
Graph Transformation in Constant Time

Mike Dodds & Detlef Plump

University of York

Graph Transformation in Constant Time – p. 1/21

Sales Pitch

Graph transformation is expensive: finding a match for a
left-hand side L in graph G requires time O(size(G)size(L))

It becomes much easier if we can identify uniquely-labelled
nodes (‘roots’) in rules and host graphs: matching requires time
O(size(L)) if the outdegree of nodes is bounded. This is
constant if L is considered fixed.

Rooted graph-transformation is surprisingly powerful, despite
restrictions.

Graph reduction systems with rooted rules can recognise
certain non-context-free graph languages in linear time.

Graph Transformation in Constant Time – p. 2/21

The Double-Pushout Approach

A rule r = 〈L← K → R〉 consists of two inclusions K → L and
K → R over graphs with possibly unlabelled nodes (where
unlabelled nodes satisfy certain conditions).

A direct derivation G⇒r,g H consists of two natural pushouts as
follows:

L K R

G D H

g (1) (2)

. . . where g : L→ G is injective.

Given r and g, G⇒r,g H exists iff g satisfies the dangling
condition: no node in g(L)− g(K) must be incident to an edge in
G− g(L)

Graph Transformation in Constant Time – p. 3/21

Graph Transformation Problem (GTP)

Given: A graph class C and a C-preserving rule r.
Input: A graph G in C.
Output: The set {H | G⇒r H}.

Cost of GTP for r = 〈L← K → R〉 is dominated by the cost of
finding injections g:L→ G.

Graph Matching Problem (GMP):

Given: A graph class C and a C-preserving rule r.
Input: A graph G in C.
Output: The set {g:L→ G | g is injective}.

Time complexity for GMP: O(|G||L|)

Graph Transformation in Constant Time – p. 4/21

Rooted Graph Transformation

r = 〈L← K → R〉 and graph class C conform to Condition I if
there exists root label ̺ ∈ CV and a bound b ≥ 0 and s.t:

• L contains a unique ̺-labelled node from which every node
is reachable.

• For every graph G in C:

◦ exactly one node in G is labelled with the root label ̺

◦ the out-degree of every node in G bounded by b

Graph Transformation in Constant Time – p. 5/21

Edge Enumeration

An edge enumeration of a rooted rule r = 〈L← K → R〉 is a
sequence of edges e1, . . . , en such that:

• EL = {e1, . . . , en}.
• For each ei either

1. the source of ei is labelled with the root label ̺ or
2. there exists j < i such that the target of ej is the source

of ei.

Note: By Condition I there exists an edge enumeration for r.

Graph Transformation in Constant Time – p. 6/21

Graph Matching Algorithm

The algorithm solves the GMP for a rule r and graph G ∈ C

conforming to Condition I. It assumes an edge enumeration
e1, . . . , en of r.

A0 ⇐ partial injection matching only the root node
for i = 1 to n do

if target of ei has not been matched then
Ai ⇐ partial injections extending those in

Ai−1 by ei and its target node
else

Ai ⇐ partial injections extending those in Ai−1 by ei

Correctess follows inductively from the fact that each iteration i

finds all partial injections matching edges e1, . . . , ei.

Graph Transformation in Constant Time – p. 7/21

Complexity of GMP Under Condition I

Theorem: Algorithm terminates in time Σn
i=0b

i under Condition I.

Proof: To construct Ai, each iteration i extends the partial
injections in Ai−1 with edge ei. By the out-degree bound in
Condition I, each morphism can be extended in at most b ways,
so each iteration takes at worst time b|Ai−1|.

Recursively expanding the sum over all iterations gives an upper
time bound of:

1 + b + bb + . . . + bn =

n∑

i=0

bi.

Also, the maximum size of the resulting set An is bn.

Graph Transformation in Constant Time – p. 8/21

Solving the GTP under Condition I

Corollary: The GTP can be solved in time
∑n

i=0 +4|r|bn

Proof: Given an injection g : L→ G, rule application consists of
checking the dangling condition, and adding, relabelling and
deleting nodes. For rule r this can be completed in time 4|r|,
where |r| = max(|L|, |R|).

The graph matching algorithm generates at most bn injections,
giving an upper time bound of

n∑

i=0

bi + 4|r|bn

Under the GMP and Condition I, r and b are fixed, so the time
complexity is constant.

Graph Transformation in Constant Time – p. 9/21

Condition II

r = 〈L← K → R〉 and graph class C conform to Condition II if
there exists a root label ̺ such that:

• L contains a unique ̺-labelled node from which each node
is reachable.

• For every graph G in C:

◦ exactly one node in G is labelled with the root label ̺

◦ distinct edges outgoing from the same node have
distinct labels

Note: Condition II implies Condition I: choose b as the size of
CE . The converse does not hold in general.

Graph Transformation in Constant Time – p. 10/21

Complexity of GMP and GTP under Condition II

Theorem: Under Condition II, the graph matching algorithm
requires time n|CE |+ 1, and solving the GTP requires time
n|CE |+ 1 + 4|r|.

Proof: As edges from a node must be distinctly labelled, at
iteration i each morphism in set Ai−1 can be extended in only
one way. Expanding as before gives:

1 + |CE |+ . . . + |CE | = n|CE |+ 1

The time bound for the GTP follows as before.

Graph Transformation in Constant Time – p. 11/21

Recognition of Graph Languages

A signature Σ = 〈C, ̺, type〉 consists of a label alphabet C, root
label ̺, and mapping type: CV → 2CE . A graph is a Σ-graph if

• it contains a unique ̺-labelled root,
• nodes have only out-edges permitted by the type mapping,
• distinct out-edges have distinct labels.

Graph Transformation in Constant Time – p. 12/21

Graph Reduction Specification (GRS)

GRS 〈Σ,R, Acc〉:

• Σ is a graph signature,
• R is a finite set of rooted Σ-graph preserving reduction

rules, and
• Acc, a Σ-graph, is the accepting graph for the reduction

system

A GRS recognises the language L = {G | G⇒∗
R Acc} of

Σ-graphs.

Extension with a set CN of nonterminal labels:
L = {G | G⇒∗

R Acc} and G is terminally labelled.

Note: Σ-graphs and GRSs conform to Condition II

Graph Transformation in Constant Time – p. 13/21

Example: GRS for Cyclic Lists

E n

E 1

E 2

E

n

n

⇒

E 1

E 2

n

E 1

E

nn
⇒

E1 n

Graph Transformation in Constant Time – p. 14/21

Cyclic List GRS: Soundness and Completeness

Soundness (Only cyclic lists are in L):
• Show this by deriving from Acc using inverse rules.

• The cyclic list property is invariant for all r−1 such that
r ∈ R.

Completeness (All cyclic lists are in L):
• Acc, the smallest cyclic list, is a member of L.
• Every larger cyclic list can be reduced by some rule r ∈ R

to give a smaller cyclic list.
• Hence by induction every cyclic list is reducible to Acc.

Graph Transformation in Constant Time – p. 15/21

Cyclic List GRS: Termination and Closedness

Closedness (R preserves cyclic lists):
• For every cyclic list G, G⇒R H implies that H is a cyclic list
• Hence membership of L can be decided without

backtracking
• Procedure: Apply reduction rules as long as possible and

check if the result is Acc.

Termination:
• All rules are size-reducing, so termination will occur in at

most |G| steps, where G is the reduced graph.

Graph Transformation in Constant Time – p. 16/21

Linear GRSs

A linear GRS is linearly terminating and closed:

• A GRS 〈Σ, CN ,R,Acc〉 is linearly terminating if there is a
natural number c such that for every derivation
G⇒ G1 ⇒ . . .⇒ Gn on Σ-graphs, n ≤ c|G|.

• It is closed if for every step G⇒ H on Σ-graphs, G⇒∗
Acc

implies H ⇒∗ Acc.

Example: The cyclic list GRS is linear.

Graph Transformation in Constant Time – p. 17/21

Recognition of Graph Languages in Linear Time

The recognition problem for GRS languages:
Given: A GRS S = 〈Σ, CN ,R,Acc〉.
Input: A Σ-graph G.
Output: Does G belong to L(S)?

Theorem: For linear GRSs, the recognition problem can be
decided in linear time.

Proof: Membership in L(S) is tested for a (terminally labelled)
Σ-graph G as follows: Apply as long as possible and check that
the resulting graph is Acc. This is correct by closedness. By
linear termination and constant time complexity of GTP under
Condition II, the time needed is linear in |G|.

Graph Transformation in Constant Time – p. 18/21

Example: Balanced Binary Trees with Back-pointers

Binary trees such that all paths from the tree-root to a leaf are of
the same length. Back-pointers are needed: Condition I / II
requires that all nodes are reachable from a ̺-root.

Sample rule:

R3(l):

x ∈ {B,B′}
y ∈ {U,U ′}
z ∈ {U,U ′}

x

1

y z

2 3

l r

c c

⇒

U

1

B

2 3

c

l r

Graph Transformation in Constant Time – p. 19/21

BBTB GRS Properties

Proposition: GRS BB given in the paper is a linear GRS
specifying the set of all BBTBs.

Note: The language of BBTBs is not context-free (in the sense
of hyperedge replacement or node replacement grammars).

Graph Transformation in Constant Time – p. 20/21

Future Work

• Modified constraints: when bounding both in- and
out-degree of all nodes, nodes on left-hand sides need not
be reachable from the root. This allows us to eliminate
backpointers in BBTBs.

• Relation to unrooted graph transformation: translation of
unrooted into rooted systems?

• Relation to work on recognising languages of bounded
treewidth in linear time (e.g. by Bodlaender & de Fluiter)

Graph Transformation in Constant Time – p. 21/21

	Sales Pitch
	The Double-Pushout Approach
	Graph Transformation Problem (GTP)
	Rooted Graph Transformation
	Edge Enumeration
	Graph Matching Algorithm
	Complexity of GMP Under Condition I
	Solving the GTP under Condition I
	Condition II
	Complexity of GMP and GTP under Condition II
	Recognition of Graph Languages
	Graph Reduction Specification (GRS)
	Example: GRS for Cyclic Lists
	Cyclic List GRS: Soundness and Completeness
	Cyclic List GRS: Termination and Closedness
	Linear GRSs
	Recognition of Graph Languages in Linear Time
	Example: Balanced Binary Trees with Back-pointers
	BBTB GRS Properties
	Future Work

