# Ensuring Pointer Safety Through Graph Transformation

Adam Bakewell, Mike Dodds, Detlef Plump,
Colin Runciman
The University of York (UK)

## Project Safe Pointers by Graph Transformation

Aim: more reliable pointer programming through

- a powerful type system for pointer-data structures (shapes)
- a static type-checker for operations upon shapes

## Approach:

- Graph reduction specifications model shapes
- Graph transformation rules model operations upon shapes
- Automatic verification that operations are *shape safe*, that is, always preserve shapes

Project webpage: http://cs-people.bu.edu/bake/spgt/

## Pointer structures as graphs

Graphs model tagged records connected by pointers

- Tags have fixed sets of record fields
- Data is ignored

Example: Pointer structure in C



## Signatures and $\Sigma$ -graphs

- **Signature**  $\Sigma = \langle \mathcal{C}_V, \mathcal{C}_N, \mathcal{C}_E, \text{ type: } \mathcal{C}_V \to 2^{\mathcal{C}_E} \rangle$ 
  - $C_V$ : finite set of vertex labels (tags)
  - $-\mathcal{C}_N\subseteq\mathcal{C}_V$ : set of non-terminals
  - $-\mathcal{C}_E$ : finite set of edge labels (record fields)
  - type(l): set of record fields of a tag l
- $\bullet$   $\Sigma$ -graphs
  - nodes may be unlabelled (in rules)
  - edges outgoing from a node labelled l have labels in type(l)
  - different outgoing edges have different labels
- $\Sigma$ -total graphs model pointer structures
  - all nodes are labelled
  - for a node labelled l, each label in  $\mathrm{type}(l)$  is the label of an outgoing edge

## $\Sigma$ -rules

## $\Sigma$ -rule $\langle L \supseteq K \subseteq R \rangle$

- L, K and R are  $\Sigma$ -graphs
- ullet unlabelled nodes in L are preserved, remain unlabelled and have the same outlabels in L and R
- ullet preserved nodes that are not relabelled have the same outlabels in L and R
- relabelled nodes have a complete set of outlabels in L and R; labelled nodes in L must not be unlabelled in R
- deleted nodes have a complete set of outlabels
- allocated nodes are labelled and have a complete set of outlabels

## $\Sigma$ -rules and direct derivations

 $\Sigma$ -rule  $r = \langle L \supseteq K \subseteq R \rangle$ : L, K, R are  $\Sigma$ -graphs satisfying certain conditions on unlabelled nodes and "outlabels"

Direct derivation  $G \Rightarrow_r H$  according to DPO approach with injective matching and relabelling:

- 1. Find injective morphism  $L \to G$  satisfying the dangling condition,
- 2. remove image of L-K,
- 3. add R K,
- 4. label the images of K-nodes with their labels in R.

#### **Theorem**

Let  $G \Rightarrow_r H$  be an application of a  $\Sigma$ -rule. Then

- (1) G is a  $\Sigma$ -graph iff H is a  $\Sigma$ -graph, and
- (2) G is a  $\Sigma$ -total graph iff H is a  $\Sigma$ -total graph.

## Graph reduction specifications

## Graph languages model pointer-data structures

- Graph reduction specification (GRS)  $S = \langle \Sigma, \mathcal{R}, Acc \rangle$ 
  - $-\Sigma$ : signature
  - $\mathcal{R}$ : finite set of  $\Sigma$ -rules
  - Acc, the accepting graph:  $\Sigma$ -total graph irreducible by  $\mathcal{R}$
- Specified graph language

$$\mathcal{L}(S) = \{G \mid G \Rightarrow_{\mathcal{R}}^* Acc \text{ and } G \text{ has no labels in } \mathcal{C}_N \}$$

Note: all graphs in  $\mathcal{L}(S)$  are  $\Sigma$ -total

# Example: Cyclic lists

Unlink: 
$$1 C n C 2 \Rightarrow 1 C n C 2$$

TwoLoop: 
$$C$$
  $n$   $C$   $\Rightarrow Acc$ 

$$Acc = C$$

# Example: Rooted binary trees

# Example: Balanced binary trees



PushBranch:



B

FellTrunk:



# Example: Reduction of a balanced binary tree



# Example: Reduction of a balanced binary tree (cont'd)



## Membership checking (1)

#### Checking individual structures for language membership

- to test and debug specifications
- to dynamically type-check structures generated by unsafe methods

#### A GRS $\langle \Sigma, \mathcal{R}, Acc \rangle$ is

- terminating if there is no infinite derivation  $G_0 \Rightarrow_{\mathcal{R}} G_1 \Rightarrow_{\mathcal{R}} \dots$
- polynomially terminating if there is a polynomial p such that for every derivation  $G_0 \Rightarrow_{\mathcal{R}} G_1 \Rightarrow_{\mathcal{R}} \ldots \Rightarrow_{\mathcal{R}} G_n$ ,  $n \leq p(\operatorname{size}(G_0))$
- size-reducing if for each rule  $\langle L \supseteq K \subseteq R \rangle$  in  $\mathcal{R}$ , size(L) > size(R)

#### Note:

- size-reducing  $\Rightarrow$  polynomially terminating  $\Rightarrow$  terminating
- GRSs for (balanced) binary trees and cyclic lists are size-reducing

# Membership checking (2)

#### A GRS $\langle \Sigma, \mathcal{R}, Acc \rangle$ is

- closed if for every step  $G \Rightarrow_{\mathcal{R}} H$ ,  $G \Rightarrow_{\mathcal{R}}^* Acc$  implies  $H \Rightarrow_{\mathcal{R}}^* Acc$
- confluent if whenever  $H_1 \Leftarrow_{\mathcal{R}}^* G \Rightarrow_{\mathcal{R}}^* H_2$ , there are derivations  $H_1 \Rightarrow_{\mathcal{R}}^* H \Leftarrow_{\mathcal{R}}^* H_2$

#### Note:

- ullet confluent  $\Rightarrow$  closed (converse does not hold)
- confluence of terminating GRSs can be checked by analyzing "critical pairs" of rules
- non-overlapping GRSs (no critical pairs) are always confluent
- GRSs for (balanced) binary trees and cyclic lists are confluent

## Membership checking (3)

A polynomially terminating and closed GRS is a *polynomial* GRS, a PGRS for short

#### **Theorem**

Membership in PGRS languages is decidable in polynomial time.

#### Decision procedure

Given a fixed PGRS  $\langle \Sigma, \mathcal{R}, Acc \rangle$  and an input graph G,

- 1. check that G only has terminal labels,
- 2. apply the rules from  $\mathcal{R}$  (nondeterministically) as long as possible,
- 3. check that the resulting graph is isomorphic to Acc.

#### **PGRS** Power

PGRSs are a powerful formalism for specifying pointer-data structures

- They can specify important context-sensitive shapes, such as various forms of balanced trees.
- More PGRS examples: red-black trees, 2-3(-4) trees, AVL trees, binary DAGs, doubly-linked lists, rectangular grids, singly threaded trees.

## Shape Safety

A *Shape* is a class of graphs with common properties. E.g. binary trees, red-black trees, binary DAGs.

Shape safety means that a program ensures membership of the required shape. Program  $P: S \times T$  is shape-safe:

if applying P to structure G of shape S results in structure H, then H belongs to shape T.

#### Note:

- Partial correctness property
- P can temporarily violate the shape

## Insert into a binary search tree

Is the result of applying insert() to a binary tree also a binary tree?

```
BT *insert(datum d, BT *t) = {
  a := t;
  while branch(a) && a->data != d do
    if a->data > d
    then a := a->left
    else a := a->right;
  if leaf(a)
  then *a := branch{data=d,
                    left=leaf,
                    right=leaf};
  return(t)
```

insert() should not introduce:

- sharing
- cycles
- pointers out of the tree

## Solution using graph transformation

## Approach:

- Pointer structures (without data) are graphs
- Shapes are graph languages defined by PGRS
- Pointer manipulations are modelled as graph transformations
- Check graph transformations w.r.t PGRS shapes

Given program  $P: S \times T$  abstracted as graph transformation program  $g_P$ , P is shape safe if:

$$G \in \mathcal{L}(S) \wedge G \rightarrow_{g_P} H \Rightarrow H \in \mathcal{L}(T)$$

## Abstracting to graph transformations

Abstract program to a corresponding graph program.

```
BT *insert(datum d, BT *t) = {
  a := t;
                                               Insert: BT \times BT
  while branch(a) && a->data != d do
                                               Insert =
    if a->data > d
                                                 Begin;
    then a := a->left
                                                 (GoLeft,
    else a := a->right;
                                                  GoRight)*;
  if leaf(a)
  then *a := branch{data=d,
                                                 (Found,
                    left=leaf,
                                                   Ins)
                    right=leaf};
  return(t)
```

## Rules

Begin: 
$$BT \times AT = AT = AT \times AT = AT \times BT = AT$$

# Binary tree with auxiliary pointer PGRS

$$Acc_{AT} = A \underbrace{a}_{a} \underbrace{L}$$

## Check shape annotations

To check rule  $r: S \times T$ :

- Consider every graph context  $C: C \cup L \Rightarrow_S^* Acc_S$
- Split the reduction:

$$C_{i_j} \cup L \Rightarrow_S^* B_i \cup L \Rightarrow_S^* Acc_S$$

- non-basic reductions  $C_{i_i} \cup L \Rightarrow_S^* B_i \cup L$  do not overlap with L
- basic reductions  $B_i \cup L \Rightarrow_S^* Acc_S$  overlap with L

#### • Check:

- $\bigwedge \{B_i \cup R \Rightarrow_T^* Acc_T\}$  (language inclusion)
- $\bigwedge \{C_{ij} \cup R \Rightarrow_T^* B_i \cup R\}$  (shape congeniality)

# **Abstract Reduction Graph**

Abstract Reduction Graph (ARG) represents a set of basic contexts  $\{B_i\}$ .



## Meaning of an Abstract Reduction Graph

#### Meaning of an ARG:

- edges are labelled with context graphs.
- nodes are labelled with the result of reductions.
- edge C exists between node  $G_1$  and  $G_2$  if  $G_1 \cup C$  can be reduced to  $G_2$  with some rule in  $\mathcal{R}$

## Graphs represented by example ARG:



## Language inclusion

Language inclusion: all basic reductions for the LHS must also reduce to Acc when LHS is replaced with RHS.

#### Check:

- Construct normalised ARGs for LHS and RHS
- Check that every context represented by left ARG is represented by right ARG (undecidable in general)
- In practice, check whether right ARG includes left ARG.

## Shape congeniality

All non-basic contexts  $C_{i_j} \cup R$  reduce to  $B_i \cup R$ , where  $B_i$  is a LHS basic context.

#### Sufficient condition:

- Trivial for rules with the same domain and range shapes.
- If the domain shapes differ, unshared rules cannot be used in non-basic reductions.

## Limitations of shape-safety approach

Shape safety is undecidable:

- ARG construction is non-terminating in general.
- Even if ARG construction terminates, language inclusion test may fail.

The checking algorithm fails for more complex shapes, including most non-context-free shapes.

We have no characterisation of shapes that can be checked.

# C-GRS: Applying shape safety to C

#### Plan:

- Extend C with analogues of
  - PGRSs, for defining shapes of pointer structures
  - graph transformation rules, for operations upon shapes
- C-GRS programs should manipulate pointers only by rules
- Abstract C-GRS to graph transformation for checking shape safety
- Translate C-GRS to C for execution

$$egin{array}{cccc} C & \longleftarrow & C\text{-}GRS & \longrightarrow & graph \ transformation \ & & abstract \ \end{array}$$

# Example: C-GRS shape declaration

```
shape bt {
                                      accept {
  signature {
                                         root btroot rt;
   nodetype btroot {
                                         leafnode leaf;
      edge top, aux;
                                         rt.top => leaf;
                                         rt.aux => leaf;
   nodetype branchnode {
      edge 1, r;
                                       rules {
      int val;
                                         moveaux2root;
                                         branch2leaf;
   nodetype leafnode {}
```

## Example: C-GRS function for binary tree insertion

transformer

```
bt_insert( bt *tree,
                                                         int *inval ) {
bt *insert(int i, bt *b) {
                                               left (rt, n1) {
                                                 root btroot rt:
  int t;
                                                 leafnode n1;
  bt_auxreset(b);
  while ( bt_getval(b, &t) ) {
                                                 rt.aux => n1;
    if ( t == i ) return b;
    else if ( t > i ) bt_goleft(b);
                                               right (rt, n1, 11, 12) {
                                                 branchnode n1;
    else bt_goright(b);
                                                 leafnode 11, 12;
                                                 rt.aux => n1;
  bt_insert(b, &i);
                                                 n1.1 \Rightarrow 11;
  return(b);
                                                 n1.r \Rightarrow 12;
                                                 n1.val = *inval;
```

## Rooted graph transformation

#### Two problems:

- Graph transformation is non-deterministic whereas C is deterministic
- Matching of graph transformation rules is too slow: requires polynomial time for a given set of rules

#### Solution: rooted shapes and rules

- Shape members and left-hand sides of transformers contain at least one distinguished root node; distinct roots have distinct node types
- Every left-hand node of a transformer must be reachable from some root; transformers do not delete or add roots
- Matching is deterministic and requires only constant time: comparison starts at the roots and proceeds uniquely along edges

## Translating C-GRS to C

• Node types (of non-roots) are translated to structure declarations

```
nodetype branchnode {
    edge 1, r;
    int val;
}
struct branchnode {
    bt_node *1;
    bt_node *r;
    int val;
}
```

which are wrapped into a single union (bt\_node)

- Transformers are translated to C functions which first match the left-hand side and then transform it into the right-hand side
- Dangling condition is implemented by reference counting
- Transformer has no structural effect if matching fails

## Correctness of the translation

$$\mathbf{C} \ \ \underset{\mathbf{translate}}{\longleftarrow} \ \ \mathbf{C\text{-}GRS} \ \ \underset{\mathbf{abstract}}{\overset{\mathcal{G}}{\longrightarrow}} \ \ \mathbf{graph} \ \mathbf{transformation}$$

$$G \longrightarrow G[\![F]\!] \longrightarrow G' \qquad \Sigma\text{-total graphs}$$
 
$$\alpha_{\Sigma} = \alpha_{\Sigma}$$
 
$$= \alpha_{\Sigma}$$
 
$$= S \longrightarrow C[\![F]\!] \longrightarrow S' \qquad \textbf{C pointer-structures}$$

- F is a transformer over signature  $\Sigma$
- S is a pointer structure consistent with  $\Sigma$
- $\alpha_{\Sigma}$  abstracts pointer structures consistent with  $\Sigma$  to  $\Sigma$ -total graphs
- Failure of  $\mathcal{G}[\![F]\!]$  implies G = G'

## Conclusions and Outlook

Prototype of the system has been implemented:

- Implementation of the checking algorithm
- Compiler from C-GRS to C

#### Further work:

- Extending the power of the checking algorithm.
- More C-like syntax for application language.

Project webpage: http://cs-people.bu.edu/bake/spgt/