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Approach
Represent structures by logical structures

• Concretely - predicates represent connections 
between nodes

• Abstractly - use 3-valued logic to summarise 
properties

Construct sets of 3-valued structures by shape analysis

• Define a semantics for abstract execution over 3-
value structures

• Construct fixed-points of abstract execution
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Represent stores by logical structures:

•       is a universe of individuals

•      associates predicates with values

In a 2-value structure     maps each arity-k predicate and  
tuple                   to 0 or 1.

Also require a variable interpretation 

2-valued structures

ιS

(u1, . . . , uk)

US

ιS

S = 〈US , ιS〉

Z : {v1, v2, . . .}→ US
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2-valued logic
Write formulas    with the following operators:

• first-order conjunction, disjunction, universal 
quantification.

• Equality assertions

• Transitive closure, 

Given a variable interpretation                                we 
denote the 2-valued meaning of a formula     by:

!ϕ"S
2 (Z)

Z : {v1, v2, . . .}→ US

ϕ

ϕ

(TC v1, v2 : ϕ)(v3, v4)
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2-valued representation
Define core predicates recording the structure of a data 
structure by logical values

Unary predicates hold for a variable if the variable points to 
the argument value:

u1
x

u1 u2

n

x(u1)

n(u1, u2)

Edges are recorded by binary predicates:
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2-valued list

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Unary predicates x and y: Binary predicate n:

u1 u2 u3
x n n

y

x y
u1
u2
u3

1 1
0 0
0 0

These logical values represent the following structure:
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Compatibility constraints
In order to represent pointer structures, logical formulas 
must obey compatibility constraints.

• Every individual has exactly one n-labelled out-edge

• Every variable points to at most one individual

We have to enforce these constraints explicitly during 
analysis by coercion

for each x ∈ PV ar,∀v1, v2 : x(v1) ∧ x(v2) ⇒ v1 = v2

∀v1, v2 : (∃v3 : n(v3, v1) ∧ n(v3, v2)) ⇒ v1 = v2
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Operational semantics
Define the operational semantics of state updates by logical 
formulas on variables. 

For a statement     y := y->n

...we have update: y′(v) = ∃v1. y(v1) ∧ n(v1, v)

Other predicates are unchanged, as they are unaffected by 
the rewrite.

Handle memory allocation by adding a new individual to the 
universe, then applying an update as above.
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Updating the List

x y
u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement:     y := y->n

u1 u2 u3
x n n

y
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Updating the List
x y

u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement:     y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)
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Updating the List
x y

u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement:     y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)

only y 
is updated according 

to the semantics
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Updating the List
n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement:     y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)

x y
u1
u2
u3

1 0
0 1
0 0

only y 
is updated according 

to the semantics
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Updating the List
n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement:     y := y->n

x y
u1
u2
u3

1 0
0 1
0 0

u1 u2 u3
x n n

y

9



We call 1 and 0 definite values, and        the indefinite value.

In a 3-value structure     maps each arity-k predicate and  
tuple                   to 0, 1, or 

3-valued structures

ιS

(u1, . . . , uk)

1/2

1/2
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3-valued logic
Operators in 3-valued logic have definitions as if the 
indefinite value could be either 0 or 1

Given a variable interpretation     we denote the 3-valued 
meaning of a formula     by:

!ϕ"S
3 (Z)

ϕ
Z

. . .
0 ∨ 1/2 = 1/2

1 ∧ 1/2 = 1/2
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Abstraction

Use 3-valued structures to represent classes of 2-valued 
structures

Associate definite values with elements that are guaranteed 
to be present in the structure.

The indefinite value        represents things that may be 
present.

1/2
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Embedding

We define an information order       on logical values so  
l      l’  if   l = l’ or   l’ =  

For two structures S, S’ and a function                     we 
say   f embeds S in S’   if:

...for all predicates     and  

!
1/2!

f : US → US′

ιS(p)(u1, . . . , uk) ! ιS
′
(p)(f(u1), . . . , f(uk))

p ui ∈ US
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Embedding theorem
Let         be two structures and                     and an 
embedding function such that 

Then for any formula      and complete assignment     :

That is, we can use a three-value structure to summarise any 
structure embedded in it, for any formula. 

S, S′ f : US → US′

S !f S′

ϕ Z

!ϕ"S
3 (Z) ! !ϕ"S′

3 (Z)
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List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

u1 u2 u3
x n n

y

u4
n
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List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

15



List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

node u234 
summarises nodes 

u2, u3, u4 
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List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

predicate sm 
records that a node has 

been summarised
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List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

u1 u234
x, y n

n

15



List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

represent 
summary nodes by 

double circles

u1 u234
x, y n

n
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List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

represent 
summary nodes by 

double circles

represent 
indefinite values by 

dotted edges

u1 u234
x, y n

n

15



Embedding and abstraction

u1 u2 u3
x n n

y

u4
n !f

The resulting 3-valued structure should embed the 
original 2-valued structure

Note that we could have more indefinite values than we 
need, eg by making        indefinite.

Call a minimally-indefinite embedding a tight embedding 

u1

u1 u234
x, y n

n
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Analysis algorithm
Construct a control-flow graph      for the program.

Assign a set of 3-valued structures                    to every 
vertex     of the graph.

                  is defined as the least fixed-point of the 
following system of equations

G

StructSet[v]
v

StructSet[v]

StructSet[v] =






⋃

w→v∈G

{embed!S, st(w)" | S ∈ StructSet[w]} if v "= start

{〈∅, λp.λu1, . . . , uk, 1
2 〉} if v = start
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Shape analysis algorithm

          is the update formula for the transition

                         takes a structure S, applies update            
and constructs a set of 3-value structures summarising the 
resulting structures

                                is the empty structure, where all 
predicates have indefinite values

StructSet[v] =






⋃

w→v∈G

{embed!S, st(w)" | S ∈ StructSet[w]} if v "= start

{〈∅, λp.λu1, . . . , uk, 1
2 〉} if v = start

st(w)

embed!S, st(w)" st(w)

w → v

〈∅, λp.λu1, . . . , uk, 1/2〉
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Termination
Termination is ensured by defining a finite class of bounded 
structures for a set of predicate symbols.

A structure                       is bounded if for every pair of 
elements                   where                 there exists a unary 
predicate     such that:

•                            and   

•  

The set of bounded structures is finite, and the embedding 
of a structure into a bounded structure is unique.

S = 〈US , ιS〉
u1, u2 ∈ US u1 != u2

p

ιS(p)(u1) != 1/2 ιS(p)(u2) != 1/2

ιS(p)(u1) != ιS(p)(u2)
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Naively updating structures

u1
n

n

u
x, y

Statement:     x := x->n

Apply the same update as in a 2-value structure:

x′(v) = ∃v1. x(v1) ∧ n(v1, v)
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Naively updating structures

u1
n

n

u
x, y

Statement:     x := x->n

u1
n

n

u
xy

x′(v) = ∃v1. x(v1) ∧ n(v1, v)
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Naively updating structures

u1
n

n

u
x, y

Statement:     x := x->n

u1
n

n

u
xy

x′(v) = ∃v1. x(v1) ∧ n(v1, v)
x is indefinite 

because the list may be of 
length one - so x may not 

have a valid value 
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Improving precision 
Three methods of improving precision:

• Instrumentation predicates - attach more information 
in the structure

• Focussing - split cases to ensure more precise 
updating

• Coercion - make structures more precise by 
eliminating indefinite values and inconsistent 
structures 
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Instrumentation predicates
Core predicates do not capture important properties

• Sharing, patterns of edges

• Reachability, cyclicity, etc.

Shape analysis counters this with instrumentation predicates

• separate cases using predicates

• explicitly record properties
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Sharing
x y sm

u1
u234 1/2

1 1 0
0 0

n u1 u234
u1 1/2

u234 1/2

0
0

This three-value structure also summarises lists with cycles, 
such as:

u1 u234
x n

n

u1 u2 u3

x n n

n
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Add a sharing predicate

Predicate          holds if the node u is shared by two or more 
fields of heap elements

x y sm is
u1

u234 1/2

1 0 0 0
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

u1 u234
x n

n

Acyclic list:

is(u)
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Add a sharing predicate
x y sm is

u1
u234 1/2

1 0 0 0
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

u1 u234
x n

n

Acyclic list:

x y sm is
u1

u234 1/2

1 0 0 1
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

Cyclic list:
u1 u234

x n

n

n
is
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Updating the is predicates

Instrumentation predicates are updated in the same way as 
core predicates.

Update formula for is(u):

Statement:     x->n = y

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))
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Updating the is predicates

Instrumentation predicates are updated in the same way as 
core predicates.

Update formula for is(u):

Statement:     x->n = y

v is 
shared between 

two elements that 
aren’t pointed to 

by x

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))
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Updating the is predicates

Instrumentation predicates are updated in the same way as 
core predicates.

Update formula for is(u):

Statement:     x->n = y

v is 
shared between 

two elements that 
aren’t pointed to 

by x

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))

v is now 
shared between x 

and y
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Other predicates 
The is-shared predicate is a comparatively simple 
instrumentation predicate. 

The analysis also uses:

• Edge-pattern predicates, e.g `an n edge must be 
followed by a t edge’

• Reachability predicate

• Cyclicity predicate
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Focussing
Applying a naive update to a 3-valued structure may give 
very imprecise results, eg:

To improve precision, define an operation focus that forces a 
given formula      to a definite value.ϕ

u1
n

n

u
x, y

x := x->n

u1
n

n

u
xy
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Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

Solution to imprecision is to focus on a formula, instantiating 
it with definite values by case-splitting
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Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

28



Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

ϕx(u) = 0
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Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

ϕx(u) = 0 ϕx(u) = 1

28



Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

ϕx(u) = 0 ϕx(u) = 1

note that this 
only embeds lists of 

size 2
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Focussing on a list

Focus formula:  ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

u1
n

n

x, y n

n

n

u.1 u.0

ϕx(u) = 0 ϕx(u) = 1 ϕx(u.1) = 1

ϕx(u.0) = 0
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Abstract execution

u1
n

n

n

n

n

u.1 u.0
y

x

u1
n

n

x, y n

n

n

u.1 u.0
Statement:        x := x->n

Updates: x′(v) = ∃v1. x(v1) ∧ n(v1, v)
y′(v) = y(v)

sm′(v) = sm(v)
n′(v1, v2) = n(v1, v2)

is′(v) = is(v)
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Coercion
Increase precision by collapsing indefinite to definite values 

Consider the following 3-value structure using the sharing 
predicate

The prohibition on sharing implies that the indefinite edge 
doesn’t exist.

u1
n

n
¬is

u2

¬is

is
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Coercion
Increase precision by collapsing indefinite to definite values 

Consider the following 3-value structure using the sharing 
predicate

The prohibition on sharing implies that the indefinite edge 
doesn’t exist.

Coerceu1
n

n
¬is

u2

¬is

u1
n

¬is

u2

¬is

is
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Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise 
representation

Node u.1 consequently must be a 
definite node in order to fit with 
semantics of is

is(u1) = is(u.1) = is(u.0) = 0
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Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise 
representation

Node u.1 consequently must be a 
definite node in order to fit with 
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

u.1 can’t be 
shared as is(u.1) = 0, so 

this edge definitely 
doesn’t exist
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Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise 
representation

Node u.1 consequently must be a 
definite node in order to fit with 
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

u.1 can’t be 
shared as is(u.1) = 0, so 

this edge definitely 
doesn’t exist

this edge 
definitely doesn’t 
exist for the same 

reason
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Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise 
representation

Node u.1 consequently must be a 
definite node in order to fit with 
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

This node is the 
target of a definite 

edge, therefore must 
exist
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Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

x

u1
n n

n

u.1 u.0
y

Coerce into a more precise 
representation

Node u.1 consequently must be a 
definite node in order to fit with 
semantics of is

is(u1) = is(u.1) = is(u.0) = 0
Coerce
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Update structure

Coerce

Update formula

Focus

Output formula

Input formula
Analysis uses the focus and 
coercion operations to improve 
the precision of analysis

Both take a set of structures and 
construct an equivalent set of 
more precise structures.

Collapse output formulas to 
bounded structures to ensure 
termination.
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Summary
Analysis based on 3-valued structures

• Definite values are used to represent definite heap 
element; indefinite values represent possible heap 
elements

• 2-valued structures are embedded in representative 3-
valued structures

3-valued structures are attached to a control-flow graph 

• Abstract semantics of C statements based on logical 
updates

• Termination is ensured by a finite representation
33



Summary (2)
Simple abstract execution is extremely imprecise, so several 
strategies are needed to improve precision:

• Instrumentation predicates record explicit information 
about large-scale properties

• Focussing splits structures into sets of smaller, more 
precise structures

• Coercion makes structures more precise by collapsing 
indefinite values to definite values
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