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Overview

Two approaches to defining classes of structures.

◮ Separation logic: logic for heap properties which enables local

reasoning.

◮ Hyperedge replacement grammars: context-free graph
grammars.

How are they related?

We define a correspondence between formulas in a fragment of
separation logic and restricted graph grammars:

◮ Define a translation g from formulas to grammars, and
translation s from grammars to formulas.

◮ Translations preserve semantics.

This is joint work with Detlef Plump.



Motivation

Formal Properties

◮ Hyperedge replacement is well understood, while separation
logic was developed comparatively recently.

◮ Separation logic fragment inherits the properties of hyperedge
replacement:

◮ Decidable membership.
◮ Known inexpressible languages.

Practical Application

◮ Hyperedge replacement and separation logic both used for
specifying shapes of data structures.

◮ We want to share shape-checking approaches.



Separation logic (1)

Separation logic formulas define classes of satisfying heaps.

◮ Defined over a set Loc of locations.

◮ Heap domain: Elem = Loc ∪ {nil}.

◮ Heap defined by partial function h : Loc → Elem × Elem

Represent singleton heap h with h(i) = (i ′, nil) as:
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Separation logic (2)

Basic assertions:

◮ x1 7→ x2, x3 – Heap consists of a single location containing
two elements.

◮ P1 ∗ P2 – Heap can be separated into two parts: one satisfies
P1, the other P2.

Separation divides the heap.

◮ Assertions must hold in disjoint subheaps.

◮ Example: ∃xyz . (x 7→ z , y) ∗ (y 7→ z , x) is satisfied by h1, but
not h2.

h1 :
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Recursion in separation logic

Define predicates using a recursive let: let Γ in P

◮ Γ predicate definitions, P let body.

◮ Separation logic without recursion is weak.
◮ equivalent to first-order logic.

Formula satisfied by heaps containing circular lists.

let ls(x1, x2) = (x1 7→ x2, x2) ∨
(∃x3. x1 7→ x3, x3 ∗ ls(x3, x2))

in ∃x . ls(x , x)



Separation logic fragment

Correspondence defined over fragment SL.

◮ Basic separation logic constructs: x1 7→ x2, x3, P ∗Q.

◮ Recursion: let Γ in P .

◮ Some first-order constructs: ∨, ∃, false.

Omit universal quantification (∀), conjunction (∧), negation (¬)
and true.



Heaps and heap-graphs

Define a class of heap graphs:

◮ Edge labels E of arity 3, and nil of arity 1.

◮ Each node is the first attachment point of at most one edge.

α is a bijective mapping from heaps to heap-graphs.

◮ Locations correspond to E -labelled edges.

◮ Unique nil mapped to a single nil-labelled edge.
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Heap-graph grammars

Hyperedge replacement grammar H = 〈N,T ,Z ,P〉.

◮ Productions P rewrite non-terminal edges.

◮ Graph in language of H if it can be derived from initial graph
Z using productions in P .

Heap-graph grammars are hyperedge replacement grammars
producing languages of heap-graphs.

Example: heap-graph grammar producing cyclic lists.
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Correspondence

Intuition for the correspondence:

◮ Recursive definitions correspond to hyperedge replacement
productions.

◮ Separating property of separating conjunction corresponds to
the context-free property in hyperedge-replacement.

Mapping functions g and s are semantics-preserving with respect
to α.

◮ α ◦ g = g ◦ α.

◮ α
−1 ◦ s = s ◦ α

−1.



From hyperedge-replacement to separation logic

Grammar H = 〈N,T ,Z ,P〉 maps to formula gJHK = let ΓP in FZ .

Initial graph Z map to let-free formula FZ .

◮ Graphs map to separating conjunctions.

◮ Terminal edges map to points-to assertions.

◮ Non-terminal edges map to instances of recursive predicates

Productions in P map to predicate definitions ΓP .

◮ Hyperedge tentacles map to predicate arguments x1, . . . , xn.

◮ Right-hand sides are defined by g as with the initial graph.

◮ For production K ⇒ G1 | G2 formula is:

K (x1, . . . , xn) = gJG1K ∨ gJG2K



Example: Cyclic Linked Lists

Heap-graph grammar defining the set of cyclic singly-linked lists:
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Corresponding separation logic formula:

let ls(x1, x2) = (x1 7→ x2, x2) ∨
(∃x3. x1 7→ x3, x3 ∗ ls(x3, x2))

in ∃x . ls(x , x)
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From separation logic to hyperedge-replacement

Formulas are first flattened, removing any nested let-statement.

◮ Predicates are renamed to remove conflicts.

◮ Nested lets merged by promoting inner lets.

Formula S = let Γ in F maps to grammar sJSK = 〈N,T ,ZF ,PΓ〉.

Initial graph ZF constructed from F .

◮ Points-to assertions map to terminal E -labelled edges.

◮ Instances of a predicate K map to K -labelled non-terminal
edges.

Productions PΓ constructed from Γ.

◮ Definition K (x1, . . . , xn) = G results in production K ⇒ sJG K.



Consequences of correspondence

Inexpressibility results.

◮ Pumping lemma, linear-growth theorem etc. can be applied to
SL.

◮ Cannot define balanced trees, grids, etc.

◮ Some operators are inexpressible (see next slide).

Fragment corresponds to symbolic heaps used for symbolic
execution.

◮ Omit equality / inequality (but these may be simulatable).

◮ Otherwise, results for fragment hold for symbolic heaps.



Inexpressible constructs

Conjunction (∧)

◮ Corresponds to language intersection.

◮ Known to be HR-inexpressible (pumping lemma).

Negation (¬)

◮ With disjunction, can simulate conjunction ∴ inexpressible.

Elementary formula true

◮ Corresponds to a language with unbounded clique size.

◮ Known that all hyperedge replacement languages of simple
graphs must have a bounded clique size.



Conclusion

A correspondence exists between heap-graph grammars and
formulas in SL.

◮ Two translation functions: g from grammars to formulas, and
s from formulas to grammars.

◮ g and s are semantics-preserving with respect to α. That is,
α ◦ g = g ◦ α, and α

−1 ◦ s = s ◦ α
−1.

◮ Consequently, heap-graph grammars are of equivalent
expressive power to SL.

◮ Conjunction (∧), negation (¬) and true cannot be modelled
by hyperedge replacement.


