
Ensuring Pointer Safety
Through Graph Transformation

Adam Bakewell, Mike Dodds, Detlef Plump,
Colin Runciman

The University of York (UK)

Project Safe Pointers by Graph Transformation

Aim: more reliable pointer programming through

• a powerful type system for pointer-data structures (shapes)

• a static type-checker for operations upon shapes

Approach:

• Graph reduction specifications model shapes

• Graph transformation rules model operations upon shapes

• Automatic verification that operations are shape safe,

that is, always preserve shapes

Project webpage: http://cs-people.bu.edu/bake/spgt/

Pointer structures as graphs

Graphs model tagged records connected by pointers

• Tags have fixed sets of record fields

• Data is ignored

Example: Pointer structure in C

struct B { data d;

node *l;

node *r; };

struct U { data d;

node *c; };

struct L { data d; };

where node is the union of B, U, L
L L L

B U B

B B

B

l r

l rl r

cl r
l r

Signatures and Σ-graphs

• Signature Σ = 〈CV , CN , CE , type: CV → 2CE 〉

– CV : finite set of vertex labels (tags)

– CN ⊆ CV : set of non-terminals

– CE: finite set of edge labels (record fields)

– type(l): set of record fields of a tag l

• Σ-graphs

– nodes may be unlabelled (in rules)

– edges outgoing from a node labelled l have labels in type(l)

– different outgoing edges have different labels

• Σ-total graphs model pointer structures

– all nodes are labelled

– for a node labelled l, each label in type(l) is the label of an

outgoing edge

Σ-rules

Σ-rule 〈L ⊇ K ⊆ R〉

• L, K and R are Σ-graphs

• unlabelled nodes in L are preserved, remain unlabelled and have

the same outlabels in L and R

• preserved nodes that are not relabelled have the same outlabels in

L and R

• relabelled nodes have a complete set of outlabels in L and R;

labelled nodes in L must not be unlabelled in R

• deleted nodes have a complete set of outlabels

• allocated nodes are labelled and have a complete set of outlabels

Σ-rules and direct derivations

Σ-rule r = 〈L ⊇ K ⊆ R〉: L, K, R are Σ-graphs satisfying certain

conditions on unlabelled nodes and “outlabels”

Direct derivation G⇒r H according to DPO approach with injective

matching and relabelling:

1. Find injective morphism L→ G satisfying the dangling condition,

2. remove image of L−K,

3. add R−K,

4. label the images of K-nodes with their labels in R.

Theorem

Let G⇒r H be an application of a Σ-rule. Then

(1) G is a Σ-graph iff H is a Σ-graph, and

(2) G is a Σ-total graph iff H is a Σ-total graph.

Graph reduction specifications

Graph languages model pointer-data structures

• Graph reduction specification (GRS) S = 〈Σ, R, Acc〉

– Σ: signature

– R: finite set of Σ-rules

– Acc, the accepting graph: Σ-total graph irreducible by R

• Specified graph language

L(S) = {G | G⇒∗

R Acc and G has no labels in CN}

Note: all graphs in L(S) are Σ-total

Example: Cyclic lists

Unlink: C1 C 2C
n n ⇒ C1 C 2

n

TwoLoop: C C

n

n ⇒ Acc

Acc = C n

Example: Rooted binary trees

AccBT = LR
o BtoL :

B1

L L

l r
⇒

L1

Example: Balanced binary trees

PickLeaf:

B1

L L

l r ⇒

U1

L

c

PushBranch:

B1

2 3

U U

l r

c c
⇒

U1

2 3

B

c

l r

FellTrunk:

U

1

c ⇒

1

Example: Reduction of a balanced binary tree

L L L L L

B U B

B U

B

l r c l r

l r
c

l r

⇒2

L L L

U U U

B U

B

c c c

l r c

l r

Example: Reduction of a balanced binary tree (cont’d)

L L L

U U U

B U

B

c c c

l r c

l r

⇒2

L L

U U

U U

B

c c

c c

l r

⇒3

L

U

U

U

c

c

c

⇒3 L

Membership checking (1)

Checking individual structures for language membership

• to test and debug specifications

• to dynamically type-check structures generated by unsafe methods

A GRS 〈Σ, R, Acc〉 is

• terminating if there is no infinite derivation G0 ⇒R G1 ⇒R . . .

• polynomially terminating if there is a polynomial p such that for

every derivation G0 ⇒R G1 ⇒R . . .⇒R Gn, n ≤ p(size(G0))

• size-reducing if for each rule 〈L ⊇ K ⊆ R〉 in R, size(L) > size(R)

Note:

• size-reducing ⇒ polynomially terminating ⇒ terminating

• GRSs for (balanced) binary trees and cyclic lists are size-reducing

Membership checking (2)

A GRS 〈Σ, R, Acc〉 is

• closed if for every step G⇒R H, G⇒∗

R
Acc implies H ⇒∗

R
Acc

• confluent if whenever H1 ⇐
∗

R
G⇒∗

R
H2, there are derivations

H1 ⇒
∗
R

H ⇐∗
R

H2

Note:

• confluent ⇒ closed (converse does not hold)

• confluence of terminating GRSs can be checked by analyzing

“critical pairs” of rules

• non-overlapping GRSs (no critical pairs) are always confluent

• GRSs for (balanced) binary trees and cyclic lists are confluent

Membership checking (3)

A polynomially terminating and closed GRS is a polynomial GRS,

a PGRS for short

Theorem

Membership in PGRS languages is decidable in polynomial time.

Decision procedure

Given a fixed PGRS 〈Σ, R, Acc〉 and an input graph G,

1. check that G only has terminal labels,

2. apply the rules from R (nondeterministically) as long as possible,

3. check that the resulting graph is isomorphic to Acc.

PGRS Power

PGRSs are a powerful formalism for specifying pointer-data structures

• They can specify important context-sensitive shapes, such as

various forms of balanced trees.

• More PGRS examples: red-black trees, 2-3(-4) trees, AVL trees,

binary DAGs, doubly-linked lists, rectangular grids, singly

threaded trees.

Shape Safety

A Shape is a class of graphs with common properties. E.g. binary

trees, red-black trees, binary DAGs.

Shape safety means that a program ensures membership of the

required shape. Program P : S × T is shape-safe:

if applying P to structure G of shape S results in structure H,

then H belongs to shape T .

Note:

• Partial correctness property

• P can temporarily violate the shape

Insert into a binary search tree

Is the result of applying insert() to a binary tree also a binary tree?

BT *insert(datum d, BT *t) = {

a := t;

while branch(a) && a->data != d do

if a->data > d

then a := a->left

else a := a->right;

if leaf(a)

then *a := branch{data=d,

left=leaf,

right=leaf};

return(t)

}

insert() should not introduce:

• sharing

• cycles

• pointers out of the tree

Solution using graph transformation

Approach:

• Pointer structures (without data) are graphs

• Shapes are graph languages defined by PGRS

• Pointer manipulations are modelled as graph transformations

• Check graph transformations w.r.t PGRS shapes

Given program P : S × T abstracted as graph transformation program

gP , P is shape safe if:

G ∈ L(S) ∧G→gP
H ⇒ H ∈ L(T)

Abstracting to graph transformations

Abstract program to a corresponding graph program.

BT *insert(datum d, BT *t) = {

a := t;

while branch(a) && a->data != d do

if a->data > d

then a := a->left

else a := a->right;

if leaf(a)

then *a := branch{data=d,

left=leaf,

right=leaf};

return(t)

}

Insert : BT ×BT

Insert =

Begin;

(GoLeft,

GoRight)*;

(Found,

Ins)

Rules

Begin :

BT ×AT
= 1R

o
⇒ 1A

o

a

GoLeft :

AT ×AT
=

A1 B 2

3

a

l
⇒

A1 B 2

3

a l

Found :

AT ×BT

{1=2,16=2}

=
1 A B 2

o a

⇒
1 R B 2

o

Insert :

AT ×BT

{1=2,16=2}

=
1 A L 2

o a

⇒
1 R B 2

L L

o

l r

Binary tree with auxiliary pointer PGRS

AccAT = LA

o

a

BtoLl :

A1 B 2

L L

l ra
⇒

A1 L 2
a

BtoLr :

B1 A 2

L L

l r a ⇒

L1 A 2
a

Check shape annotations

To check rule r : S × T :

• Consider every graph context C: C ∪ L⇒∗

S AccS

• Split the reduction:

Cij
∪ L⇒∗

S Bi ∪ L⇒∗

S AccS

– non-basic reductions Cij
∪ L⇒∗

S Bi ∪ L do not overlap with L

– basic reductions Bi ∪ L⇒∗
S AccS overlap with L

• Check:

–
∧
{Bi ∪R⇒∗

T AccT } (language inclusion)

–
∧
{Cij ∪R⇒∗

T Bi ∪R} (shape congeniality)

Abstract Reduction Graph

Abstract Reduction Graph (ARG) represents a set of basic contexts

{Bi}.

-

� �
?

�
6

-
-

A

1

B 2

o

a A

1

L 2

o

a

A

L

o a

2

L L

l r

B

3-2
L

l r

B

3

L

-2
l r

B-1

-2 L

l r

B-1

L -2

l r

Meaning of an Abstract Reduction Graph

Meaning of an ARG:

• edges are labelled with context graphs.

• nodes are labelled with the result of reductions.

• edge C exists between node G1 and G2 if G1 ∪ C can be reduced to

G2 with some rule in R

Graphs represented by example ARG:

A B

L

B B B

L L L

o
x0

y0 yn

xn l r

a
. . .

n ≥ 0

(xi, yi) ∈ {(l, r), (r, l)}

Language inclusion

Language inclusion: all basic reductions for the LHS must also reduce

to Acc when LHS is replaced with RHS.

Check:

• Construct normalised ARGs for LHS and RHS

• Check that every context represented by left ARG is represented

by right ARG (undecidable in general)

• In practice, check whether right ARG includes left ARG.

Shape congeniality

All non-basic contexts Cij
∪R reduce to Bi ∪R, where Bi is a LHS basic

context.

Sufficient condition:

• Trivial for rules with the same domain and range shapes.

• If the domain shapes differ, unshared rules cannot be used in

non-basic reductions.

Limitations of shape-safety approach

Shape safety is undecidable:

• ARG construction is non-terminating in general.

• Even if ARG construction terminates, language inclusion test may

fail.

The checking algorithm fails for more complex shapes, including most

non-context-free shapes.

We have no characterisation of shapes that can be checked.

C-GRS: Applying shape safety to C

Plan:

• Extend C with analogues of

• PGRSs, for defining shapes of pointer structures

• graph transformation rules, for operations upon shapes

• C-GRS programs should manipulate pointers only by rules

• Abstract C-GRS to graph transformation for checking shape safety

• Translate C-GRS to C for execution

C ←−
translate

C-GRS −→
abstract

graph transformation

Example: C-GRS shape declaration

shape bt {

signature {

nodetype btroot {

edge top, aux;

}

nodetype branchnode {

edge l, r;

int val;

}

nodetype leafnode {}

}

accept {

root btroot rt;

leafnode leaf;

rt.top => leaf;

rt.aux => leaf;

}

rules {

moveaux2root;

branch2leaf;

}

}

Example: C-GRS function for binary tree insertion

bt *insert(int i, bt *b) {

int t;

bt_auxreset(b);

while (bt_getval(b, &t)) {

if (t == i) return b;

else if (t > i) bt_goleft(b);

else bt_goright(b);

}

bt_insert(b, &i);

return(b);

}

transformer

bt_insert(bt *tree,

int *inval) {

left (rt, n1) {

root btroot rt;

leafnode n1;

rt.aux => n1;

}

right (rt, n1, l1, l2) {

branchnode n1;

leafnode l1, l2;

rt.aux => n1;

n1.l => l1;

n1.r => l2;

n1.val = *inval;

}

}

Rooted graph transformation

Two problems:

• Graph transformation is non-deterministic whereas C is

deterministic

• Matching of graph transformation rules is too slow: requires

polynomial time for a given set of rules

Solution: rooted shapes and rules

• Shape members and left-hand sides of transformers contain at least

one distinguished root node; distinct roots have distinct node types

• Every left-hand node of a transformer must be reachable from

some root; transformers do not delete or add roots

• Matching is deterministic and requires only constant time:

comparison starts at the roots and proceeds uniquely along edges

Translating C-GRS to C

• Node types (of non-roots) are translated to structure declarations

nodetype branchnode {

edge l, r;

int val;

}

7→

struct branchnode {

bt_node *l;

bt_node *r;

int val;

}

which are wrapped into a single union (bt node)

• Transformers are translated to C functions which first match the

left-hand side and then transform it into the right-hand side

• Dangling condition is implemented by reference counting

• Transformer has no structural effect if matching fails

Correctness of the translation

C
C
←−

translate
C-GRS

G
−→

abstract
graph transformation

G G′

S S′

GJF K

CJF K

αΣ αΣ

Σ-total graphs

C pointer-structures

=

• F is a transformer over signature Σ

• S is a pointer structure consistent with Σ

• αΣ abstracts pointer structures consistent with Σ to Σ-total graphs

• Failure of GJF K implies G = G′

Conclusions and Outlook

Prototype of the system has been implemented:

• Implementation of the checking algorithm

• Compiler from C-GRS to C

Further work:

• Extending the power of the checking algorithm.

• More C-like syntax for application language.

Project webpage: http://cs-people.bu.edu/bake/spgt/

