Fig. 7. Proof of signal() using simple predicate definitions.

set get

Using these definitions, we can give the predicates send and recv an interpretation:

send(z, P) £ Jr. region({Low}, Ty, Ip(z, P), 1) * [set]]
recv(z, P) £ 3r. region({Low, High}, Ty, Iy (z, P),7) * [get]]

The send predicate asserts that the shared region is Low — otherwise we could not send the
resource. On the other hand, recv asserts it is either Low or High, but not Done. [set]] and
[get]] are tokens allowing the thread to take particular transitions in Tp. The send predicate
allows the thread to set the flag and supply the resource, while recv allows the thread to
retrieve the supplied resource.

Figures 7 and 8 show sketch proofs for signal() and wait() respectively. Both proofs
involve accessing resources stored in the shared region — for example, signal enters the
region between lines 5—13 of Fig. 7. This whole section corresponds to one atomic action.
On entering the region at line 6, note the region invariant is wrapped in a > operator, but
this can be dropped immediately using the LPOINTS rule.

When closing the region (Fig. 7, line 13), the resulting invariant must satisfy one of the
abstract states. By examining the definition of I, above, observe that High is satisfied.



PROOF BODY:

1 {recv(x7 P)}

2 wait(chan *x) {

3 int b;

4 do {

5 {region({Low, High}, Tb,, In(x, P), r) * [get]{}

6 // case-split on Low / High.

7 {(region({Low},Tb,Ib(x, P),r) V region({High}, Ty, Ip(x, P), 1)) * [get]{}
8 b = x->flag; // Low & High cases given below.

(region({Low, High}, Ty, I (x, P),7) * [get]] Ab=10) V
(region({Done}, Ty, Ip(x, P),r) * [get]] x [P] Ab=1)
10 } while (b == 0)
11} // Garbage collect the shared region assertions.

=P}

Low CASE: HIGH CASE:

1 {region({Low}, Th, In(x, P), 1) * [getH} 1 {region({High},Tb,Ib(x, P),r) x [get]?}
2 // open region 2 // open region

3 {D(x.ﬂag — 0) % [get]{'} 3 {D(x.ﬂag — 1 [P]) % [get]'l'}

4« // drop > and read value. 4« // drop > and read value.

5 b = x->flag; 5 b = x->flag;

6 {x.ﬂag — 0« [get]] Ab= O} 6 {x.ﬂag — 1% [P] *[get]] Ab= 1}

7 // close region, and stabilise 7 // close region.

{region({Low, High},Tbe(x,P),r)} 8 {region({DoneLTb?Ib(x,P),r)}

* [get]] Ab=0 *x [P *[get]] Ab=1

Fig. 8. Proof of wait () using simple predicate definitions.

Furthermore, because the thread holds the set token, according to the transition relation
T, it is allowed to move from the Low (line 4) to the High (line 14) abstract state.

The final step of the proof is to ensure that all assertions are stable, i.e. invariant under
interference from other threads. By itself, the assertion region({High}, Ty, Iy(x, P),r) is un-
stable, because according to 7}, some thread could move the region from High to Done. On
line 15 we weaken the set of abstract states to add Done. This assertion is stable.

The proof of wait (Fig. 8) uses similar reasoning. The main difference is that the region
has two initial abstract states, Low and High, and that the thread holds the token get,
allowing it to transition from High to Done. We deal with the Low and High cases separately
— see bottom left and right of Fig. 8. In the Low case, the resource has not been sent yet
and we close the region in the Low state again. In the High case, the resource has been sent
and we use the thread’s get token to take ownership of [ P] and close the region in the Done
state.



5. SPLITTING CHANNELS
In this section, we extend our proof to cover splitting, expressed by the following axiom:

{recv(a, P) x | [P] = (P * P5)|} (skip) {recv(a, P;)*recv(a, Py)}

Verifying this axiom requires us to introduce some extra logical machinery. (As the simple
implementation sequentialises signalling, we leave extension and renunciation to §6.)

5.1. Saved Propositions

The splitting axiom requires the proof to manipulate offered resource: the resource parame-
ter to recv has to be be split into two separate offered resources. For example, in the axiom,
the offered resource P is split into resources P, and P,. As the splitting axiom is exposed
to the client, P, P; and P, cannot be fixed in the proof; they are chosen by the client.

In iCAP, modifications to a shared region must be represented in the transition system for
the region. An obvious (but wrong) way to represent splitting is to parameterise transition
system states with sets of propositions representing the splitting. Then we would have tran-
sition system states Low(Z) and High(Z), with Z € Ppy, (Prop) representing the splittings.
In the case of the axiom, we would then have the transition:

Low(Z & {P}) ~ Low(Z & {Py, P;})

However, iCAP does not support states and actions indexed by step-indexed sets, such
as Prop (the type of assertions). Our solution is to introduce a new logical construct we
call a saved proposition. One can see saved propositions as capturing some the features of
higher-order propositions stored in the heap. However, unlike true HO stored propositions,
we can encode and verify saved propositions as predicates in iCAP, avoiding the need to
develop a new logic. In our proofs, saved propositions have all the properties we need, and
we are uncertain whether there would be any benefit in extending iCAP with true HO
stored propositions. Our encoding of saved propositions is given in Appendix A.

A saved proposition, written 7 = P, associates an identifier 7 with a proposition P. As r
comes from a non step-indexed set (in fact RID, the set of region names) we can parameterise
transition system states by them. We thus represent each splitting by a set of identifiers
combined with a collection of saved propositions. In the case of the axiom, we would assume

saved propositions 7 £ P % 11 E=> P, % ro == P, and give the transition as:

Low(Z W {r}) ~ Low(Z W {r1,ra})
ngh(I&J {’r}) ~s HIgh(I&J {’I“l,?“g})

The difference is subtle but important. By introducing the indirection from identifiers to
propositions we lose some properties. Most importantly, we cannot easily unify saved propo-
sitions: given r E=> P and r £ Q, in general it does not hold that P = Q. However, saved
propositions still satisfy enough properties that we can verify the splitting axiom.

In addition to the identifier » and proposition P, we also have a fractional parameter
m € (0,1] which records how the saved proposition has been shared between threads. In
other words, it serves the same role as fractional permissions for heap cells in standard
separation logic [Bornat et al. 2005].



We require that saved propositions satisfy the following four properties:

emp — Ir.res P (1)
T1+7T2 .
rEs Pxr s P o« r=——"r Zf(me)Sl (2)
false otherwise
rES PxrE2s Q = rE= PxriEe= Qx* (0P =pQ) 3)
1 P T2 - T
rE=s Prr s Qx = re= PxrE Qx X «>(ZxY) (4)
(X =+>(Q*Y))x (P —=2)

Property (1) allows us to create a saved proposition for an arbitrary proposition P. Property
(2) says that saved propositions are linear, meaning we can split and join them without
worrying about unwanted duplication. Observe that the fractions m; and w9 are used to track
splitting. Property (3) says that holding two saved propositions on the same region allow us
to convert from one to another. This is a fixed version of the unification property discussed
above. The iCAP later operator b is needed because we use shared regions internally in the
definition of saved propositions. Property (4) says that we can apply property (3) inside
separating implications. This is useful in the proof when modifying a resource embedded
into a larger assertion.

5.2. Predicate Definitions for send and recv

Once again, we begin by defining the structure of a region. Abstract states are now terms
of the form Low(Z) and High(Z), where Z is a finite set of region identifiers in Pg,(RID). We
use LoHi to stand for either Low or High. The Z parameter represents the set of outstanding
obligations, i.e. the resources that other threads expect to be supplied. As described above,
we use saved propositions to give an interpretation to these sets of region identifiers. If we
have the abstract state Low(Z) or High(Z), then each ¢ € Z corresponds to a thread which
expects to receive a resource. To find out what resource P is expected, we examine the
associated saved proposition i £= P.

Actions in the transition relation Ty, are of the form send and change(r), where r is a
region identifier. The first action, send, sets the flag, and simply moves from Low to High.
The second, change(r), is both the action of taking the resource associated to region r when
the flag is high, and splitting the resource from region r to the resource required by r; and
To.

Tm(send)

{(Low(Z), High(Z))}

{(High(Z w {r}), High(Z))} U {(Low(Z & {r}), Low(Z & {r1,72}))}
U {(High(Z @ {r}), High(Z & {r1,m2}))}

T (change(r))



The invariants associated with Low and High are defined as follows:

Im(x, 7, P)(Low(Z)) £ x.flag — 0 * waiting(P, Z) * changes,.(Z)

Im(, 7, P)(High(Z)) £ x.flag + 1 * ress(Z)  changes,.(Z)

where
waiting(P,Z) 2 3Q: T — Prop. |(+P) > ®.Q(1)] * ®.i -2 Qi)
i€T i€T
ress(Z) £ & 3R.i ENy >R
i€T
changes,.(Z) & ® .[change(r')]]
r'¢T

The definitions here use three auxiliary predicates: waiting, standing for resources that have
been promised but not supplied; ress, standing for resources once they have been supplied;
and changes, standing for change permissions on unused regions — this allows new shared
propositions to be added when splitting.

The representation of Low consists of the flag, change tokens, and the waiting predicate.
waiting(P,Z) requires the existence of a mapping @ from region identifiers, to propositions
representing obligations to other threads. The obligations for different threads are tied to-

gether using fractional shared propositions i N Q(i). The assertion | (>P) > ®;cz. Q(i)]
means that supplying the resource P will satisfy each obligation Q(7).
The representation of the High state consists of the flag and change tokens, and the ress

predicate. ress(Z) pairs together fractional saved propositions, ¢ 31/:2> R with resources [>R].
The other half of each saved proposition is held by the thread that has been promised the
resource through the recv predicate (see below). This ensures that all threads that have
been promised resources can claim them.

We use a shorthand for the region assertion in our definitions and proofs:

creg(z,r, P, S) £ region(S, Tp, Im(, 7, P), 1)
The definition of the send predicate is now straightforward. It asserts that the region is

in a Low state, and holds the unique permission to perform the send action.

send(z, P) £ 3r.creg(x,r, P,{Low(Z) | true}) * [send]]

The definition of recv(x, Q) predicate is more complex. It includes 7’/ tl/:2;> @, half the
permission on the saved proposition Q. It also asserts that r’ is one of identifiers recorded
in the region. This ensures that the resource retrieved from the shared region is the correct
one, i.e. the one that was promised (see the next section for the reasoning steps involved).

recv(z,Q) £ 3R, 7,7 .creg(z,r, R, {LoHi(Z) | 7' € I}) » ' N Q * [change(r")]}

5.3. Proofs of newchan(), signal(), wait (), and the Splitting Axiom

Proving newchan. The proof of newchan (Fig. 9) works by allocating an abstract region
containing the concrete state for the channel. Most steps in the proof are are straightforward.
The challenging ones are line 6 — creating the stabilised assertion — and line 10 — the view-
shift which creates the region itself. In line 6, we need the following implication:

emp = |(bP) = (>P)]|

To show this holds, we observe that for any X, emp = X — X, and that emp is always
stable. The implication then follows by monotonicity of explicit stabilisation brackets, (A =
B) = (lA] = [B)).
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chan *newchan() {

chan *x := new(chan);
x—>flag := O;
{x.ﬂag — 0}

// Create floor assertion

{xflag 0% [(>P) = (&-P) }

skip; // Create saved proposition

{37"1. ry B P xx.flag — 0 x [(>P) —¢ (1>P)j}

// Create channel region

{31, ram1 £25 P s creg(x, ra, P, {Low({r1})}) * [send]}? + [change(ry )] }
// Satisfy the send predicate

{37"1,1"2 send(x, P) x rq Ly Py creg(x, 2, P, {Low({r1})}) = [change(rl)]?}
Y/ Sa.tzsfy the recv predicate

{send

* recv(x, P)}

Fig. 9. Proof of newchan() w.r.t. the full specification.

Line 10 requires us to prove the following view-shift:

r s Prx s 0% |(5P) = (5P))
C  dry.creg(x,re, P, {Low({r1},0)}) = [send]}? * [change(r1)]}?

To prove this, we appeal to iCAP’s VALLOC rule, which controls construction of new regions.

Proving signal. The proof of signal (Fig. 10) works by opening the channel region
(line 4), merging in the supplied resource | P] to give the promised resources (line 12), and
closing the region again (line 16). When we close the region we also need to confirm that the
transition from Low(Z) to High(Z) to is allowed, but this is simple: it’s the only transition
associated to send by T,,. The trickiest step is the merging of the resource into the region
(line 12), embodied by the following lemma.

LEMMA 5.1. | P] * waiting(P,Z) C ress(Z)

PRrOOF.

| P| * waiting(P,T)

C [P] #3Q: T — Prop. [P — > ®icz. Q)] * (Ricz. i E2 Q1))
C 3Q: T — Prop. [b®icz. Q)] * (®icz. i £ Q1))

C 3Q: T~ Prop. (@iez. [PQ(0)]) * (Bicz.i F= Q(i)
(®yer.3R.i 225 R+ [R])

ress(Z)

M1 1m

To prove the second step, we appeal to the fact that | —] is semi-distributitive over sepa-
rating conjunction, |A| * |B] = |A x B], and modus ponens for separating implication,
Ax(A—~«B) = B. The third step follows from the fact that [—] is weaker than |—|, and
[—] is semi-distributitive over separating conjunction, [A x B] = [A] * [B]. O
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{send(x, P) = |P|}
signal(chan *x) {
{creg(x, r, P, {Low(T) | true}) « [send]; « [P }
// open the region. Low(Z) is an arbitrary member of {Low(Z') | true}.
{I>Im (x,7, P)(Low(Z)) * [send]] * | P J}
// invariant definition.
[send]] * | P] x> (x.flag — 0 * waiting(P,Z) = changesT(I))}
// pull out points-to using LBin and LPoints.
[send]] * | P]  x.flag — 0 * > (waiting(P, Z) changesT(I))}
x->flag := 1; // rewrite flag, drop > using AFrame
[send]] * | P] * x.flag + 1 * waiting(P, ) * changes,.(I)}
// Lemma 5.1, add a > using SMono.
[send]] * >(x.flag > 1 * ress(Z) = changesT(I))}
// Invariant definition.
{[send]f oI (x, 7, P)(High(2)) }
// close the region.
{[send]’{ x creg(x,r, P, {High(Z') | true})}
} // delete unneeded predicates.

(om)

— S

Fig. 10. Proof of signal() w.r.t. the full specification.

Proving wait. In the proof of wait (Fig. 11) we open the shared region (line 4), extract
the required resource (line 11) and close the region again (line 15). For simplicity, we assume
that the abstract state is High; if not, the algorithm spins doing nothing until it is the case.
Each promised resource is associated with a region identifier ¢ in the set Z; removing the
resource is modelled abstractly by removing ¢. This abstract transition is allowed by the
[change] permission. The key step in the proof is extracting the resource (line 11), embodied
by the following lemma.

LEMMA 5.2. 7 E2s Px ress(Z W {r}) C ress(Z) x| P

PROOF. 1 25 P ress(Z W {r})
rels P s ress(Z) « 3R. 1 2 R+ [bR] (Rearrange)

r 2 P ress(Z) * 3R.r 25 R+ [>P] (Property 3, mono of [—])
ress(Z) = >[ P] (LCEIL/LFLOOR)

I 1

d

Proving the Splitting Aziom. In our specification, splitting must always be associated with
a skip step. It should now be clear why we need this: a skip step allows us to enter the
shared region and get rid of . We present the proof outline in Figure 12. The core of the
proof is two lemmas which express splitting in the Low and High cases.



1 {recv(x7 P)}

> wait(chan *x) {

3 {HR, ror’or! 2L Py [change(r")]} * creg(x,r, R, {LoHi(Z") | ' € I’})}
1+ // Open the region. Only constider the High case.

5 {r’ eInr 2 P s [change(r’)]} * >1n (%, 7, R)(High(I))}
6 // Apply invariant definition
7 // Pull out points-to using LBin and LPoints

s {r eTAr 2 Py [change(r’)]} * x.flag — 1 % >(ress(Z) x changesr(l’))}
9 assume (x- >f1ag == 1) // drop > using AFrame, push in [change(r')] perm.

10 {r cInr L Prx flag — 1 % ress(Z) = changes,(Z W {r’})}

11 // Lemma 5.2, add > using SMono
12 {D[P x>(x.flag — 1 xress(Z \ {r'}) * changes,.(Z \ {r’}))}
13 // Invariant definition

wo [P el (e, R)(HiGh(T\ {7}) |

15 // close the region

o {Dm « 3R, 1. creg(x, r, R, {High(Z) | true})}
17 // abstract garbage collect

v {orP1}

1}

Fig. 11. Proof of wait() w.r.t. the full specification.

1 {recv(x, P)x [[P] = Py = P2J}

2 {HR,r, o7 25 P s [change(r”)]}  creg(x, r, R, {LoHi(Z') | ' € T'}) = | [P] — P, * PQJ}
3 // Open the region using an arbitrary state containing 1’
o {BRr 7 2L P [change(r)]] oI (x,7, R)(LOHI(T W {17})) + [[P] ~ P, « P»] }
5 skip // Use AFrame to remove >
o {3R,r 1" 2 P s [change(r)]} * In(x, 7, R) (LoHi(T W {1"})) « [[P] —~ Py + Py }
7 // Lemma 5.5
. IR, 7, 11,721 N Py sy LN P, « [change(r1)]] * [change(r2)]]
* I (x,7, R)(LOHI(Z W {ry,72}))

9 // Close the region
o JR,r,ry,ra. 11 SEN Pyxry N Py x [change(r1)]] * [change(r2)]}

« creg(x,r, R, {LoHi(Z") | r1,72 € T'})

11 {recv(x7 Pp) * recv(x, P2>}

Fig. 12. Proof outline for splitting axiom.



LEMMA 5.3. 1 ES Px |[P] = Py * Py % waiting(R,ZWr)

C Jry,re.m1 tl/:2> Py xro Il/:2> Py x waiting(R,Z W {ry,72})
PROOF.
rels P s |[P] = Py * Py % waiting(R,Z W)
r L Py |[P] P # Py
3Q: TW{r} — Prop. [(>R) +> ®sczur- Q1) ] * (Biczur- i 22> Q(i)
Q. Tl—l/—*Z>P*Tt1£:>Q’* [[P] = Py % Po|
3Q: T — Prop. |(5R) Q' %> ®icz. Q(i)| * (®icr.i 22> Q(i))
[[P] =« Py % Py
3Q: T — Prop. [(5R) P b ®,ez. Q)| * (Bier.i -2 Q(i))
[[>P] = (>Py) * (>P2) ] *
3Q: T — Prop. |(5R) — [5P] b ®icz. Q)] * (Bicz.i F2> Q(i))
3Q: T — Prop. |[(5R) ~ (5P1) % (5Py) * > ®icz. Qi) | * (®Bicz. i -2 Qi)
Fry,r. 1 EN Py x1g LN Py Ary,re & Tk
3Q: T — Prop. [(5R) ~ (5P1) % (5Py) * > ®icz. Qi) | * (®Bicz. i -2 Qi)
Iry,re. 7y Il/:2> Py xro I%:> Pox
3Q: T {r1,ra} = Prop. [(oR) > @iczufr, r}- Q)] * (Biczwfr, ra}- 1 S Q(i))
C Jrq,ra.m lii> P xry é Py x waiting(R,Z W {ry,r2})

1M 1M

1M

11 |

M

LEMMA 5.4. 12 Px |[P] = Py % Py| xress(ZWr)

1 1
C Jri,re.ry é} Py xro é} Py xress(ZW{ry,ra})

Proor.
r el P s |[[P] = Py % Po| xress(ZWr)
C ([P] = Py * Py) *ress(Z) >[ P] (Lemma 5.2)
C ((>[P]) = (>Pr1) * (bP2)) * ress(T)  >[ P (SMono, dist > over —)
C ress(Z) x (bPy) * (>Ps) (Modus poens)
C ress(Z)* (bP) * (0P2) * Iry,ra.mq N Py %1y N P, (Property 1)
C ress(ZW{ry,ro}) * Iry,ro. 11 b1/=2;> Py xrg t1/=2$ P, (Sub-lemma)

The last step consists of two applications of the following sub-lemma;:
ress(Z) « >P * r = P

(®icz3Q.i F25 Q% [5Q)) % [bP] 7 & P

(@reruiry 3Q-1 -2 Q+ [bQ]) 7 2> P

ress(ZW {r}) «r ENyS

1 1



These lemmas are combined as follows.

LEMMA 5.5. 1 E2 P In(z, 7, R)(LoHi(Z W {r'})) * [change(r')]L * | [P] - Py * P,
C

1,72 [change(ry)]; * 1 - Py * [change(rz)]} * o L2 Py x
> I (z, 7, R)(LoHI(Z W {r1,72}))

PROOF. We case-split on whether LoHi is Low or High. The two proofs are given by
Lemma 5.3 and 5.4 and some rearrangement of the change permissions. o

6. CHAINS AND RENUNCIATION
The simple barrier implementation verified in §4 and §5 does not consider an order of
channels. In this section, we verify an implementation that supports chains of channels
and early renuncication. Calls to signal can complete in any order consistent with the
specification. To ensure renounced resources are available, wait checks all predecessors in
the chain. We prove that this implementation implements our abstract specification.

This new implementation uses a linked list data-structure. The implementations of
extend, newchan, signal and wait operations are defined as follows:

struct chan {

int flag; chan *newchan() {
chan *prev; chan *x = new(chan);
} x->flag = 0;
x—>prev = NULL;
signal(chan *x) { return Xx;
x->flag = 1; }
}
extend(chan *x) {
wait(chan *x) { chan *z = new(chan);
chan *c = x; z->flag = 0;
while(c != NULL) { zZ=->prev = x->prev;
while(c->flag == 0) skip; X->prev = z;
c = c->prev; return (z,x);
} }
}

Calling signal sets the channel flag to 1, then exits immediately. When wait is called, it
blocks until every bit earlier in the chain is set. To do this, it follows prev fields, waiting
for each flag field before accessing the preceding location.

6.1. Proof Structure

In our proof of the simple barrier implementation, each shared region contained a single
channel. In the current implementation, wait traverses the whole preceding chain. To allow
this, the proof stores the whole chain in a single region, represented by a single invariant.
This makes it more complex, but the core approach remains the same:

—send, recv, and ordering predicates are reified as constraints on the shared region.
— Resource obligations are represented by sets of identifiers, which are tied to saved propo-
sitions.
The majority of the proof concerns manipulations of resource obligations, rather than reads
and writes to the underlying data-structure. To help with proof clarity, as far as possible
we factor reads and writes into small, separate specifications.



Abstract chain type. To represent the state of channels in the chain, we define a type of
abstract chain nodes, CNode:

CNode £ (
loc € Addr, (physical address)
res € Rld, (region ID for sent resource)
7 € Pgn(RId), (region IDs for promised resources)
flg € {High,Low}, (flag status)
W e Pgn(RId), (region IDs for earlier renounced resources)

)

Each CNode represents one channel in the chain, while an abstract chain is a finite sequence
in CNode™. Given an element (loc, res, T, flg, W) € CNode, loc is the physical address, res is
the identifier used when sending resources, Z is the set of identifiers for resources promised
to other predicates, flg is the current state of the flag, and W is the set of identifiers for
resources earlier in the chain promised to this channel through renunciation. (Given a CNode
s, we sometimes write s.flg, s.Z etc. to identify the appropriate components of the tuple.
We use 0 and 1 to represent the Low and High flag state, respectively.)

Given an abstract chain x - xs, it is important that identifiers in the set x.)V are in the set
of resources promised in zs (i.e. in some set Z). To ensure this, we define well-formedness
of abstract chains as follows:

available([]) £ 0, available(s - 25) £ (available(xs) \ s. W) W s.T

wf([]) £ true, wf(s - xs) = wf(xs) A s. W C available(zs) A s.ZNs W =0 A
Vs' €xs.sINSIT=0AsWNsSW=0
The predicate available constructs the set of identifiers that have been promised earlier in
the chain, and that have not been taken by some other earlier channel. Well-formedness,
wf, then requires that the set of identifiers available from earlier in the chain includes those
required by the current channel.

We also define two predicates over abstract chains, ctrue and cconf. The first asserts that
all the flags in the abstract chain have been set, while the second furthermore asserts that
all sets of promised resources are empty.

ctrue(rs) = Ve €rs.e.flg=1

cconf(rs) £ Veers.efly=1ANeW =10

Finally, we use rs; 1/—V>* rss to denote that the abstract chain rsy follows from rs; by
cancelling out renounced resources with the corresponding promise. Formally, W is defined
as the transitive-reflexive closure of the following relation, which cancels a single promise
to a later node using a renounced resource from an earlier node.
rs Ysrs' & Ja oy,
rers(t) WAr ers(y)Z A (z,y) € ord(rs) A
rs' = (rs 4,y (o\ {r}) <4z (o\ {r})

The notation « is a lens allowing a single field of a chain to be updated without modifying
the remainder of the chain.

v 4 f = afi e (flz(i)/o])] v 4« [ = ali— (2(i) < f)]



renun.(x,rs,rs’) rs(x).flg =0ATS = (s 4 4pes ') 44y (e W w)

rs(z).flg =0ATs =rs 4,45, (1)

rs=(rsy-a-rsy) Ars' = (rsy-a-b-rsa) A
aloc=zANa.flg=0Abflg=0AbW =1

rers(x)IArs =rs d, 4z ((o\ {r}) w{rs,rs})

rs = (rsy-rsa) Ars’ = (rsy - rsh) Acconf(rsy) Arss W rsh

rs = (rsy - rs(x) - rs3) A cconf(rs(z) - rse) Ars’ =rs 4z (e \ {r})

sete(z,rs,758")

> 1> >

ext.(x,rs,rs’)

lI>

split.(z,r,rs,rs’)

sat.(x,rs,rs’)

> 11>

get, (x,r,rs,rs")

Te(send(x))
Tc(change(z,r))

{(a,b) | wf(b) A (renun.(z, a,b) V set.(x, a,b) V ext.(z,a, b))}
{(a,b) | wf(b) A (split.(z,r, a,b) V sat.(x,a,b) V get (x,r,a,b))}

> 11>

Fig. 13. Definition of T¢, the transition relation for the chained channel implementation.

chainds(z -y - rs) = x.loc = {prev = y.loc; flag = z.flg} * chainds(y - s)
chainds(z - null) £ z.loc — {prev = NULL; flag = =.flg}

resource(Z, W) = 3Q: Z — Prop, R: W — Prop.
®icr.i 22 Qi) * Buew. w 2> R(w)
* [0 @uew. R(w)) > ®jez. [Q0)] ]
chainres(x - rs) = resource(x.Z,z. W W {z.7es | -x.flg}) * chainres(rs)

chainres(null) £ emp

uS(rs) £ {z | (z,-,0,.) € rs}
uC(rs) & {(z,9) | (z,,Z,, ) €rsNi € TA-3(y,_,, , W) Ers.i € W}
unused(r,7s) = (@ x ¢ uS(rs). [send(x)]}) * (P (x,7") ¢ uC(rs). [change(x,")]])

Fig. 14. Predicates used in defining the state of a region.

Predicate definitions. As usual, we begin by defining the structure of the shared region.
Abstract states have the form Chain(rs), where rs is an abstract chain. Actions have the
form send(x) and change(z, ), where x is an address, and r a region identifier. The transition
relation T is defined in Fig. 13. We assume that physical addresses are used uniquely, so
where convenient we use chains as finite functions of type

Addr % (RId x P(RId) x {High, Low} x P(RId))

The transition relation defines six kinds of transitions in Fig. 13. For send we have renunci-
ation, which adds an element to W; setting the flag; and extending the chain, which creates
a new CNode b. For change we have splitting; satisfying the renounced resource set, which
sets W to () and pulls the resources out of earlier chain elements; and pulling out a resource.

To translate from an abstract chain to a concrete invariant, we define three predicates:
chainds, chainres, and unused (defined in Fig. 14). The predicate chainds represents the list



data-structure underpinning the implementation. Each link in the chain has the appropriate
prev and flag values set.

The predicate chainres represents the resources that are communicated through the chain.
The key predicate is resource, which ties together a set of promised resources Z and a set
of renounced resources that are being waited for YW. When there are no waiting resources
the predicate can be drastically simplified to just the promised resources:

LEMMA 6.1. resource(Z,0) T ®@;cz.3Q: Prop.i 2, Qi) * [>Q(7) ]

The unused predicate stands for the set of unused permissions (similar to changes in the
previous proof). We define this using uS(rs), the set of used send permissions, and uC(rs),
the set of used change permissions.

The representation function for the region, I, is defined as follows:

I.(r)(Chain(rs)) £ chainds(rs) * chainres(rs) * unused(r, rs)

As before, we use a shorthand for the region assertion in our definitions and proofs:
oreg(r,S) = region(S, T, I.(r),r)

We can now define the send, recv, and ordering predicates. We write (z,y) € seq(rs) to say
that the two addresses = and y appear adjacent in the sequence rs, and (x,y) € ord(rs) to
say just that they are ordered in rs.

send(x, P) £ Jrq,rq.oreg (r1, {Chain(rs) | wf(rs) Ars(z) = (r2,-,0,)})
* 19 L. p s [send(z)]}!

recv(z, P) £ 3ry,ry.oreg(ry, {Chain(rs) | rs(z) = (L, Z,_,) Ary € T Awf(rs)})

71

* T 22 p s [change(z,T2)]]
x <y = Jr.oreg(r, {Chain(rs) | (y, =) € ord(rs)})

6.2. Proving signal, wait and extend

Proving signal. The sketch-proof is shown in Fig. 15 — it is similar in structure to the
one in §5.3. The main additional challenge is to show that resources are supplied to the
appropriate point in the chain. To do this, we use the following lemma, which says that
supplying the resource | P| and an associated saved proposition is sufficient to allow the
flag to be set.

LEMMA 6.2. 7E2s P | P| * resource(Z, Ww {r}) L resource(Z, W)

PRrROOF. Given in Appendix B. O

In the proof of signal, this lemma is used to show that the appropriate resource has been
supplied (Fig. 15, line 12). By factoring logical resource transfer away from the physical
signalling, we simplify the proof structure considerably.

The rest of the proof consists of manipulating predicates. We pull out the node associated
with x and set the flag (lines 1-8). Once the resource has been supplied on line 12, the
remainder of the proof closes the region again.

Proving wait. The sketch-proof is given in Fig. 16. The three most important steps are
checking that all preceding bits are set (lines 5-11), checking that renounced resources have
been supplied (line 14), and retrieving the resource from the chain (line 18). The last two
of these require helper lemmas, given below.
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{send (%, P) *

7))

/7 Defzn'z,tzon of send.

Iri, 19,70 :» P x [send(x)]]" * | P] *

’ {oreg (r1,{Chain(rs) | wf(rs) Ars(x) = (TQ,I,O,W)})}

// Enter the region.
{Hrl,rg 9 LNy [send(x)]7* * | P] =

chainds(rs) * chainres(rs) * unused(r1, 7s) A wf(rs) A rs(x) = (TQ,I,O7W))

// Split up using chain azioms.

Ir, 1.1 t:/$> P x [send(x)|]! = | P *

Arsy, 782, a.chainds(rsy) * x — {prev = hd(rsz).loc; flag = 0} * chainds(rsq) *
chainres(rs) * unused(r1,7s) Ars =rsy - a-rss Awf(rs) Aa=(x,r2,Z,0,W)

x->flag = 1; // Set the flag, drop the > using Aframe.

dri, .79 AN [send(x)]]" * | P| *
Arsy, rsa, a.chainds(rsy) * x — {prev = hd(rsy).loc; flag = 1} * chainds(rsq) *

chainres(rs) * unused(ry,7s) Ars =rs1 - a-rso Awf(rs) Aa = (x,r2,Z,0,V)

// Pull out resource predicate.

Iry,re. 70 L Py [send(x)]7* * | P] =
Irsy, 782, a.chainds(rsy) * x — {prev = hd(rsz).loc; flag = 1} * chainds(rsz)

 chainres(rsy) * resource(Z, W W {ry}) * chainres(rsz)
s unused(r1,7s) Ars =rsy-a- 15y Awf(rs) Aa = (x,r2,Z,0, W)

// Apply Lemma 6.2.
Iry, re. [send(x)]]* *

rsy, 782, a.chainds(rsy) * x — {prev = hd(rsz).loc; flag = 1} * chainds(rsz)

« chainres(rsy) * resource(Z, W) * chainres(rss)
s« unused(r1,78) Ars =181 - a-rss Awf(rs) Aa = (x,72,Z,0, W)

// Collapse the chain, add >.

Iri, 7o
{ > (chainds(rs’) * chainres(rs’) x unused(ry, rs’) Ars’ = rs[x — (r2,Z,1, W)])

// Close the region using transtition set.
// Well-formed structure of chain hasn’t changed.

{Hrl,rg. oreg(ry, {Chain(rs) | wf(rs) Ars(x) = (r2,Z, 1, W)})}
// Garbage collect.

{om)

Fig. 15. Sketch-proof for signal with out-of-order signalling.

}

)
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{recv(x,P)}

wait(x){

chan *c = x;

// Definition of recv.

{Hrl,rg.oreg (ri,{Chain(rs) | IZ’.rs(x) = (., Z',_, ) Are € T' Awf(rs)}) }

* Tg LNy [change(x, 2)]T* Ac=x
while(c != NULL) {
while(!c->flag) skip;
c = c->prev;
}

// Flags up to z are now set. Stable because flags cannot get unset.
Iri,ro. 79 Ii—2> P x [change(x,r2)]]" *
37" wf(rs) A Ji.rsfi] = (x, , 2" Wra, -, ) A
oreg (71, { Chain(rs) | =" (rs) nrsfi] = (x, ’ r2--)
Vj.i<j<len(rs) = rs[jl=1(,--1,-)
(skip); // Enter the region and drop > using AFrame.

Irsy, 82, a.19 ANy [change(x, 72)];" * chainds(rs) * chainres(rs) x unused(rq,rs) A
wf(rs) Ars=rsy-a-rse Aa=(x,r,Z' Wrqa, , W) A ctrue(a - rsz)
// Apply Lemma 6.3 to convert from ctrue to cconf..
Irsy, 189,18y, a.ro ANy [change(x, r2)]7" *
chainds(rs) * chainres(rsy - rs}) * unused(ry,7s) Awf(rs) Ars =rsy-a-rsy A
a=(x,r, " Wry, , W) A cconf(rsh) Na-rsy W rsh
// Pull out the resource predicate for z.

1/2
Irsy, rse, rsh, a.ry == P x [change(x, r2)|]* *

chainds(rs) * chainres(rs; ) * resource(Z’ W ro, ) * chainres(rsh) * unused(ry, rs) A
wf(rs) Ars=rsy-a-rss Aa=(x,7,Z Wra, , W) Acconf(rsh) Aa-rss jas rsh
// Apply Lemma 6.4.

[BP] % 3rsy,rse, 18y, a.r9 ANy [change(x,r2)]}" *

chainds(rs) * chainres(rs; ) * resource(Z’, () * chainres(rsh) * unused(ry, rs) A

wi(rs) Ars=rsy-a-rssNa= (x,r,Z" Wra, , W) Acconf(rsh) Aa-rss jes rsh
// Close the region, use transitions sat and get.

E")”l,T'g. (DP—I *
/ _ o . W 1
oreg 71, { Chain(rs') wi(rs') Ars =rsy-a-rso Aa-rsy = rsh A
cconf(rshy) Ars' = (rsy-rsh) 4, 4z (o\ {ra})
}Y// Use [bP] = >[P] and clean up garbage.

vl

Fig. 16. Sketch-proof for wait with out-of-order signalling.



Resources that are renounced earlier in the chain can be used to satisfy required resources
later in the chain. These resources are represented by the set W in the abstract state of
a cnode. Renounced resources need not be supplied when signal is called, but they must
be available before wait returns. To ensure this, the implementation of wait checks all the
preceding flags in the chain. Once all preceding flags are set, all the resources should be
available. However, proving this is subtle, because renounced resources may themselves be
satisfied by resources renounced earlier in the chain.

To establish the required resources are available, we use the following lemma. This says
that a chainres predicate for a chain where all the flags are set can be transformed into one
where pending resources have been resolved (asserted by ctrue and cconf respectively).

LEMMA 6.3. chainres(rs) A wf(rs) A ctrue(rs)
C  3rs’.chainres(rs’) A cconf(rs’) Ars X rs' A wf(rs’)
PrOOF. Given in Appendix B. o

We apply this lemma on line 14 of the sketch-proof.
Once we've established that the resources are available, we use the following lemma to
extract the appropriate resource from the resource predicate:

LEMMA 6.4. resource(Z Wry, ) x 7o ti—2> P C resource(Z, () * [>P]

PRrROOF. Given in Appendix B ]

This lemma says that, given resource and an identifier 75 in Z such that all required
resources are available, the resource >P associated with r5 can be retrieved. We apply this
lemma on line 18 of the sketch-proof.

Proving extend. The sketch-proof is given in Fig. 17. The key steps in the proof are
creating a new node to add to the chain (lines 3-9), stitching the new node into the chain
itself (line 12), then satisfying the required invariants for the region (lines 18-22).

It is important that new saved propositions are fresh — that is, their identifiers have not
been used elsewhere in the chain. We use the following lemma to show new identifiers are
fresh:

LEMMA 6.5.
{oreg(r,T) « 1’ & P} (skip) {oreg(r, T N{Chain(rs)|r’ & rs})«r & P}
ProoF. Each identifier "/ used in rs is associated with a fractional saved proposition

1
r” é P. We case-split on the finite set of possible equalities and appeal to the linearity
of saved propositions (Property 2). O

The following lemma uses this freshness property, along with the freshness of allocated
locations to show that we can we can retrieve the required permissions from unused. We use
this lemma on line 16 of the sketch-proof.

LEMMA 6.6.

rs=rsy - (x,72,Z,0,W) - rsa A unused(ry,rs) Az, v’ r" & rs

C  unused(ry,7sy - (z,72,Z,0,W) - (2,7, {r"},0,0) - rs2) * [send(2)]]* * [change(z, )]}
PROOF. Appeal to the definition of unused. o

On line 18, we close the region. The resulting chain is well-formed because the new region
has no elements in its renunciation set W, and the rest of the chain is preserved. The chain
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{send(x,P) * ®6€Ee < X*@lELx < l}

extend(x){ // Frame off order predicates
chan *z = new(chan); z->flag = 0;
zZ->prev

x->prev; // Stable as thread holds ezclusive [send(z)] permission.

{ﬂrl,rg,x’. o EENy [send(x)]]* * z — {prev = 2’; flag = 0} * }

oreg (11, {Chain(rs) | wf(rs) Ars(x) = (x,72,-,0,-) A (x,2') € seq(rs) Az ¢ rs})

skip; skip; // Make a patir of stored propositions, appeal to Lemma 6.5.

Iry,re, v 1"y 2L p [send(x)]]* * z — {prev = z’; flag = 0} =71’ B Qur’ B Q *
oreg (r1, {Chain(rs) | wf(rs) Ars(x) = (x,72,-,0, ) A (x,2") € seq(rs) Az, ', 1" ¢ rs})

// Create a node in the chain.

Iry, e, al v e oy 2L p s [send(x)]7" *

1 1
PN Qxr" N Q x z — {prev = 2/; flag = 0} * resource({r"}, {r'})
// Enter the region, split the chain up.
1
Fry,ro, v " hyrsy,rse. o ANy [send(x)]7" *

<chainds(rsl) * x — {prev = a’; flag = 0} % chainds(rsz) * chainres(rs) *

Iry, o, 2’ v v hy sy, TS o RENyW [send(x)]7" *
chainds(rs1) * x — {prev = z;flag = 0} x chainds(rs3) * chainres(rs)

unused(ry,7s) Ars =1s1-e-rsy Awf(rs) Ae = (x,72,Z,0, W) Az,r",r" & rsx

1 1
N Qxr" LN Q * z — {prev = hd(rs2).loc; flag = 0} * resource({r"'}, {r'})
// Fold the chainds predicate back up.
1 1 1
Iry, o, 2 v 1" hy sy, TS o L Py [send(x)]7* 7’ N Qxr" N Q
chainds(rsy - e - €' - rsg) * chainres(rsy - e - €' - rsy) x unused(ry, rs) A

oreg (r1, {Chain(rs) | wf(rs) Ars(x) = (x,72,-,0,_) A (x,2") € seq(rs) Az, v, 7" ¢ rs}) =

*
unused(r1,78) Ars =181 - e-rso Awf(rs) Ae = (x,72,Z,0,W) Az, 1" ¢ rs)

1/< 1
RN Qxr" LN Q * z — {prev = hd(rss).loc; flag = 0} x resource({r"'}, {r'})
x->prev = z; // Stitch the cnode into the chain using LPoints / AFrame.

rs=rsy-e-rss Awf(rs) Ae= (x,72,Z,0, W) A€ = (z,7',{r"},0,0) Az,r', 7" & rs

// Get [send(z)]  [change(z,r")] from unused(r1,7s) using Lemma 6.6.

Iry,ro, ' 0" hyrsy, rss.

chainds(rsy - € - €' - rsa) * chainres(rsy - e - € - rs3) * unused(ry, sy - € - € - 1s2)
Ars=rsy-e-1sos AWf(rs) Ae = (x,72,Z,0, W) AN e = (z,7",{r"},0,0)

AT RENy [send(x)]7* * 7’ SEN Qxr" EEN Q * [send(z)]}* = [change(z,r")]}*

// Close the region using the ext transition.

Jri,re, 7, r" .

1 1 1/-
ATy 2L Py [send(x)]]* =7’ SN Qxr" SEN Q = [send(z)]]" * [change(z, )]
return (z,x);
} // Frame on order predicates. Fold invariant into predicates.

{send(z, Q) *recv(z, Q) *send(x, P) ¥z < x* Bocpe < z+ P x < l}

Fig. 17. Sketch-proof of extend with out-of-order signalling.

oreg(rl, {Chain(rs’) ‘rs’ =rs; - (x,72,,0,.) (2,7, 77,0,) -rsg A" € T' A wf(rs’)})

r
1

}



is stable because we hold the send tokens on x and z, meaning these channels cannot be
extended or renounced.

Proving newchan. Omitted: this proof is similar to extend, but simpler.

6.3. Proving Renunciation and Splitting Axioms

Renunciation. The axiom is defined as follows:

{recv(z, P) xsend(y,Q) xx < y} (skip) {send(y,P —Q)}

The sketch-proof is given in Fig. 18. The important steps are conjoining the three predicates
to give a single stable view on the shared structure (line 2), supplying the renounced resource
to the shared region (line 12), and closing the region to give a new send predicate (line 14).

In order to conjoin the regions arising from the send, recv and the order predicates, they
need to operate over the same region. Although the predicates do not expose region names,
we know from order predicates that all of the regions share common elements in their chain
addresses. We therefore use an extra lemma to show that pairs of such regions must be the
same:

LEMMA 6.7.
{oreg(r, {Chain(rs) | z € rs}) x oreg(r’, {Chain(rs’) | x € rs'})} (skip) {r=1r'}
PROOF. Given in Appendix B. O

We use this lemma on line 2, Fig. 18. The conjoined region that arises from this lemma
(line 5) is stable because elements cannot be reordered with respect to each other once they
are in the chain, and because exclusive [chain] and [send] permissions are held for « and y
respectively.

When we push the renounced resource into the resource predicate (line 12) we use the
following lemma to show that the renunciation set W is updated appropriately:

LEMMA 6.8. resource(Z, W {r}) *r N Q7 L p

C 3" resource(Z, W {r',r"}) s r" N (P Q)
PRrROOF. Given in Appendix B. |

Note that the identifier r used for sending resources is replaced with a fresh identifier r”/
because the associated invariant is changed from @ to P —x @. Internally this corresponds
to garbage collecting one saved proposition and creating another.

On line 14 we close the region. The resulting chain is well-formed because the identifier we
selected was previously unused for renunciation — we get this from the definition of unused.
Furthermore, the remainder of the chain stays the same. The resulting chain is trivially
stable because the exclusive [send] token is held.

Splitting. The axiom is defined as follows:
{recv(a, P) x | [P] - (P P»)|} (skip) {recv(a, P;)*recv(a,P)}
A sketch-proof is given in Fig. 19. The key step is splitting the promised resource set Z for

a node (line 6). To do this, we use the following lemma.

LEMMA 6.9. ro € rs(z).Z Arg L. p s [[P] = (Py * P2)] * chainres(rs)
C 3rs',rg,re.r3,ra €rsArs =rs d, 4z (o \ra) W {rs,ra} A

1/2 1/2 . ,
r3 = Py x4 E== P3 *x chainres(rs’)



10

11

12

{recv(x, P) xsend(y, Q) * x < y}
(skip); // Definition of recv, send, Lemma 6.7.
3r,ro, r3. oreg(r, {Chain(rs) | (y,z) € ord(rs)}) *
oreg(r, {Chain(rs) | rs(x) = (,,Z,-,-) Ara € T Awf(rs)})
( * 1o L p s [change(z, r2)]] ) '
oreg (r, {Chain(rs) | wf(rs) Ars(y) = (r3,-,0,-)})
( s 25 Q  [send(y)]} )
// Conjunction on regions. Stable because of the permissions held.

Ir,ro, r3.79 L Py [change(z, 72)]] * 3 N Q * [send(y)]} *
= .e- e - rsa Awf A
oreg (7, 4 Chain(rs) rs=rsy-e-rso-€e -rs3 Awf(rs)
€= (yar37ﬂ07*)/\e/ = (x7*7I7*7*)/\r2 €l
(skip); // Open the region, drop > using AFrame.

chainds(rs) * chainres(rs) * unused(r,rs) Ars =rs; -e-rsg-¢e -rsz A
wf(rs) ANe = (y,r3, 2,00 W) Ne' = (z,7", T, [ W)Ary €T
// Pull out node.

{Elr, T'9,73. T2 ll/:2> P« [change(z,72)]] * 73 31/:2> Q = [send(y)]} *

chainds(rs) * chainres(rsy) * resource(Z’, W' W {r3}) * chainres(rs, - €’ - rsg) * unused(r, rs) A
rs=rsy-e-rsg-e -rsgAwf(rs) Ne= (y,r3,Z,0W)Ne = (z,7", I, [ W)Aro €T
// Apply Lemma 6.8 to supply the resource

{EIT, ro,T3. [change(z, r2)]|} * ry lii> (P = Q) * [send(y)]] *

{Elr, T9,T3.7T2 ll/:2> P x [change(z,72)]] * 13 tl/:2> Q * [send(y)]} *

chainds(rs) * chainres(rsy)  resource(Z', W' & {rq,r4}) * chainres(rss - € - rs3) * unused(r, rs) A
rs=rsy-e-rsy-e -rsg Awf(rs) Ne=(y,r35,Z,00W)Ne = (x,r', T, f W)Are €T

// Close the chain.
I, 1o, r4. 7 SEN (P = Q) = [send(y)]} * chainds(rs) % chainres(rs’) * unused(r,rs") A
rs=rsy-e-rsy-€ rsgArs’ =rsy-(y,ra, L, 0, W W {ra}) - rso-e -rsz A
WE(rs) Ae = (y, T, 0, W) A e = (0,1, I, L W) Arz €T

// Close region using the renun transition.

{Elr, T4.T4 LN (P — Q) * [send(y)]} * oreg (r, {Chain(rs) | wf(rs) Ars(y) = (r4, -, 0, ,)})}

// Definition of send.

{send(y, P Q)}

Fig. 18. Proof of the renunciation axiom for out-of-order implementation.
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{recv (x, P) % | [P] = (P * PQ)J}
// Definition of recv.
{Elrl,rg oreg ( 71,{Cha|n(rs) | rs(z) = (L, Z,-,-) Ara € T Awf(rs)}) }

* 1o ANy [change(x, m2)]1" * | [P] = (P1 * Ps)]
// Enter the region.

Ary, .19 L. P [change(x, r2)]1* * [ [P] = (P * P2) | *
chamds (rs) * chainres(rsy) * resource(Z W {ra}, W) * chainres(rsa) A
rs=rsy - (z,r, ZW{ra}, fyW) - rsa A unused(ry,rs)
<sk1p ) // AFrame to drop >, Lemma 69 to split the region.

37"1,7"2,7‘377“4 T3, 74 E TS AT LN P oxry N P, « [change(z, 2)]]" *
chainds(rs) * chainres(rsy) * resource(Z W {rs, 74}, W) * chainres(rsa) *
unused(ry,7s) Ars =rsy - (z,r, ZW {ra}, L) - 182

// Close chain, pull [change] perms out of unused.

chainds(rs) * chainres(rsy) * resource(Z W {r3, 74}, W) * chainres(rss) * unused(ry,rs’)
Ars=rsy - (z,r, ZW{ro}, [ W) rsa Ars’ =rsy - (x,r,ZW{rs,ra}, [, V) 182

{Elrl, To, T3, T4. T3 L Pyxry SN P, « [change(z,73)]7" * [change(z, 74)]]" *
// Close region using the split transition.

Ir1,1r2,T3, 4. T3 SN Pyxry N Py x [change(z,r3)]1! * [change(x,4)]]" *
oreg (r1,{Chain(rs) | rs(z) = (L, Z,_,_) Ars,r4 € Z Awf(rs)})
// Definition of recv.

{recv(x, Py) * recv(z, PQ)}
Fig. 19. Proof of the splitting axiom for the out-of-order implementation.

PRrROOF. Given in Appendix B. This proof is very similar in structure to the proof without
chaining given in §5.3. O

7. OUT-OF-ORDER SUMMARIZATION

In this section we consider our third, most complex, channel implementation. This imple-
mentation satisfies our abstract specification, but internally, signals propagate up a tree
structure towards a shared root rather than along a linear chain. This barrier implemen-
tation corresponds closely to the one in [Navabi et al. 2008] — the summarisation pro-
cess is how it achieves its efficiency. Verifying this implementation demonstrates that our
approach scales to custom synchronisation constructs developed for performance-sensitive
concurrency applications.

7.1. Implementation approach

Figure 20 shows the implementation source-code. The data-structure is organised as follows.
Flags are stored in fixed-size arrays of boolean values. These arrays are organised into a
tree, with arrays closer to the root summarising arrays closer to the leaves. The header of
each non-root array stores the address of a parent flag up the tree (in the up field). If one
of these non-leaf flags is set, it denotes that all the leaves below it are also set. Thus wait



1 typedef struct chan_hdr chan_hdr; ss signal(chan_addr x){

2 36 int 1i;

s typedef struct chan_addr { sz bool ret = FALSE;

1 chan_hdr *hdr; 38 chan_addr a = x;

5 int off; 30  while (a.hdr '= NULL && 'ret){
¢ } chan_addr; 10 a.hdr->flags[a.off] = 1;

7 a1 for(i=0; i<=a.hdr->loff; i++){
s typedef struct chan_hdr { 12 if (a.hdr->flags[i] != 1)
9 chan_addr up; 43 ret = TRUE;

10 int loff; 14 }

11 bool flags[MAX]; 15 a = a.hdr->up;

12 } chan_hdr; 46}

13 47 }

14 (chan_addr, chan_addr) 48

15 extend(chan_addr x){ 49

16 chan_addr nx,r; 50

17 if(x.off == x.hdr->loff 51

18 && x.off < MAX){ 52

19 x.hdr->flags[x.loff+1] = 0; 53

20 x.hdr->loff++; 54

21 r.hdr = x.hdr; 55

22 r.off = x.off + 1; 56

23 nx = x; s7 wait (chan_addr x){

24} else { 58 chan_addr a = x;

25 nh = malloc(chan_hdr); so. while (a.hdr != NULL) {

26 nh->up = x; 60 for(skip; a.off<=a.hdr->loff;
27 nh->loff = 1; 61 a.off++){
28 nx.hdr = nh; 62 while(a.hdr->flags[a.off] != 1)
29 nx.off = 0; 63 skip;

30 r.hdr = nh; 64 }

31 r.off = 1; 65 a = a.hdr->up;

32 } 66 a.off++;

ss return (r,nx); 67}

34 } 68 }

Fig. 20. Channel implementation with out-of-order signalling and summarization.

can check these summary flags rather than the entire chain. An instance of the structure is
illustrated in Fig. 21.

Signals can be sent out-of-order, as with our previous implementation. To signal a
channel, the function reads the array location from the array header, and writes 1 into the
flag at the appropriate offset (Fig. 20, line 40). signal then reads all the sibling flags in
the same array. If any of them are unset, it exits. Otherwise it retrieves the address to the
next level in the tree and loops if it is not at the root (lines 41-45). In this way, a call to
signal summarises its siblings. If a flag’s siblings are set, then signal will set the parent
summary flag. If all the siblings of the summary flag are also set, it will set its parent, and
in this way iterate up the tree. If a summary flag is set, the algorithm can conclude that all
the summarised leaf flags are also set.

The wait function exploits summaries to reduce the number of flags it must test. Rather
than examining all the preceding elements in the whole chain, wait just examines summary
flags that precede the current node. Because it only ever climbs the tree, the function avoids
the cost of iterating over the entire chain. The function spin-waits on each preceding flag in
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Fig. 21. Example of the summarising channel structure.

the current array (Fig. 20, lines 60-64 — note that increasing the index goes logically earlier
in the chain). It then reads the up address stored in the array header and loops if it is not
at the root. The following diagram shows the nodes accessed when traversing up from x:

ot I

\

Extending the chain to insert a new link in a channel is a subtle process — array elements
begin as leaves, but may become summary nodes. Thus extend has two cases depending
whether there is room in the current array for another leaf (checked on line 17). If there
is space, then the new leaf is inserted immediately following the current one in the array
(lines 20-22). If no space remains in the array, then a new array is allocated, and the existing
and new channels are moved to the start of this array (lines 25-31).

7.2. Proof Strategy

At the abstract level, the behaviour of the implementation is unchanged from §6. Channels
are arranged into a logical chain, with later channels waiting on earlier ones. Before acquiring
resources using wait, all the preceding flags in the chain must be set using signal. The
added summarization mechanism just changes the flags that must be examined to determine
all flags in an interval are set. As a result, we can reuse much of the reasoning from §6.

Abstract state and basic predicates. The abstract state of a chain is once again an element
of CNode™, identical to the one used in the previous section, except a location loc is now a
pair (h, o) consisting of a physical address and an offset (this corresponds to the chan_addr
type in the implementation). To represent the contents of the heap, we define a heap map
d, consisting of a finite, partial function from physical addresses:

d: Addr ™ {uhdr: Addr; woff : Int; loff: Int; flags: {0..MAX} — Bool}



A heap map records the chan_hdr-typed objects forming the tree. To simplify the represen-
tation, we flatten the chan_adr-typed field up into the two fields uhdr and woff. A location
(x,7) is in d (written (z,4) € d) if © € dom(d) A i < d.loff.

For a given map d, chainds defines the corresponding data-structure. In the following

definition, we write x +— v to indicate that x is immutable — shorthand for 3f. Ly v,
chainds(d) £ ®,cdom(a)-
z.up — {chan_hdr = d(z).uhdr; off = d(z).uoff } x x.loff — (d(z).loff)
* @jeqo..maxy- v flagsli] — (d(x).flags (i)

In order to ensure that rs and d are well-formed and correspond correctly, we require several
auxiliary notions:

childg(z,4,y) = d(y).uhdr = x Ad(y).uoff =i A0 <i<d(z).loff
leaf4((x,7)) = (x,i) € dABy.d(y).uhdr =z A d(y).uoff =i
descendq((z,1), (y,5)) = (x,i) = (y,7) V descendy({x, i), (d(y).uhdr,d(y).uoff))
issety((z,1)) = d(z).flags(i) =1
allsety(z) = Vi.0<i<d(x).loff = issety({z,i))

Intuitively, the child, descend, and leaf predicates record the corresponding structural facts
about relationships in the tree. Well-formedness on d (defined below) requires that paths
through uhdr are finite, which suffices to ensure that descend is well-defined. isset and allset
respectively assert that a single address and a whole array have their flags set.

Jz,ix, iy. descendy((z, ix), (x, 1)) A descendq({z, iy), (y, j)) A iz > iy
a <q bV descendg(a,b) V descendy(b, a)
descendg(x, y) A leaf4(y) A (Vz. descendy(x, 2) Aleafy(2) = 2 <15 Y)

(z,1) <q (y,7)
a <15 b

finalleaf4(z, y)

> 1> >

The order predicate <4 says that two addresses are ordered in the tree, meaning that they
share a common ancestor array in which they are also ordered. This defines a transitive and
irreflexive order. finalleaf;(xz,y) indicates that y is the right-most leaf according to <, that
is summarised by . This is useful because applications of extend may mean clients wait on
x when the actual leaf has been superceded by y. For each = there exists at most one y, so
we generally use finalleaf as a partial function, i.e. finalleaf;(z) stands for the unique y such
that finalleaf4(z, y).

Well-formedness ensures that rs and d are independently well-formed, and that they are
correctly tied together into an inverted tree structure.

wf(d) £ 3r:Addr.37: dom(d) — N.
YV, i,y, 2z (x,i) € d = Fj.descend({(r, j), (z,i)) A
(childg(z,i,y) Achildg(z,i,2)) = y=2zA
(childg(z,4,y) Alssetq(x,i)) = allsetq(y) A
d(x).uhdr =y ANy # NULL =
d(y) defined A d(z).uoff < d(y).loff A7(y) < 7(x)

The address r is the location of the common tree root. The function 7 records the distance
from the current node to the tree root: this ensures that all paths up through the tree are
finite. The first clause ensures all elements in the tree share a common root. The second
ensures that children are uniquely identified by address and offset. The third ensures that



setting a flag summarises all descendants. The final clause guarantees the existence of non-
NULL parents to a node, and enforces the distance function 7.

wf(rs,d) = wf(rs) Awf(d) A
Vr ers. r.loc = (l,0) = r.flg =d(l).flags[o] A
Vr € rs. leaf4(r.loc) A
Vri,re.(rs=_-r1- - 1o+ ) = ra.loc <411.l0C

The region state Chain(rs,d) now takes as its argument both an abstract chain rs and a
heap map d. Note that the chainds predicate now takes only a heap map — this captures all
the structure it requires.

I,(r)(Chain(rs,d)) %= chainds(d)  chainres(rs) * unused(r, rs)

Because of this, the predicate unused takes a heap map d as an argument in addition to a
chain rs. uS, the set of unused [send(x)] permissions, remains as in the previous section.

Well-formedness ensures several properties of <;. However, note that <4 is not truly an
order, as it is only transitive over leaf nodes.

LEMMA 7.1. wf(d) = Ya,bed. (a<jbVb<a)A-(a<ab<}a)A
(a <j§ b Aleafy(b) = a <4 bV descendy(a,b))

PRrROOF. The first property follows from the existance of a single root node. For the
second, as a <4 b, there must exist a common array where the ancestors of a and b are
ordered. This contradicts both descendy(a,b) and descendy(b, a), and irreflexivity precludes
b <4 a. For the third, either a <4 b, descendg(b, a) or descendy(a,b). All three cases trivially
satisfy the conclusion. ]

Predicate definitions. As noted above, chain extension may result in calls to wait targeting
summary nodes — before extension, these nodes would have been leaves. This is sound
because these nodes will be set as part of summarization. For a given leaf [, the node that
wait will be watching is the maximal node x such that finalleaf(z, 1) holds. Intuitively, this
is because new arrays created through extension use the first element in the new array to
stand for the extended chain element. The set C(rs,d) represents these maximal nodes; a
permission is missing from the set of unused change permissions, uC(rs, d), only if it targets
one of these nodes.

C(rs,d) = {(y,4) | r € rs Afinalleaf4({y, i}, r.loc) A —finalleaf ;({(d(y).uhdr, d(y).uoff ), r.loc) }
uC(rs,d) = {(z,r) | r € rs(finalleaf4(2)).Z Az € C(rs,d) A ~TJy.r € rs(y). W}
unused(r,7s,d) = (® x ¢ uS(rs). [send(z)]}) * (B (x,r") & uC(rs, d). [change(z, ")]})

We can now define the send and recv predicates (we also use x to refer to the pair
(x.hdr,z.0ff) when x is a chan_addr struct):

oreg(r,S) = region(S,T¢, Is(r),r)

send(z, P) & Jry,rq. 79 EENE [send(z)]}" * [mark]™ *
oreg(r1, {Chain(rs,d) | wf(rs,d) Ars(z) = (r2,-,0,.)})
recv(z, P) £ Jry,re.7o HENG W [change(z,12)]1" *
oreg(ry, {Chain(rs, d) | wf(rs,d) A rq € rs(finalleaf4(x)).Z})
r <y 2 Jr. oreg(r,{Chain(rs,d) | wf(rs,d) A (y,z) € ord(rs)})



renung(x, (rs,d), (rs’,d"))
sets(x, (rs,d), (rs',d’))
exts(z, (rs,d), (rs',d"))

d' =d Arenun.(z,rs,158")
d' = d 4n a0 (1) Asete((h,0),7s,75")
rs=(rsy-a-rsy) Ars = (rsy-b-c-rs2) Aa.flg =0Aa.loc =z A
Jy.b=alloc— y| Ae.flg =0 AW =0 A (h,0) = a.loc A
b.off = (h',0) Ac.off = (W, 1) A
d' =dWh' — {uhdr = h;uoff = o; loff =1;flags = \_. 0}
y (0 = d(h).loff Ab.loc = a.loc A c.loc = (h,0+ 1) /\)
d' = (d 4pop (0+ 1)) 44 4gagsjor1) (0))
d = d’ A split.(finalleaf g(x), r,rs,75")
d = d’ N sat(finalleaf4(x), rs,rs)
d = d A get_(finalleaf (), r, rs,rs’)

> 1> >

split,(z,r, (rs,d), (rs',d")

sats(z, (rs,d), (rs',d")
get,(x,r, (rs,d), (rs’,d’)
)
)

> 1> >

Ts(send(z
T.(change(x, r

{(a,b) | wf(b) A (renuns(z,a,b) V sets(z,a,b) Vexts(z,a,b))}
{(a,b) | wf(b) A (splity(z,r,a,b) Vsats(z,a,b) V gety(z,7,a,b))}

| WE(rs, d') ANd' = d 4 4gags0) (1)
{((Ts’d% (rs,d")) A —leafa((h, 0))) }

> 1>

)
)
)
)
)
)

Ts(mark

Fig. 22. Definition of the transition relation 75 for the summarising implementation.

We define a new transition map 7T to capture changes to the heap map. The definition is
given in Figure 22. Most of the transitions are inherited from T, the transition relation for
the chained implementation. (We modify the type of T, slightly by assuming it is defined on
address-offset pairs, rather than just addresses). However, set and extend correspond to
changes to the underlying heap, and they thus have to be extensively altered. Furthermore,
signal can mark summary bits that are not leaves in the tree; this is allowed by the transi-
tion mark. We use [mark]” as notation for 3m. [mark]” to represent non-exclusive ownership
of the mark action. Finally, note finalleaf in the definition of change: this is needed because
a leaf © may be converted by extend into a summary node representing finalleaf;(z).

The stability of most of the predicates is obvious; however, the fact that finalleaf can
change means we prove stability explicitly for recv.

LEMMA 7.2. recv(z, P) is stable.

PROOF. Assume the inital state of the chain is Chain(rs,d) and that ext takes the step
(', (rs,d), (rs’,d")). The case where x # 2’ is simple, so assume z = z’. We now need to
show wf(rs’,d") Arqe € rs/(finalleaf 4 (z)).Z.

The requirement wf(rs’, d’) holds as a constraint on the transition relation. It remains to
show the second clause. By the definition of ext, finalleafy(z) = a.loc and a.Z = b.Z. There
are now two cases: either ext generates a new array, or it adds an element to the existing
array. In the latter case, d’ only changes by adding an element at a higher index in the
array. Thus finalleafy (x) = b.loc. In the former case, ext adds a new array which must also
descend from x. If finalleaf 4 () # b.loc, there must be leaf z such that b.loc <4 z, but the
only new leaf ¢ is at the next index in the new array, meaning c.loc <4 b.loc. Thus the result
follows by contradiction. O

7.3. Verifying wait, signal, extend



-

3

{send(x,P) * LPJ}
signal(chan_addr x){
int i; ret = FALSE;
chan_addr a = x;
a=xA|P|*3r;,r.re 22 p s [send(x)]7]* *
oreg(r1, {Chain(rs,d) | wf(rs,d) A leaf (x) A d(x.hdr).flags[x.of£f] = 0})
while (a.hdr != NULL && !ret){
// Loop invariant.

(ret Aemp) V
(a =x A |P|*3Iry,ra.19 2L ps [send(x)]7* * [mark]™ * ) y
oreg(ry, {Chain(rs, d) | wf(rs,d) A leaf (x) A d(x.hdr).flags[x.of£] = 0})
Iry. [mark]" *
oreg(r1, {Chain(rs, d) | wf(rs,d) A —leafy(a) A (Vi. (descendq(a,l) Aa # 1) = issetq(l))})

a.hdr->flags[a.off] = 1; // Transition relation step set / mark.
for(i=0; i<=a.hdr->loff; i++){

Try. [mark]™ *
oreg <r1, {Chain(rs, d)

if (a.hdr—>f1ags[i] 1= 1)
ret = TRUE;

AV0 < n < i.issety({a.hdr,n))

wf(rs,d) A (Vi.descendy(a,l) = issetd(l))}>

(ret A oreg(ry, {Chain(rs,d) | wf(rs,d) A a € dom(d)})) Vv

Irq. [mark]"
oreg(r1, {Chain(rs, d) | wf(rs,d) A (VI.descendg(a,l) = issetq(l)) A allsety(a.hdr)})
a = a.hdr->up; // Abstract garbage collect.

}

fom)

Fig. 23. Sketch-proof of signal with summarization.



Proving signal. A sketch-proof for signal is given in Fig. 23. The algorithm begins by
setting the flag at the appropriate address (line 9). Abstractly the reasoning here is the
same as when setting a flag in the non-summarising implementation (§6.2) so we omit it.
The algorithm then climbs up the tree. If all the flags have been set in a given array, the
summary flag is also set (line 9). Well-formedness allows summary nodes to be set if all
their children are set, so doing this does not change the abstract representation. If a flag is
discovered which is not set, or the loop climbs to the top of the tree, the algorithm exits.

The assignment on line 9 applies the transition relation step set or mark, depending on
whether the node is a leaf or a summary. The following lemma ensures that the library of
unused permissions is preserved after each such transition relation step.

LEMMA 7.3.

sets(z, (rs,d), (rs’,d’)) A unused(r, rs,d) * [send(z)]] = unused(r,rs’,d)
((rs,d), (rs’',d")) € Ts(mark) A unused(r,7s,d) = unused(r,rs’,d’)

Proving wait. A sketch-proof for wait is given in Fig. 24 / 25. This proof just deals
with the part of the code establishing that all the flags in the chain have been set. In
the proof, we use lasty(a) to stand for the last address in the array associated with a, i.e.
(a.hdr, d(a.hdr).loff).

The loop starting at line 5 checks the flags in the current array. In line 8 the algorithm
waits for the current node’s flag. This may not be a leaf — it may be a summary node
somewhere inside the tree. Once this passes, by the second clause of well-formedness (page
39) we can conclude that all the flags in the subsequence rs; have been set. Then the
algorithm increments the offset — as a is not at the last offset for the array, there must exist
an adjacent channel address at this position.

To prove this algorithm correct, we need several sub-lemmas. The first states that once
the algorithm reaches the root of the tree, it has examined all the addresses greater than
the starting address.

LEMMA 7.4. wf(d) Ad(a).loff =0 Ad(a).uhdr = NULL = -3Jz.z <4 {(a,0)

PROOF. Assume such an z exists. Then by the definition of <4, there must exist an
address y such that x and (a, 0) are both descended from y. As the uhdr field is NULL, the
only possibility is that both addresses are in the object at a. By the definition of <4, x
must be further right in the flag array, but o is the right-most address. This contradicts the
assumption and completes the proof. O

The second lemma states that examining the elements reachable through the heap map
suffices to show that the corresponding elements in the abstract chain have been set. This
lemma justifies our splitting of the invariant into a separate heap map and abstract chain
structure.

LEMMA 7.5. wf(rs,d) A z € dom(rs) A descendq(z, z) A leafy(2) A
(V1.1 <k 2 A leaf4(1) = issetq(1))
= Jrsy,rse.rs =18y -rs(z) - rsy Actrue(rs(z) - rsa)

PROOF. As z € dom(rs), we can easily divide up rs into rsy - rs(z) - rss. Now pick

an arbitrary element y in dom(rs(z) - rso) and suppose that rs(y).flg is not set. By well-

formedness, it must be true that y <l& z. Now we show that y <j§ x. The contrary, x <4 v,

would imply that z <y y, contradicting our assumption. Therefore by the premise the
associated flag must be set. However, well-formedness requires that flags are mirrored in rs
and d, contradicting our assumption and completing the proof. i
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wait(chan_addr x){
chan_addr a = x;
Iry,re. 79 LNy [change(x,r2)]1* *a =x *
oreg(r1, {Chain(rs,d) | wf(rs,d) A ry € rs(finalleaf 4(x)).Z})
while (a.hdr != NULL) {

Iry,re. 10 2L P [change(x, r2)]}* *
f(rs,d -s(finalleaf A
oreg [ 1,4 Chain(rs, d) wf(rs, )/\7"?L € rs(finallea d(x)) A
Vi.a <ql <;x Nleafg(l) = issety(l)

for(skip; a.off<=a.hdr->loff; a.off++){
while(a.hdr->flags[a.off] != 1) skip;

Jr,re. 179 t]/:2> P « [change(x, r2)]]" *

f(rs,d) A finalleaf I A isset A

oreg [ 1,4 Chain(rs, d) wf(rs,d) Ary € rs(fina ﬂea a(x)) |sse- a(a)
Vi.a <ql <;x Nleafg(l) = issety(l)

// Appeal to well-formedness.

Iry,ro. 1o EENY [change(x, r2)]7* *
f(rs,d finalleaf Z
oreg [ 1,4 Chain(rs, d) wf(rs, 1%/\7%6 rs(finallea d(x)) A
Vi.a <; 1 <;xAleafy(l) = issety(1)
// Apply Lemma 7.6 when incrementing a.off.

// Stable because chain cannot be extended once all the flags have been set.

1

drq,re. 12 ANy [change(x, r2)]}! *

oreg (7“17 {Chain(rs,d) wf(rs,d) Ary € rs(finalleafy(x)).Z A })

Vi lasty(a) <k 1 <} x Aleafy(l) = issety(l)

// Case-split on whether d(a.hdr).uhdr = NULL, <f so, apply Lemma T7.4.

// As Vx.—x <4 lasty(a), well-formedness gives us Vz.lasty(a) <j§ x.

drq,re. 72 ANy [change(x, r2)]}! *
wf(rs,d) Ary € rs(finalleafq(x)).Z A
d(ahdr).uhdr # NULL =
oreg | r1, < Chain(rs, d) V. lasty(a) <j§ l <1Ll x A leaf (1) = issetq(l)
V d(a.hdr).uhdr = NULL —
Vi1 <) x A leaf (1) = issetq(l)

Fig. 24. Sketch-proof of wait with summarization (completed in Fig. 25).
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a = a.hdr->up;

Iri,re. 7o ll/:2> P x [change(x, r2)]}" *
wf(rs,d) A ry € rs(finalleafy(x)).Z A
a.hdr # NULL =
oreg | 71, { Chain(rs,d) Vi.a <lﬁ l <15 x A leaf (1) = issetq(l)
V ahdr = NULL =
Vi1 <) x A leaf (1) = issetq(l)
a.off++; // Apply Lemma 7.6 again.

Iry, .10 LNy [change(x, r2)]]* *
wf(rs,d) Ary € rs(finalleafyq(x)).Z A
a.hdr # NULL =
oreg | r1,4 Chain(rs,d) Vi.a <yl <15 x A leaf 4(1) = issetq(1)
V ahdr = NULL =
VIl <} x Aleaf (1) = issetq(l)

}
Iry, 9. 79 L P [change(x, r2)]}" *

oreg <7’1,{Chain(7's, d) wh(rs, d) Ara € rs(finalleafy(x)).Z A })

vi.1 <jﬁ x A leafg(l) = issetq(l)
// Apply Lemma 7.5.

71

Ary, .10 LNy [change(x, r2)]]* *
wf(rs,d) A ry € rs(finalleafy(x)).Z A
oreg | 1, Chain(rs,d) |Vz.leaf4(z) A z € dom(rs) A descendy(x,2) =

Arsy,rse.1s =181 - 18(2) - rsa A ctrue(rs(z) - rS2)
// Identical reasoning to chained tmplementation.

Fig. 25. Sketch-proof of wait with summarization (continued from Fig. 24).

The final lemma shows that shifting left from the current maximal node reaches a node
earlier in the order.

LEMMA 7.6. 0 < d(a).off < d(a).loff A\wf(d)Aa o (e41) <ak <ab = a <l k <4b

PROOF. The result follows from the structure of the heap map and the definition of <.
O

Proving extend. A sketch-proof of extend is given in Fig. 26. There are two cases for
extending the chain: either the node is the last element in the current array and there is
space to add an extra node; or there is no space and the algorithm allocates a fresh array.
This choice is made by the conditional in line 6.

The proof needs the following pair of lemmas to show that the unused predicate repre-
senting unused permissions is preserved by extending the chain.



1 {send(x,P) *@eeEe < X*@lELx < l}

extend(chan_addr x){
// Frame off order predicates and unfold send.

Irq,re. 1o 2L p s [send(x)]7* * [mark]™
oreg(r1, {Chain(rs,d) | wf(rs,d) A leafq(x) A rs(x).flg = 0})

chan_addr nx,r;
if (x.off == x.hdr->loff && x.off < MAX){

2
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}

Iry,re. 179 tl/:2> P s« [mark]™ * [send(x)[}* * 1/ N Qxr" N Q *
oreg [ 1, 4 Chain(rs,d) wi(rs, d) A leafa(x) A rs(x).flg =0
A d(x.hdr).loff = x.0ff A x.0ff < MAX

x.hdr->flags[x.loff+1] = 0;
x.hdr->loff++; // Transition relation step ext.

Iri,re. o ti—2>P*r’ll/:2>Q*r” '1/:2)@*

[mark]™ * [send(x)]}' * [send((x.hdr, x.0ff + 1))]}* * [change({x.hdr,x.0ff + 1),7"")]]" *
rs =rsy - rs(x) - ((x.-hdr,x.0ff + 1), 7/, {r""},0,0) - rsa A

oreg | 71, § Chain(rs, d) |wf(rs,d) A leafs(x) A rs(x).flg = 0 A leafy((x.hdr, x.0f £ + 1))
A d(x.hdr).loff = x.0off + 1 A x.0off < MAX

r.hdr = x.hdr; r.off = x.off + 1;
nx = x;

/2 ’ 1/2 1 1/2
dri,re.reo E= Pxr' BE== Q1" BE= Q %
[mark]™ * [send(nx)]]" * [send(r)]7* * [change(x, r")]}* *

- . . 1o .
oreg (Th {Chain(rs,d) o TS(nX) (r, " ’{r }, 07 w) rea Wf(rs,d) " })

leaf y(nx) A rs(nx).flg = 0 A leafy(x) Ars(r).flg =0
else {

drqy,r0. 10 ll/:2> Pxr B Qx*r" EN Q@ * [mark]"™ * [send(x)]]" *
oreg (r1,{Chain(rs,d) | wf(rs,d) A leaf4(x) A rs(x).flg = 0})

nh = malloc(chan_hdr);

nh->up = x; nh->loff = 1;

// Transition relation step ext.

Iri,re. 7o ;1/=2> Pxr '1/:2) Qxr" '1/:2) Q *
[mark]™ * [send((nh, 0))]]* * [send((nh, 1))]]* * [change((nh, 1),r")]]"* *
rs =rs1 - (rs(x) 4 (nh,0)) - ((nh, 1),7/,{r"},0,0) - rsa A
oreg | 71, ¢ Chain(rs, d) |wf(rs,d) A leaf4(x) A rs(x).flg = 0 A leafy((nh, 0)) A leafy((nh, 1))
Ars((nh,0)).flg = 0Ars({nh,1)).flg =0
nx.hdr = nh; nx.off = 0;
r.hdr = nh; r.off = 1;

return (r,nx);

}

25 {send(r, Q) * recv(r, Q) * send(nx, P) ¥r < nx* Pocpe < r* ®;cpnx < l}

Fig. 26. Sketch-proof of extend with summarization.



LEMMA 7.7.
<exts(<x, i), (rs,d), (rs’,d")) Adom(d') = dom(d) Ar’ & rs A ) .
rs'({x,i+1)).2 = {r'} Awf(rs,d) Awf(rs’,d") A unused(r,rs,d)
unused(r,rs’, d’) * [send({x, i + 1))]7 * [change({z,i + 1),7")]]
PROOF. Begin by observing that, by the definition of exts, (x,i+1) ¢ rs, and thus that:
unused(r,rs,d) = [send({x,i + 1))]} * [change({(z,i + 1),7")]] * true

As (x,i+ 1) € rs’, it holds immediately that (x,i 4+ 1) € uS(rs’). As (x,i 4+ 1) is a leaf,
finalleaf 3/ ((x,i + 1)) = (x,i 4+ 1). As it is not the first leaf in the array x, it cannot have a
finalleaf parent, meaning it must be in C(rs’,d"). Thus (z,i + 1) € uC(rs’,d’). This suffices
to show that [send({z,i+1))] and [change({z,i+ 1),r’)] can be safely removed from unused.
O

LEMMA 7.8.
exts((z,1), (rs,d), (rs',d’)) Adom(d') = dom(d) W {I} Ar' & rs A N
rs'((I,1).Z = {r'} Awf(rs,d) Awf(rs’,d’) A unused(r,rs,d) * [send({x, )]}

unused(r, rs’, d’) * [send({l, 0))]7 = [send({l, 1))]] * [change({, 1), )]}

PROOF. By the structure of ext, (I,0) and (I, 1) are not in rs, but are in rs’. The ability
to retrieve [send((l, 0))]7 x[send((l, 1))]} follows immediately. As (I, 0) is leftmost in the array
I, its parent (x,) is the maximal final-leaf in C(rs’,d’). However, (l,1) is not leftmost, and
thus is in C(rs’,d’). By the same argument used in the previous lemma, [change({l,1),r")]}
can be removed from the unused. O

LEMMA 7.9. ext(z, (rs,d), (rs',d")) Awf(rs,d) Awf(rs’,d) = uC(rs,d) C uC(rs',d")

PROOF. There are two cases for extension: in-place extension in the array, or creation
of a new array. In the former case, finalleaf is preserved for existing nodes because the only
new node is less than all existing nodes in the array. In the latter case, the parent of the
new array is a finalleaf to the new array, and all other finalleaf relationships are preserved.

Now pick a pair (x,7) € uC(rs,d). Extending the chain can’t stop x from satisfying
finalleaf or make any node higher than z satisfy finalleaf. Therefore x € C(rs’,d’) after
extension. The only alteration to renounced sets W in rs’ is to add a new empty set. Thus
—Jy.r € rs¢’(y).W. Finally, both cases of extension preserve the promise sets Z, ensuring
that r € rs’(finalleaf 4 (x)).Z. O

7.4. Verifying axioms

The splitting and renunciation axioms do not depend on the underlying data-structure rep-
resentation, and therefore are largely identical to the ones given in §6.3. The main difference
is the new definition of unused. The renunciation case is straightforward, but we need to
show that we can pull the appropriate change permissions out of the region. This is captured
by the following lemma:

LEMMA 7.10.

unused(ry, rs, d) x [change(z, 2)]1" A split(z, (rs, d), (rs’,d")) A

rs(finalleafy(z)) = (r, W {ra}, f, W) Ars’ =15 Sinalieat,, () 4z (@ \ {r2}) W {r3,74})

= unused(ry,rs’,d') x [change(z,73)]]" * [change(x, 4)]]"

PRrROOF. By the definition of split, d = d’, and element locations in rs are unchanged
in rs’. Thus it holds that C(rs,d) = C(rs’,d’) and finalleaf4(z) = finalleafy (z). From the



definition of uC the available change permissions are controlled by the set rs(finalleaf;(x)).Z.
This set is correctly updated by the transition, which completes the proof. O

8. COMPARISON TO CONFERENCE PAPER

This paper substantially expands and revises the proofs of correctness given in our confer-
ence paper [Dodds et al. 2011]. All the proofs have been restructured, and the proof of the
summarising implementation (§7) is entirely new. This paper also fixes a subtle logical error
which rendered some of the reasoning in our conference paper unsound. In this section, we
describe how this problem arose, and how we have fixed it.

Our specifications rely crucially on higher-order quantification to abstract over the re-
sources transferred through channels. To support this, in [Dodds et al. 2011] we extended the
original concurrent abstract predicates logic [Dinsdale-Young et al. 2010] with higher-order
assertions and quantification.

In concurrent abstract predicates, resources describe not only the current state of shared
regions but also the protocols that govern these shared regions. In the case of higher-order
shared resources, these protocols are themselves expressed in terms of assertion variables
that might be instantiated with shared resources. Support for such higher-order shared
resources thus require a semantic domain of protocols that include assertions over (among
other things) protocols. This results in a circularity and the resulting equation (protocol =
P(... x protocol)) has no solution in set-theory, by a simple cardinality argument.

The logic and model presented in [Dodds et al. 2011] broke this circularity by ignoring
protocol assertions when interpreting protocols. As a consequence, many of the properties
we relied on when reasoning about the higher-order resources box(i, P,7) and fut(i, P) are
unsound. (In that paper, fut played a similar role to recv in this paper, while box was used
in verifying the splitting axiom.) For instance, fut(i, P) is generally not stable when P is
instantiated with an assertion that includes a protocol assertion, because fut(i, P) asserts
the existence of a shared region whose protocol is defined in terms of P.

The program logic itself presented in [Dodds et al. 2011] still appears sound. However,
many steps in the proofs of programs depend on unsound auxiliary entailment steps. These
steps are common in separation logic proofs, but in most earlier work entailments generally
capture comparatively simple properties. We failed to appreciate how deeply the proofs
in [Dodds et al. 2011] relied on very subtle entailments between shared regions that were
broken in our modified model. The problem came to light a year later when Svendsen
attempted to use our logic to verify the Joins library [Svendsen et al. 2013]. Resolving this
kind of problem motivated the development of iCAP, which is the proof technique we use
in this paper.

iCAP uses step-indexing to stratify the construction of the semantic domain of protocols.
The resulting logic does support higher-order shared resources, but requires > operators to
ensure that protocols are properly stratified. Thus the problematic circularity in [Dodds
et al. 2011] is appropriately resolved in the rules of the logic. At the level of human process,
we have been much more meticulous in this paper in identifying and checking entailment
steps used in program proofs.
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A. SAVED PROPOSITIONS
A saved proposition 7 £ P is encoded as a normal iCAP predicate with a structure
guaranteeing the properties we want. Intuitively, this predicate consists of a shared region
with identifier r, with the proposition P encoded into its transition relation. Linearity comes
from a permission with fractional argument 7.

More formally, we assume two transition-system states {1st, 2nd} and a single token state
tok, and invariant map Iy, and transition relation Ty, defined as follows:

Torp(Q)(1st)
Torp (@) (2nd)
Torp(tok)

emp

Q
{(1st,2nd)}

[I>

>

We then define the saved proposition r £ Q as follows:
rEsQ 2 region({1st,2nd}, Thp, Lo (@), 7) * [tok]T

The fact that the representation transition state 1lst is emp means that we are not obliged
to supply P when creating the saved proposition. The second state encodes the value of the
saved proposition.

The linearity property (property 2) holds trivially from the linearity of permissions. Two
saved propositions with arguments 7, and 7o must contain tok permissions with fractional
arguments 7 and mo. Combining these gives the required result.

For the unification property (property 3) we need to reason more deeply about the iCAP
model. The following facts about regions and invariant maps hold in iCAP — for proofs
see [Svendsen and Birkedal 2014b].

region(S, T, I,r) * region(S",T', J,r) = (>I(s) = pJ(s)) (5)
region(S, T, I,7) = region(S", T, J,r) = (>I(s) —

The later modality, >, is needed in these properties because we are reasoning about the
contents of a shared region — albeit one that will not contain any resource. We can then
prove the unification property as follows:

PROOF (PROPERTY 3).
rEs Pxr s Q
= r & P region({1st,2nd}, Tprp, Lo (P), 7) region is duplicable.
* 7 2> Q * region({1st, 2nd}, Ty, Torp(Q), 7)
= rES Pxr = Q* (5(Ipp(P)(2nd)) = >(1pp(Q)(20d))) Property 5.

= rTES Pxr 2 Qx (0P = Q) defn of Iop

For unification inside separating implication we reason as follows:

PROOF (PROPERTY 4). Using property 6 and the same proof technique as above, we
can derive a slightly different version of the unification property:

TES PxrEesQ = (bP) = (>Q) (7)



The proof of Property (4) then goes as follows:

PES Prxr 2 Qx (X %>(Q*Y)) x (P = 2)
SMono

= rES PxrEEs Qx (X #>(QxY)) (P = 2)
LBin, assume > distributes over —

= 7ES Pxr e Qx (X « (bQ*bY)) * (bP) +>2)
Assume property 7

= rES Pxr 2 Qx (X = (bQ *bY)) * (bP) +p2) * ((>Q) = (>P))
Transitivity of —

= rES PxrEs Qx (X =+ 0Q+0Y)) * ((Q) +b2)
Framing of —

= rES PxrES Qx (X = Q#0Y)) * ((6Q) * (5Y)) = ((6Z) * (bY))
Transitivity of —

= rES PxrEs Qx (X = ((62) x (bY)))

B. PROOFS FOR OUT-OF-ORDER SIGNALLING
This appendix gives proofs for some of the lemmas stated in §6.

LEMMA 6.1.

resource(Z,) C & .3Q: Prop.i LN Qi) * [cQ(4)]
i€T
PRrROOF.
W=0A3IQ: T — Prop, R: W — Prop.
®iez. i B2 Qi) * Bpew. w 2> R(w)

# [ (> Buew. R(w)) > Biez. [Q(i)])
Simplify using W = 0, garbage collect.

C  3Q:T — Prop. ®;c7.1 tl/:2> Qi) * [>®Piez. Q1))
Switch from |—| to [—], pull out &.

C 3Q: 7 — Prop. ®icr.i K2 Qi) * ®icz. Q)]
Push in the existential.

T ®icz.30Q: Prop.i 22 Qi) * Q)]

LEMMA 6.2. 25 Px | P| * resource(Z, W W {r}) L resource(Z,W)



PROOF.

reLs Rx | R] * resource(Z, W W {r})
Definition of resource.
C 2 R« LR *
3Q: Z — Prop, R: Ww {r} — Prop.

®icz.-i e Qi) * Byewwiry-w - R(w)
* [ (> ®w€W&J{r}' R(w)) > ®;ez. [Qi)]]
Property (3), monotonicity of >, monotonicity of | —].
C 3P: Prop.r 22 R+ [oR] * ([oR] = [>P))
3Q: Z — Prop, R: W — Prop.

r s P ®@ier.i B2 Qi) * ®per. w E2> R(w)

* [ (0P # > @ e R(w)) —=+>®icr. [Q>1)]]
Modus ponens.
C  3P: Prop.r 22y Ry [>P] *
3Q: Z — Prop, R: W — Prop.
r L Py ®icr.i SN Q(i) * B yew. w SN R(w)
* (0P %> @ e R(w)) > Piez. [Q>1)]]

Combine |—|, modus ponens for —, garbage collect.
C 3Q: Z — Prop, R: W — Prop.
1 1
* [ (> Buwew. R(w)) > Biez. [Qi)])

C  resource(Z, W)

LEMMA 6.3. chainres(rs) A wf(rs) A ctrue(rs)

C 3rs’.chainres(rs’) A cconf(rs’) Ars B s A wf(rs’)

PRrROOF. We perform a sequence of smaller view-shifts corresponding to converting each
cnode in turn, starting with the earliest element in the chain:

REPERLC...CPR,
Here n is the length of rs and the subscript 1,2,3. .. denotes the length of suffix of rs which
has been checked. We write rs[a, b] for the subsequence of rs from element a to element b,
inclusive of both. Thus the inductive invariant is:
P, &  3rs' . chainres(rs[0,n —i] - rs") A cconf(rs’)

Arsl(n—1i)+ 1,n] W rs! A wf(rs[0, (n — 7)) - rs’)

The base case of the proof is simple. If ¢ = 0 take rs’ to be empty and the invariant follows
trivially from the premise. Let us assume that ¢ > 0. We reason as follows to pull out the



intermediate chain node:

Jrs’. chainres(rs[0,n — i] - rs’) A cconf(rs’) Ars[(n —i) + 1,n] X ps’ A wf(rs[0,n —i] - rs’)
C

Irs’, s. chainres(rs[0,n — (i 4+ 1)]) * resource(s.Z, s. V) * chainres(rs’)

A cconf(rs’) A rs[n —i,n] X sors! A wf(rs[0,n — (i +1))] - s-rs’)

If s W = () then we are done. Otherwise, we induct on the size of W, showing that it can
be reduced to () by classical entailment. (Recall that by definition W is finite.)

Pick an element w € W. Since the chain is well-formed, the region identifier w must
also be a member of some set s’.Z for an earlier element s’ € rs’. If w is a member of
s'.Z for multiple s’, we pick the first such s’ € rs’. Since cconf holds for rs’ it follows that
s’ W = (). Thus, there exists rs}, rs) and s’ such that w € §'.Z, s W =0, rs' =rs} s -rs)
and Vz € rs). w € x.Z. By the definition of resource, there exists a saved proposition

1 1
wELs R inside resource(s.Z, s.WV). By the same definition, the saved proposition w 22y p
and resource >P must be included in resource(s”.Z, }). We move the resource from one node
to the other, and garbage collect the saved proposition:

resource(s.Z, s. W) x chainres(rs} ) * resource(s’.Z, 0) x chainres(rs})
C

resource(s.Z, s. W \ {w}) * chainres(rs])  resource(s’.Z \ {w}, D) * chainres(rs})
Let rs” denote rs} - '[Z — s'.Z\ {w}] - rs}. By definition of X it thus follows that

rsjn —i,n] % s s’ B sW s s W\ {w}] - rs”
Hence, by Lemma B.1 it follows that
wf(rs[0,n — (i +1))] - s(W = sW\ {w}] - rs”)
The result is that the assertion is rewritten as follows:
C  Jrs',s.chainres(rs[0,n — (i + 1)]) * resource(s.Z, s.W \ {w}) * chainres(rs’)
A cconf(rs’) Ars[n —i,n] B sors’ A wf(rs[0,n — (i +1))] - s-rs’)

Thus we have rewritten s.)V into a smaller set. By inducting on the size of this set we can
get to the point where W = (). This allows us to complete one step of the outer induction,
which completes the inductive proof. O

LEMMA B.1.
wf(rs) Ars % rs' = (available(rs) = available(rs’) A wf(rs'))

.. w .
PROOF. By definition of rs — rs’ there exists rs1, s, 753, 1, 52 and w such that
rS =181 81 7Sy S2-1Ss3, w € $9.7, w E s1. W,
rs’ =rsy-(s1 qw (e\w)) rss- (52 4z (e \ w))-rs3

Since $9. W N s2.Z = O and wf(sq - rs3) it follows that w & (s2.)V U available(rss)) and
Vs € rso. w ¢ s.Z. Thus,

available((s2 4z (o \ w)) - rs3) = (available(rssz) \ s2. W) W (s2.Z \ {w})
= available(sg - rs3) \ {w}



Since w € $1. W and wf(sy - rs2 - s9 - rs3) it follows that w € available(rss - s - rs3). Hence,
since Vs € rso. w & s.Z it follows that Vs € rsy. w & s. W. Thus,

available((s1 4ty (o \ w)) - sy - (52 4z (8 \ w)) - 7s3)
= (available(rsy - (s2 4z (¢ \w)) -7s3) \ (st W\ {w})) Ws1.Z
= ((available(rsy - 52 - rs3) \ {w}) \ (st W\ {w})) Ws1.Z
= (available(rsg - s3 - 1s3) \ s1. W) W s1.T

= available(sy - rsa - 59 - r's3)

from which it follows easily that available(rs) = available(rs’). To show that wf(rs’) we must
also show that

s1 W\ {w} C available(rsy - (s2 4z (¢ \ w)) - rs3)
= available(rsy - s2 - rs3) \ {w}
and s3. )V C available(rsz) both of which follow easily from the assumption that wf(rs). It
remains to show that all sets Z for the chain are pairwise disjoint, and likewise for all sets
W. As we have only removed identifiers, this is satisfied trivially. |
LEMMA 6.4. resource(Z Wy, D) * 1o ll/:2> P C resource(Z,0) * [>P]
PROOF.
resource(Z Wy, () * o 22 p
Lemma 6.1.
1/2 . 12
C  roE= Px*®icruyr,. IR.i = Rx [bR]
Pull out resource for identifier ro.
1/2 / 12 / / . Y2
C rmE=P*x3R .= R x [bR'] * ®;c7. IR i == R [bR]
Property (3), monotonicity of [—].
C el P+3R. (bR = [bP]) # 12 2 R+ [bR'] * ®icz. 3R.i 22 R+ [bR)
Modus ponens, garbage collect.
C [oP]* ®icr. JR.i E2 R+ [oR]
Definition of resource.
C  [>P] = resource(Z, )

LEMMA 6.7.
{oreg(r, {Chain(rs) | z € rs}) * oreg(r’, {Chain(rs’) | z € rs'})} (skip) {r=r'}

PROOF. Prove this by case-splitting on whether the two regions are equal. Suppose the
two are equal — then the specification is proved. If they are unequal, we prove this leads to
a contradiction by opening both regions and examining their contents. Each region asserts
exclusive ownership of heap cell x.loc which leads to a contradiction. Therefore the post-
condition is false, allowing us to prove any post-condition. O

LEMMA 6.8. resource(Z, W {r})*r EENG IVIELN Ty
C 3. resource(Z, WW {r',r"}) = 1" N (Ty - S)



PRrROOF. First we construct a new saved proposition 7" such that " = (T1 - S). Now
it suffices to prove

resource(Z, W W {r}) xr LN VIS Ty = 7" SN Ty Avalid(Ty * Tp, = S)

C  resource(Z, W W {r',r"})

ML%S'*T l/:>T1>|<r”ll/:2>Tg/\va|id(T1*T2:>S)*

3Q: Z — Prop, R: WW {r} — Prop.
®@icr. i 22 Qi) * Bwemwwpry. w £ R(w)
# [ @uewwiry- B(w)) > ®iez. [Q()]]
Rearrange
C 3P: Prop, Q: Z — Prop, R: Ww {r',r"} — Prop.
valid(R(r") « R(r") = S) A r L Swr el P
* @iez-i é Q(7) * ®w€WLﬂ{r’7r"}~ w é R(w)
# [P x> @ypew. R(w)) +>®iez. [Q(0)]]
Property (3), SMono and distributing > over = .
C 3P: Prop, Q: Z — Prop, R: Ww {r',r"} — Prop.
valid(R(r")) * (bR(r")) = 5P) A ®yer.i 22 Qi) * Buewis (o ary w B2 R(w)
# [P x> @pew. R(w)) +>®iez. [Q(i)]]
By mono of | -], = and *.
3Q: Z — Prop, R: Ww {r',r"} — Prop.
®icri 22 Q) * Buewugrr iy w = Rw)
« [(GR()) * (GR(")) %> @pew. R(w)) > @jez. [Q(0)] ]
Rearrange
C 3P: Prop, Q: Z — Prop, R: WwW {r’,r"} — Prop.
®i€l”i F:% Q(Z) * ®wEW&J{7",7'”}' w ?Iﬁi R(w)
* Ll> ®w€W&J{r’,r”}' R(w)) —k > ®i€I' [Q(Z)—H

1M1

LEMMA B.2.

9 AN L[P] = (P1* Py)] %13 L Py osxry S Py + resource(Z W {rz}, V)

C  resource(Z W {rs,r4}, W)



PROOF.

T9 EENYS [[P] = (P * Pp)| *r3 N Pyxry LN P, x resource(Z W {ra}, W)
Definition of resource.
C ot P |[P] = (P Po)| s 12 Py vy 2 Py
3Q: ZW{ry} — Prop, R: W — Prop.
Y . %
®i€I&J{r2}'Z = Qi) ¥ ey w = R(w)
(L Buew- R(w)) > Biezwir)- [Q(0)]])
Pull out ro, > mono w.r.t. —, property (4).
1/5 1/2 1/2
C roF= PxrsE= Pl xrs = P,
3Q: ZW {ra} — Prop, R: W — Prop.
1 1 1
T2 lé Q(’I“g) * ®i€l'~i lé Q(Z) * ®wew.’w lé R(’LU)
[ (> Buew- R(w)) ~>(Pr* Py ®iez- [Qi)])])
Fold r3, r4 into T, weaken with [_], garbage collect.
C 3Q: ZWry — Prop, R: W — Prop.
.Y . 1/
®iEZL+J{r37T4}- ? ':2> Q(l) * ®w€W' w ’:2_> R(w)

* [(> @uew- R(w)) > Bjezufrg,riy- [Q)]])

Definition of resource.
C resource(Z W {rs,r4}, W)

LEMMA 6.9. 75 € rs(x).Z A g RENyoW [[P] = (Py * P2)] * chainres(rs)
C s rg,re.r3,rs €rsArs =rs 4z (o \ra) W{rs, rq} A

1/2 1/2 . ,
r3 B= Py * r4 == P * chainres(rs’)



PrOOF.
ro € rs(z).Z Arg ANy [[P] = (Py * P3)] * chainres(rs)
Make saved propositions, fresh by construction.
C roers(x)IAr L Py [[P] = (Py * P3)] * chainres(rs) %
Jrs,ra.75 B> P kg B P AT3, 14 & 18
Pull out resource predicate for x.
C Jrsy,rse.me €rs(x) L Arg RENG [[P] = (Py * Pa)] =
chainres(rsy) * resource(rs(z).Z,rs(x) W W {rs(z).res | rs(z).flg = 0}) * chainres(rsz) *
Jra,rs.73 N Pxry N Py Arg,rg grsArs=rsy-rs(x) rso
Apply Lemma B.2.
C Jrsy,rse,rs,re.10 € rs(x).Z Ao 31/:z> Px|[P] = (P P)| *
chainres(rsy) * resource((rs(z).Z \ r2) W{rs,ra},rs(z) WHW {rs(x).res | rs(x).flg = 0}) =
chainres(rss) * 13 Il/:2> P xry Il/:2> Py Ars,ry g rsArs=rsy-rs(z) - rso
Definition of chainres.
C 3rs',rg,ra.r3,ma ErsArs’ =rs d, 4z (e \ ro) W {rs,ry} A

1/2 1/2 . ,
rs = Py x4 E= P3 x chainres(rs’)



