Parametric Shape Analysis
via 3-valued Logic

Authors: Mooly Sagiv, Thomas Reps
& Reinhard Wilhelm

Talk: Mike Dodds

Approach

Represent structures by logical structures

 Concretely - predicates represent connections
between nodes

e Abstractly - use 3-valued logic to summarise
properties

Construct sets of 3-valued structures by shape analysis

e Define a semantics for abstract execution over 3-
value structures

* Construct fixed-points of abstract execution

2-valued structures

Represent stores by logical structures: S = (U”,.°)

e 7 is a universe of individuals

e ,° associates predicates with values

In a 2-value structure ¢° maps each arity-k predicate and
tuple (ui1,...,ux) toQor I.

Also require a variable interpretation Z: {v;,vs,...} — U°

2-valued logic

Write formulas ¥ with the following operators:

* first-order conjunction, disjunction, universal
quantification.

e Equality assertions

e Transitive closure, (TC vi,v2: ¢)(vs3,v4)

Given a variable interpretation Z: {v;,vs,...} — U® we
denote the 2-valued meaning of a formula ¢ by:

[¢](Z)

2-valued representation

Define core predicates recording the structure of a data
structure by logical values

Unary predicates hold for a variable if the variable points to
the argument value:

x(uq) x—»@

Edges are recorded by binary predicates:

) @

Unary predicates X and Y

2-valued list

Binary predicate 71:

r | Y
U1 1 1
U9 0 0
us 0 0

n Uy u2 | U3
Uil 0 1 0
Ua2| 0 0 |
us| o 0 0

These logical values represent the following structure:

BECRCRC

Compatibility constraints

In order to represent pointer structures, logical formulas
must obey compatibility constraints.

e Every individual has exactly one n-labelled out-edge

Vo1, v (Jug: n(vs,v1) An(vs,v2)) = v1 = U9

e Every variable points to at most one individual

for each x € PVar,Vuy,ve: x(v1) A x(vg) = v1 = v

We have to enforce these constraints explicitly during
analysis by coercion

Operational semantics

Define the operational semantics of state updates by logical
formulas on variables.

For a statement vy := y->n

..we have update: ¢'(v) = Fvi.y(v1) An(vy,v)

Other predicates are unchanged, as they are unaffected by
the rewrite.

Handle memory allocation by adding a new individual to the
universe, then applying an update as above.

Updating the List

RO

r | Y

VAl 1 1

U9 0 0

us 0 0
Statement: vy := y->n

n Uy u2 | us
Uil 0o | 1| 0
Us21 0 0 |
Uzl o | 0|0

Updating the List

r | Y
U1 1 |
U9 0 0
us 0 0
Statement;
Updates:

= y—>n

' (v)

y' (v)

n'(vy,vo)

z(v)

Jv1.y(v1) An(vy,v)

n |uUp|u2 | U3
Ui| 0 1 0
Ua21 0 0 1
us| o 0 0

n(vy, vo)

Updati

only y
is updated accordi

to the semantics

ng

U1 Ui| 0 1 0
(V) \ Us| 0 0 1
usz | 0 uz| o [0|0
Statement: := y->n
Updates: ' (v) = x(v)
y' (v) = Fvi.y(vy) An(v,v)

TL, (/Uly /02)

— ’n/(’Ul,Ug)

Updati

only y
is updated accordi

to the semantics

ng

U1 Uil 0 1 0
U9 \ Ua21 0 0 1
us 0 us| o 0 0
Statement: := y->n
Updates: ' (v) = x(v)
y' (v) = Fvi.y(vy) An(v,v)

TL, (/Uly /02)

— n(vlva)

Updating the List

r | Y
U1 | 0
0 1
0 0

Statement:

y = y->n

n | up|uz|us
Uil o | 110
Ua21 0 0 |
Uzl o | o | o0

3-valued structures

We call | and O definite values, and 1/2 the indefinite value.

In a 3-value structure t° maps each arity-k predicate and
tuple (ui,..., ur) to 0, |, or 1/2

10

3-valued logic

Operators in 3-valued logic have definitions as if the
indefinite value could be either O or |

1 AL/2 1/2
OV1i2 = 1/

Given a variable interpretation Z we denote the 3-valued
meaning of a formula ¢ by:

[¢]5(Z)

11

Abstraction

Use 3-valued structures to represent classes of 2-valued
structures

Associate definite values with elements that are guaranteed
to be present in the structure.

The indefinite value 1/2 represents things that may be
present.

12

Embedding

We define an information order T on logical values so
[T if [=1or I"’=1/2

For two structures S, S’and a function f: U° — U® we
say fembeds Sin S’ if:

Sp) (s ug) £)(f(w), o)

..for all predicates p and u; € U®

13

Embedding theorem

Let S, S’ be two structures and f: U° — U and an
embedding function such that S C/ 5’

Then for any formula ¥ and complete assignment 7:

[¢15(2) C [¢]5 (2)

That is, we can use a three-value structure to summarise any
structure embedded in it, for any formula.

14

List abstraction

€T Yy n U (Us2|U3| Uy
Ui | 1] Ui\l 0 1 10| O
Ua | 0 0 Ua| 0 0110
usz | o 0 us| o 0| 0 | 1
Ug | 0 0 Ug| 0 0| 01 O

Hﬁ%@ﬁ@ﬂ

15

List abstraction

...abstracts to

xr | Y
Ui | 1]
Uz | 0 0
us 0 0
Ug | 0 0
S
(VA 0
U234 1/2

n|uUp [Ug| U3 Ug
Ui o 1 10| O
Ua | 0 0| 1] 0
us| o 0] 0 1
Ug| 0 0 0|0
n U1 |U234
U1 0 1/2

U234| 0 1/2

15

List abstraction

summarises nodes

€T Yy n U (Us2|U3| Uy
Ujg | 1] Ui o 1 10| 0
Ug | 0 0 Uz 1| 0 0| 1] 0
usz | o 0 us| o 0| 0 | 1
Ug | 0 0 0| 0] 0
//node U234 TN

U234

uz, U3z, U4
sm n | ux)
0 U1 i
1/5 U234 \
A

15

List abstraction

xr | Y
Ui | 1]
Uz | 0 0
us 0 0
Ug | 0 0

U234

n |uyp [Ug|U3z|Ug
Uil o 11010
Ua| 0 0| 1] 0
U1 0 || 0] 0|1
. TN Lo
predicate sm
records that a node has
been summarised
n U1 |U234
U1 0 1/2
U234| 0 1/2

15

List abstraction

Y |sm
(V] 1 0
U234 0 |1/2
L, Y
—>

n | up (U234
Uy | 0 1/2
U234| 0 1/2

15

List abstraction

represent

summary nodes by

double circles

n | Uy U234
Uy | 0 1/2
U234| 0 1/2

15

List abstraction

represent

summary nodes by

double circles

U1 U234

0 || 1/
U234

represent
indefinite values by
dotted edges

15

Embedding and abstraction

The resulting 3-valued structure should embed the
original 2-valued structure

X n n n _f T,y @ n
— : F— :: F— :: F—>» L —» U1 |- >
|

Note that we could have more indefinite values than we
need, eg by making U1 indefinite.

Call a minimally-indefinite embedding a tight embedding

16

Analysis algorithm

Construct a control-flow graph GG for the program.

Assign a set of 3-valued structures StructSet[v] to every
vertex U of the graph.

StructSet|v| is defined as the least fixed-point of the
following system of equations

U {embed|S, st(w)] | S € StructSet|w|} if v # start
StructSet|v] = ¢ w—veG
{<@7)\p°)\u17'“7uk7%>} it v = start

17

Shape analysis algorithm

U {embed|S, st(w)] | S € StructSet|w|} if v # start
StructSet|v] = ¢ w—veG

{<®7)\p°)\u17”'7uk7%>} it v = start

st(w) is the update formula for the transition w — v

embed|S, st(w)] takes a structure S, applies update st(w)

and constructs a set of 3-value structures summarising the
resulting structures

(0, Ap. Auy, ..., uk,1/2) is the empty structure, where all
predicates have indefinite values

18

Termination

Termination is ensured by defining a finite class of bounded
structures for a set of predicate symbols.

A structure S = (U°,.°) is bounded if for every pair of
elements ui,us € U where u1 7# u2 there exists a unary
predicate p such that:

* 2 (p)(ur) # /2 and o7 (p)(uz) # 12
o LS(p)(ul) + Ls(p)(UQ)

The set of bounded structures is finite, and the embedding
of a structure into a bounded structure is unique.

19

Naively updating structures

T
—> _______
Statement: x := x->n

Apply the same update as in a 2-value structure:

r'(v) = Fvi.xz(v1) An(v,v)

20

Naively updating structures

Statement: x := x->n

v’ (v) = FJvi.z(v) An(vi,v)

Naively updating structures

length one - so x may not
have a valid value

Improving precision

Three methods of improving precision:

* |[nstrumentation predicates - attach more information
in the structure

* Focussing - split cases to ensure more precise
updating

e Coercion - make structures more precise by
eliminating indefinite values and inconsistent

structures

21

Instrumentation predicates

Core predicates do not capture important properties

e Sharing, patterns of edges

e Reachability, cyclicity, etc.

Shape analysis counters this with instrumentation predicates

* separate cases using predicates

e explicitly record properties

22

X SN
(VA 1 0
U234| 0 1/2
n | up (U234
Uq 0 1/2
U234| o | 1/2

Xz
—>

This three-value structure also summarises lists with cycles,
such as:

()=~ =+()

23

Add a sharing predicate

Predicate is(u) holds if the node u is shared by two or more
fields of heap elements

Acyclic list: L ,@n
n | U1 (U234

24

Add a sharing predicate

U234| 0 | 0 |Y/2] 0 . n
Acyclic list: —»@ -------
n | U

U234

x n ’/
U234 0 | 0 [1/2] 0 H@ ------- »
Cyclic list: < :

n_ | U U234 T T

U234| o | 1/ b3

Updating the is predicates

Instrumentation predicates are updated in the same way as
core predicates.

Statement: x->n = V

Update formula for is(u):
is(v) A vy, vg. U1 F# Vg
A n(vy,v) A n(vy,v)
A —x(vy) A —x(vs)
V (y(v) A Juy.n(v,v) A —z(v))

25

Updating the is predicates

Instrumentass «as are updated in the same way as

shared between
two elements that
aren’t pointed to
by x

is(v) A vy, vg. U1 F# Vg
i (0) def (A n(vy,v) A n(vy,v))
A —x(vy) A —x(vs)
V (y(v) A Juy.n(v,v) A —z(v))

State

Update for

25

Updating the is predicates

Instrumentass «as are updated in the same way as

shared between
two elements that
aren’t pointed to

by x
Update for Vv Is now
is(v) A Juy, va. vq shared between x
is'(v) & A (v, v) An(vs d
— A ﬁSE(U1) A ﬁx(aln y
(v1,0)

V (y(v) A Juy.n(v,v) A —z(v))

State

25

Other predicates

The is-shared predicate is a comparatively simple
instrumentation predicate.

The analysis also uses:

e Edge-pattern predicates, e.g an n edge must be
followed by a t edge’

e Reachability predicate

e Cyclicity predicate

26

Focussing

Applying a naive update to a 3-valued structure may give
very imprecise results, eg:

To improve precision, define an operation focus that forces a
given formula ¢ to a definite value.

27

Focussing on a list

Solution to imprecision is to focus on a formula, instantiating
it with definite values by case-splitting

Focus formula: ¢ (v) = Fvy. z(v1) A n(vy,v)

28

Focussing on a list

Focus formula: ¢ (v) et Jv1. z(v1) A n(v1,v)

28

Focussing on a list

Focus formula: ¢ (v) et Jv1. z(v1) A n(v1,v)

28

Focussing on a list

Focus formula: ¢ (v) et Jv1. z(v1) A n(v1,v)

n n
L L
—>

pa(u) = 0 oa(u) = 1

28

Focussing on a list

note that this
only embeds lists of
size 2

28

Focussing on a list

)

def
Focus formula: ¢z (v) = Fvi.z(v1) An(vy,v)
x’y @ ZE‘, L,y n n
— > —> : F—{ .1)} >
@x(u) =0 g&m(u) =1 gom(u.l) =1

28

Abstract execution

E mn
)
4> _______
Statement: X 1= X->n S
n
Updates: 2'(v) = 3ui.z(v1) An(vi,v)
y'(v) = yv) \ /
sm'(v) = sm(v)
n'(vi,v2) = n(vy,v) n n
is'(v) = is(v) \

Coercion

Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing
predicate s

The prohibition on sharing implies that the indefinite edge
doesn’t exist.

30

Coercion

Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing
predicate s

—7S —7S

The prohibition on sharing implies that the indefinite edge
doesn’t exist.

30

Coercing a list

Coerce into a more precise
representation

1 1
Recall that yH% _______

is(ur) = is(u.1) = is(u.0) =0

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

31

1.l can’t be
shared as is(u#.1) = 0, so
this edge definitely
doesn’t exist

Coerce into a more p
representation

1 1
Recall that yH%

is(ur) = is(u.1) = is(u.0) =0

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

31

u.l can’t be
shared as is(u.1) = 0, so

this edge definitely
doesn’t exist

Coerce into a more p
representation

Recall that
is(ur) = is(u.1) = is(u.0) =0

this edge
definitely doesn’t
exist for the same
reason

Node u.l consequently must be a
definite node in order to fit with

semantics of is

31

Coercing a list

This node is the
target of a definite
edge, therefore must
exist

Recall that yHW. I

is(uy) = is(u.1) = is(u.0) =0 S

Coerce into a more
representation

Node u.1 consequently must be a
definite node in order to fit with

semantics of is

31

Coercing a list

'/ '/
. . y T T
Coerce INTO a2 More preC|se —»@—» ———————

representation

Recall that Coerce

is(ur) = is(u.1) = is(u.0) =0 v

Node u.1 consequently must be a

DY
definite node in order to fit with L}w@”,

semantics of is

31

Update structure

Analysis uses the focus and
coercion operations to improve
the precision of analysis

Both take a set of structures and
construct an equivalent set of
more precise structures.

Collapse output formulas to
bounded structures to ensure
termination.

Input formula

| Focus |

\/
[Update formula]

Vv

[Coerce]

Output formula

32

Summary

Analysis based on 3-valued structures

e Definite values are used to represent definite heap
element; indefinite values represent possible heap

elements

e 2-valued structures are embedded in representative 3-
valued structures

3-valued structures are attached to a control-flow graph

e Abstract semantics of C statements based on logical
updates

 Termination is ensured by a finite representation

33

Summary (2)

Simple abstract execution is extremely imprecise, so several
strategies are needed to improve precision:

* Instrumentation predicates record explicit information
about large-scale properties

* Focussing splits structures into sets of smaller, more
precise structures

e Coercion makes structures more precise by collapsing
indefinite values to definite values

34

