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• Many concurrent programs are non-disjoint, but 
disjointness is very useful. 

• We give disjoint specifications for non-disjoint 
algorithms, presenting a fiction of disjointness.

• Disjoint specifications for modules can be 
composed to give disjoint specifications for 
clients.

• In this way, we allow abstract reasoning and 
information hiding. 

Summary 
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• Encapsulation: each module 
should be verified independent 
of other running modules. 

• Abstract reasoning: each 
module should only reason in 
terms of of the preceding layer.

• Abstract specification:  each 
module should present a 
specification that applies to any 
similar module. 

In reasoning about this 
system we’d like: 
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Disjointness gives encapsulation and abstraction for 
free. 

Disjoint modules are naturally insulated from 
each other, giving encapsulation.

Consequently they can be represented 
abstractly without worrying about overlapping 
properties. 

Solution: disjointness.
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P1 * (P2 * P3)

Disjointness in separation logic 

Separation logic requires that resources are disjoint.

Disjointness is expressed by a star operator. 
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P1 * (P2 * P3)

Disjointness in separation logic 

The disjoint 
star

Separation logic requires that resources are disjoint.

Disjointness is expressed by a star operator. 
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P1 * (P2 * P3)

Disjointness in separation logic 
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Disjointness in separation logic 
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P1

P2 

P3

Disjointness in separation logic 
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Concurrent programs running disjointly can be 
reasoned about separately.

� {P1}C1 {Q1} � {P2}C2 {Q2}

� {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Resources can be transferred through invariants. 

Disjointness and concurrency
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Concurrent programs running disjointly can be 
reasoned about separately.

� {P1}C1 {Q1} � {P2}C2 {Q2}

� {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

However, many concurrent algorithms share state.

Resources can be transferred through invariants. 

Disjointness and concurrency

10Friday, 16 October 2009



lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

Even the humble lock breaks disjointness
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

x

Thread1

Thread2

Thread3

Even the humble lock breaks disjointness
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Previous solutions

• Share resources as read-only areas. Still rules out a 
large number of algorithms. 

• Share through critical regions. Works for many 
examples, but becomes very complex for large 
examples. 

• Rely-guarantee: model interference explicitly. No 
information hiding or abstraction
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

However, a lock presents a high-level disjointness

x

Thread1

Thread2

Thread3
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
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However, a lock presents a high-level disjointness

x
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Thread2

Thread3
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

However, a lock presents a high-level disjointness

x

Thread1

Thread2

Thread3

 Current 
(unique) owner

potential owners
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)

Lock Specification
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)
High-level 

disjoint star

Lock Specification
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lock(x) {
  while( !CAS(&x,0,1) );
}

unlock(x) {
  x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)

Lock Specification

Specification is thread-centric, following the rely-
guarantee approach.
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The module should expose axioms:

⇐⇒Locked(x) * Locked(x) false

isLock(x) * isLock(x)isLock(x) ⇐⇒
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The predicates hide information, in that they can be 
reused without knowing how they are defined. 

An abstract interface can be proved for an arbitrary 
module using our system. 

Such abstract predicates give a fiction of disjointness, in 
that predicates can be composed as if they were 
disjoint. 
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Presenting High-level 
Disjointness
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How do we verify that the lock implementation 
satisfies the high-level specification?

1. Instantiate  Locked(x),  isLock(x)  etc. by 
concrete definitions;

2. prove that the definitions satisfy the 
required axioms;  

3. prove that predicates are self-stable; and

4. prove that   lock(x),  unlock(x)  satisfy 
the required specifications under these 
definitions.
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Divide state into shared and thread-local portions. 

P ∗ Q
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Divide state into shared and thread-local portions. 

P ∗ Q
Shared state 

assertion
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Divide state into shared and thread-local portions. 

P ∗ Q
Local state 
assertion
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Divide state into shared and thread-local portions. 

Shared state is subject to interference, modelling 
changes from other threads. 

P ∗ Q ⇐⇒ P ∧Q

The star behaves additively over shared state. 

P ∗ Q
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[action(. . .) ]i

Permissions value    records whether a state update is 
permitted to the current thread or other threads.

i

Permission assertions control interference.

Operations in the program must be permitted by the 
permissions held in local state.

Our slogan:  “Actions are resources”
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[action(. . .) ]i

Permission assertions control interference.

Permissions value    records whether a state update is 
permitted to the current thread or other threads.

i

1 0g

23Friday, 16 October 2009



[action(. . .) ]i

Permission assertions control interference.

Permissions value    records whether a state update is 
permitted to the current thread or other threads.

i

1 0g

Exclusive 
permission
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[action(. . .) ]i

Permission assertions control interference.

Permissions value    records whether a state update is 
permitted to the current thread or other threads.

i

1 0g

Non-exclusive 
permission
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[action(. . .) ]i

Permission assertions control interference.

Permissions value    records whether a state update is 
permitted to the current thread or other threads.

i

1 0g

No 
permission
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1 0g

Can weaken permissions down this axis:

[Act(. . .) ]g =⇒ [Act(. . .) ]g ∗ [Act(. . .) ]g

[Act(. . .) ]g =⇒ [Act(. . .) ]0

[Act(. . .) ]1 =⇒ [Act(. . .) ]g
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unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Lock permissions
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unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Lock permissions

Permission on 
unlock is returned

to shared state
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lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1
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lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Permission on 
unlock is moved to 
thread-local state

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1
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lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Note permissions are part of state.

Interference can update permissions

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1
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isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Predicate definitions
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isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Thread has permission 
to lock x

Predicate definitions
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isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

x is either unlocked
or locked in the 

shared state

Predicate definitions
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isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

remaining locks in
the shared area

Predicate definitions
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Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Predicate definitions
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Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Thread has permission 
to unlock x

Predicate definitions
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Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

x is locked in 
the shared state

Predicate definitions
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CreateLock : [lock(x)]g � x �→ 0

LockFactory() ⇐⇒ [CreateLock]g ∗

�x.
(x �→ 0 ∗ [unlock(x)]1 ∨ x �→ 1)
∨ ([unlock(x)]1 ∗ [lock(x)]g)

We also define a constructor action:

Use this to define a lock constructor predicate:

All locations are either locked, 
unlocked, or uninitialized
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Showing conformance to specification

1. definitions satisfy axioms
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Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

1. definitions satisfy axioms
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Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

1. definitions satisfy axioms
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Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

[Unlock(x)]1 ∗ [Unlock(x)]1 =⇒ false

As a consequence of permission semantics:

1. definitions satisfy axioms
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Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

[Unlock(x)]1 ∗ [Unlock(x)]1 =⇒ false

As a consequence of permission semantics:

�

1. definitions satisfy axioms
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isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms
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isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:
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isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:

By definition:
P ⇐⇒ P ∗ P

[Action]g ⇐⇒ [Action]g ∗ [Action]g
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isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:

By definition:
P ⇐⇒ P ∗ P

[Action]g ⇐⇒ [Action]g ∗ [Action]g �
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Showing conformance to specification

1. definitions satisfy axioms

Other axioms are similar.
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Showing conformance to specification

2. predicates are self-stable

For the fiction of disjointness, we 
want predicates that can be used 
without knowing their internal 
structure. 

This means they must be self-stable: 
invariant under interference as a 
result of their contained permissions. 

permissions record possible 
interference from other threads. 
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

First possible action: lock(x)
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

First possible action: lock(x)

Stable under                     because the action can only 
fire if                in the shared state.

lock(x)
x �→ 0
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Second possible action: unlock(x)
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Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Stable under                     because Locked(x) includes 
full permission on it. 

unlock(x)

Second possible action: unlock(x)
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Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x){ isLock(x) } { isLock(x) ∗ Locked(x) }
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Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

  while( !CAS(&x,0,1) );

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }
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Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

  while( !CAS(&x,0,1) );

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }
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Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

  while( !CAS(&x,0,1) );

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }
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Showing conformance to specification

3. definitions satisfy abstract specifications

Successful CAS corresponds 
to the lock action

lock(x) {

  while( !CAS(&x,0,1) );

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }
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Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒
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Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒
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Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

recall:
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Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

recall:
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Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

recall:

47Friday, 16 October 2009



Showing conformance to specification

3. definitions satisfy abstract specifications

The proof of unlock(x) is similar, 
and simpler.
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Using Abstract Module 
Specifications
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Showing conformance to specification

We have shown that the program 
implements the lock module 
interface.
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Showing conformance to specification

We have shown that the program 
implements the lock module 
interface.

How do we use it? 
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∆; I; Γ � {P}C{Q}

Judgements
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∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption, 
recording predicate 

definitions and axioms
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∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption, 
recording predicate 

definitions and axioms

Interference environment, 
recording the definitions 

of permissions.
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∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption, 
recording predicate 

definitions and axioms

Interference environment, 
recording the definitions 

of permissions.

Abstract specifications 
for functions used by 

the program
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Module rule
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Weaken the predicate 
environment to hide the 
predicate definitions and 

leave only external axioms

Module rule
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Module specifications must be 
written entirely in terms of abstract 

predicates, not state assertions. 

Module rule
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

The client specification is 
proved under a module 

specification defined 
entirely abstractly

Module rule
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

We require that 
predicate definitions 
are self-stable as a 

side-condition

Module rule
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∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Modular rule

By erasing predicate definitions and 
interference definitions, we make 
predicates purely abstract.

Modules can be used purely in 
terms of their abstract specs. 
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Parallel rule

∆, I,Γ � {P1}C1 {Q1} ∆, I,Γ � {P2}C2 {Q2}

∆, I,Γ � {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Our major result: the parallel rule 
just works, even though we can 
erase predicate definitions to give 
abstract module specifications. 
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Parallel rule

∆, I,Γ � {P1}C1 {Q1} ∆, I,Γ � {P2}C2 {Q2}

∆, I,Γ � {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Our major result: the parallel rule 
just works, even though we can 
erase predicate definitions to give 
abstract module specifications. 

High-level 
disjoint star
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Frame rule

∆, I,Γ � {P}C {Q} stable(F )

∆, I,Γ � {P ∗ F}C {Q ∗ F}

The frame rule also just works. 
Consequently we can compose 
both in space and between threads 
while maintaining modularity. 
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Linearizability

Linearizability: every concurrent trace can 
be converted to an equivalent sequential 
trace.

Orthogonal to the fiction of disjointness: 
one gives fiction of disjointness in time, the 
other in space. 

Many algorithms with disjoint specifications 
are also linearizable.
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Conclusions

Present disjoint specifications to non-
disjoint algorithms

Can layer proofs to prove complex 
compositions of systems. 

Fiction of disjointness is a powerful notion 
for describing complex concurrent systems.
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