
Providing a Fiction
of Disjoint Concurrency

Thomas Dinsdale-Young, Mike Dodds,
Philippa Gardner, Matthew Parkinson

1Friday, 16 October 2009

• Many concurrent programs are non-disjoint, but
disjointness is very useful.

• We give disjoint specifications for non-disjoint
algorithms, presenting a fiction of disjointness.

• Disjoint specifications for modules can be
composed to give disjoint specifications for
clients.

• In this way, we allow abstract reasoning and
information hiding.

Summary

2Friday, 16 October 2009

Hardware primitives

System

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

Hardware primitives

Synchronisation primitives

System

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

Hardware primitives

Synchronisation primitives

System

Library LibraryLibrary

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

Hardware primitives

Synchronisation primitives

System

Library LibraryLibrary

Library

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

Hardware primitives

Synchronisation primitives

System

Library LibraryLibrary

Library Library

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

Hardware primitives

Synchronisation primitives

Application

System

Library LibraryLibrary

Library Library

A
bs

tr
ac

tio
n

3Friday, 16 October 2009

• Encapsulation: each module
should be verified independent
of other running modules.

• Abstract reasoning: each
module should only reason in
terms of of the preceding layer.

• Abstract specification: each
module should present a
specification that applies to any
similar module.

In reasoning about this
system we’d like:

Hardware primitives

Synchronisation primitives

Application

System

Library LibraryLibrary

Library Library

A
bs

tr
ac

tio
n

4Friday, 16 October 2009

Disjointness gives encapsulation and abstraction for
free.

Disjoint modules are naturally insulated from
each other, giving encapsulation.

Consequently they can be represented
abstractly without worrying about overlapping
properties.

Solution: disjointness.

5Friday, 16 October 2009

P1 * (P2 * P3)

Disjointness in separation logic

Separation logic requires that resources are disjoint.

Disjointness is expressed by a star operator.

6Friday, 16 October 2009

P1 * (P2 * P3)

Disjointness in separation logic

The disjoint
star

Separation logic requires that resources are disjoint.

Disjointness is expressed by a star operator.

6Friday, 16 October 2009

P1 * (P2 * P3)

Disjointness in separation logic

7Friday, 16 October 2009

P2
*
P3

P1

Disjointness in separation logic

8Friday, 16 October 2009

P1

P2

P3

Disjointness in separation logic

9Friday, 16 October 2009

Concurrent programs running disjointly can be
reasoned about separately.

� {P1}C1 {Q1} � {P2}C2 {Q2}

� {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Resources can be transferred through invariants.

Disjointness and concurrency

10Friday, 16 October 2009

Concurrent programs running disjointly can be
reasoned about separately.

� {P1}C1 {Q1} � {P2}C2 {Q2}

� {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

However, many concurrent algorithms share state.

Resources can be transferred through invariants.

Disjointness and concurrency

10Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

Even the humble lock breaks disjointness

11Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

x

Thread1

Thread2

Thread3

Even the humble lock breaks disjointness

11Friday, 16 October 2009

Previous solutions

• Share resources as read-only areas. Still rules out a
large number of algorithms.

• Share through critical regions. Works for many
examples, but becomes very complex for large
examples.

• Rely-guarantee: model interference explicitly. No
information hiding or abstraction

12Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

However, a lock presents a high-level disjointness

x

Thread1

Thread2

Thread3

13Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

However, a lock presents a high-level disjointness

x

Thread1

Thread2

Thread3

 Current
(unique) owner

13Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

However, a lock presents a high-level disjointness

x

Thread1

Thread2

Thread3

 Current
(unique) owner

potential owners

13Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)

Lock Specification

14Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)
High-level

disjoint star

Lock Specification

14Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)

Lock Specification

14Friday, 16 October 2009

lock(x) {
 while(!CAS(&x,0,1));
}

unlock(x) {
 x = 0;
}

We want the following abstract specifications to hold:

{ isLock(x) }

{ Locked(x) } { emp }

{ isLock(x) * Locked(x) }lock(x)

unlock(x)

Lock Specification

Specification is thread-centric, following the rely-
guarantee approach.

14Friday, 16 October 2009

The module should expose axioms:

⇐⇒Locked(x) * Locked(x) false

isLock(x) * isLock(x)isLock(x) ⇐⇒

15Friday, 16 October 2009

The predicates hide information, in that they can be
reused without knowing how they are defined.

An abstract interface can be proved for an arbitrary
module using our system.

Such abstract predicates give a fiction of disjointness, in
that predicates can be composed as if they were
disjoint.

16Friday, 16 October 2009

Presenting High-level
Disjointness

17Friday, 16 October 2009

How do we verify that the lock implementation
satisfies the high-level specification?

1. Instantiate Locked(x), isLock(x) etc. by
concrete definitions;

2. prove that the definitions satisfy the
required axioms;

3. prove that predicates are self-stable; and

4. prove that lock(x), unlock(x) satisfy
the required specifications under these
definitions.

18Friday, 16 October 2009

Divide state into shared and thread-local portions.

P ∗ Q

19Friday, 16 October 2009

Divide state into shared and thread-local portions.

P ∗ Q
Shared state

assertion

19Friday, 16 October 2009

Divide state into shared and thread-local portions.

P ∗ Q
Local state
assertion

20Friday, 16 October 2009

Divide state into shared and thread-local portions.

Shared state is subject to interference, modelling
changes from other threads.

P ∗ Q ⇐⇒ P ∧Q

The star behaves additively over shared state.

P ∗ Q

21Friday, 16 October 2009

[action(. . .)]i

Permissions value records whether a state update is
permitted to the current thread or other threads.

i

Permission assertions control interference.

Operations in the program must be permitted by the
permissions held in local state.

Our slogan: “Actions are resources”

22Friday, 16 October 2009

[action(. . .)]i

Permission assertions control interference.

Permissions value records whether a state update is
permitted to the current thread or other threads.

i

1 0g

23Friday, 16 October 2009

[action(. . .)]i

Permission assertions control interference.

Permissions value records whether a state update is
permitted to the current thread or other threads.

i

1 0g

Exclusive
permission

23Friday, 16 October 2009

[action(. . .)]i

Permission assertions control interference.

Permissions value records whether a state update is
permitted to the current thread or other threads.

i

1 0g

Non-exclusive
permission

24Friday, 16 October 2009

[action(. . .)]i

Permission assertions control interference.

Permissions value records whether a state update is
permitted to the current thread or other threads.

i

1 0g

No
permission

25Friday, 16 October 2009

1 0g

Can weaken permissions down this axis:

[Act(. . .)]g =⇒ [Act(. . .)]g ∗ [Act(. . .)]g

[Act(. . .)]g =⇒ [Act(. . .)]0

[Act(. . .)]1 =⇒ [Act(. . .)]g

26Friday, 16 October 2009

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Lock permissions

27Friday, 16 October 2009

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Lock permissions

Permission on
unlock is returned

to shared state

27Friday, 16 October 2009

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

28Friday, 16 October 2009

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Permission on
unlock is moved to
thread-local state

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

28Friday, 16 October 2009

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

Note permissions are part of state.

Interference can update permissions

Lock permissions

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

29Friday, 16 October 2009

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Predicate definitions

30Friday, 16 October 2009

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Thread has permission
to lock x

Predicate definitions

30Friday, 16 October 2009

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

x is either unlocked
or locked in the

shared state

Predicate definitions

31Friday, 16 October 2009

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

remaining locks in
the shared area

Predicate definitions

32Friday, 16 October 2009

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Predicate definitions

33Friday, 16 October 2009

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Thread has permission
to unlock x

Predicate definitions

33Friday, 16 October 2009

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

x is locked in
the shared state

Predicate definitions

34Friday, 16 October 2009

CreateLock : [lock(x)]g � x �→ 0

LockFactory() ⇐⇒ [CreateLock]g ∗

�x.
(x �→ 0 ∗ [unlock(x)]1 ∨ x �→ 1)
∨ ([unlock(x)]1 ∗ [lock(x)]g)

We also define a constructor action:

Use this to define a lock constructor predicate:

All locations are either locked,
unlocked, or uninitialized

35Friday, 16 October 2009

Showing conformance to specification

1. definitions satisfy axioms

36Friday, 16 October 2009

Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

1. definitions satisfy axioms

36Friday, 16 October 2009

Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

1. definitions satisfy axioms

36Friday, 16 October 2009

Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

[Unlock(x)]1 ∗ [Unlock(x)]1 =⇒ false

As a consequence of permission semantics:

1. definitions satisfy axioms

36Friday, 16 October 2009

Showing conformance to specification

⇐⇒Locked(x) * Locked(x) false

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ trueRecall:

[Unlock(x)]1 ∗ [Unlock(x)]1 =⇒ false

As a consequence of permission semantics:

�

1. definitions satisfy axioms

36Friday, 16 October 2009

isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

37Friday, 16 October 2009

isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:

37Friday, 16 October 2009

isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:

By definition:
P ⇐⇒ P ∗ P

[Action]g ⇐⇒ [Action]g ∗ [Action]g

37Friday, 16 October 2009

isLock(x) * isLock(x)isLock(x) ⇐⇒

Showing conformance to specification

1. definitions satisfy axioms

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

Recall:

By definition:
P ⇐⇒ P ∗ P

[Action]g ⇐⇒ [Action]g ∗ [Action]g �
37Friday, 16 October 2009

Showing conformance to specification

1. definitions satisfy axioms

Other axioms are similar.

38Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

For the fiction of disjointness, we
want predicates that can be used
without knowing their internal
structure.

This means they must be self-stable:
invariant under interference as a
result of their contained permissions.

permissions record possible
interference from other threads.

39Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

40Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

First possible action: lock(x)

40Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

lock(x) : x �→ 0 ∗ [unlock(x)]1 � x �→ 1

First possible action: lock(x)

Stable under because the action can only
fire if in the shared state.

lock(x)
x �→ 0

40Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

41Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Second possible action: unlock(x)

41Friday, 16 October 2009

Showing conformance to specification

2. predicates are self-stable

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

unlock(x) : x �→ 1 � x �→ 0 ∗ [unlock(x)]1

Stable under because Locked(x) includes
full permission on it.

unlock(x)

Second possible action: unlock(x)

41Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x){ isLock(x) } { isLock(x) ∗ Locked(x) }

42Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

 while(!CAS(&x,0,1));

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

43Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

 while(!CAS(&x,0,1));

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }

43Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

lock(x) {

 while(!CAS(&x,0,1));

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }

43Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

Successful CAS corresponds
to the lock action

lock(x) {

 while(!CAS(&x,0,1));

}

{ isLock(x) }

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

{ [Lock(x)]g ∗ ((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true }

44Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

45Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

46Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

recall:

46Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

Locked(x) ⇐⇒ [unlock(x)]1 ∗ x �→ 1 ∗ true

recall:

46Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

47Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

recall:

47Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

{ isLock(x) ∗ Locked(x) }

{ [lock(x)]g ∗ [unlock(x)]1 ∗ x �→ 1 ∗ true }

=⇒

isLock(x) ⇐⇒ [lock(x)]g ∗

((x �→ 0 ∗ [unlock(x)]1) ∨ x �→ 1) ∗ true

recall:

47Friday, 16 October 2009

Showing conformance to specification

3. definitions satisfy abstract specifications

The proof of unlock(x) is similar,
and simpler.

48Friday, 16 October 2009

Using Abstract Module
Specifications

49Friday, 16 October 2009

Showing conformance to specification

We have shown that the program
implements the lock module
interface.

50Friday, 16 October 2009

Showing conformance to specification

We have shown that the program
implements the lock module
interface.

How do we use it?

50Friday, 16 October 2009

∆; I; Γ � {P}C{Q}

Judgements

51Friday, 16 October 2009

∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption,
recording predicate

definitions and axioms

51Friday, 16 October 2009

∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption,
recording predicate

definitions and axioms

Interference environment,
recording the definitions

of permissions.

51Friday, 16 October 2009

∆; I; Γ � {P}C{Q}

Judgements

Predicate assumption,
recording predicate

definitions and axioms

Interference environment,
recording the definitions

of permissions.

Abstract specifications
for functions used by

the program

51Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Module rule

52Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Weaken the predicate
environment to hide the
predicate definitions and

leave only external axioms

Module rule

53Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Module specifications must be
written entirely in terms of abstract

predicates, not state assertions.

Module rule

54Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

The client specification is
proved under a module

specification defined
entirely abstractly

Module rule

55Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

We require that
predicate definitions
are self-stable as a

side-condition

Module rule

56Friday, 16 October 2009

∆; I � {P1}C1{Q1} . . . ∆; I � {Pn}Cn{Qn}
∆⇒ ∆� ∆�; {P1}f1{Q1}, . . . , {Pn}fn{Qn} � {P}C{Q}

� {P} let f1 = C1 . . . fn = Cn in C {Q}

Modular rule

By erasing predicate definitions and
interference definitions, we make
predicates purely abstract.

Modules can be used purely in
terms of their abstract specs.

57Friday, 16 October 2009

Parallel rule

∆, I,Γ � {P1}C1 {Q1} ∆, I,Γ � {P2}C2 {Q2}

∆, I,Γ � {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Our major result: the parallel rule
just works, even though we can
erase predicate definitions to give
abstract module specifications.

58Friday, 16 October 2009

Parallel rule

∆, I,Γ � {P1}C1 {Q1} ∆, I,Γ � {P2}C2 {Q2}

∆, I,Γ � {P1 ∗ P2}C1�C2 {Q1 ∗ Q2}

Our major result: the parallel rule
just works, even though we can
erase predicate definitions to give
abstract module specifications.

High-level
disjoint star

58Friday, 16 October 2009

Frame rule

∆, I,Γ � {P}C {Q} stable(F)

∆, I,Γ � {P ∗ F}C {Q ∗ F}

The frame rule also just works.
Consequently we can compose
both in space and between threads
while maintaining modularity.

59Friday, 16 October 2009

Linearizability

Linearizability: every concurrent trace can
be converted to an equivalent sequential
trace.

Orthogonal to the fiction of disjointness:
one gives fiction of disjointness in time, the
other in space.

Many algorithms with disjoint specifications
are also linearizable.

60Friday, 16 October 2009

Conclusions

Present disjoint specifications to non-
disjoint algorithms

Can layer proofs to prove complex
compositions of systems.

Fiction of disjointness is a powerful notion
for describing complex concurrent systems.

61Friday, 16 October 2009

