Parametric Shape Analysis via 3-valued Logic

Authors: Mooly Sagiv, Thomas Reps

& Reinhard Wilhelm

Talk: Mike Dodds

Approach

Represent structures by logical structures

- Concretely predicates represent connections between nodes
- Abstractly use 3-valued logic to summarise properties

Construct sets of 3-valued structures by shape analysis

- Define a semantics for abstract execution over 3value structures
- Construct fixed-points of abstract execution

2-valued structures

Represent stores by logical structures: $S = \langle U^S, \iota^S \rangle$

- ullet U^S is a universe of individuals
- \bullet ι^S associates predicates with values

In a 2-value structure ι^S maps each arity-k predicate and tuple (u_1,\ldots,u_k) to 0 or 1.

Also require a variable interpretation $Z: \{v_1, v_2, \ldots\} \to U^S$

2-valued logic

Write formulas φ with the following operators:

- first-order conjunction, disjunction, universal quantification.
- Equality assertions
- Transitive closure, $(TC \ v_1, v_2 : \varphi)(v_3, v_4)$

Given a variable interpretation $Z: \{v_1, v_2, \ldots\} \to U^S$ we denote the 2-valued meaning of a formula φ by:

$$\llbracket \varphi
rbracket^S_2(Z)$$

2-valued representation

Define core predicates recording the structure of a data structure by logical values

Unary predicates hold for a variable if the variable points to the argument value:

$$x(u_1)$$
 $\xrightarrow{x} u_1$

Edges are recorded by binary predicates:

$$n(u_1, u_2)$$
 $u_1 \xrightarrow{n} (u_2)$

2-valued list

Unary predicates X and Y:

	\boldsymbol{x}	y
u_1	1	1
$ u_2 $	0	0
u_3	0	0

Binary predicate *n*:

$\mid n \mid$	u_1	$ u_2 $	u_3
u_1	0	1	0
$ u_2 $	0	0	1
$ u_3 $	0	0	0

These logical values represent the following structure:

Compatibility constraints

In order to represent pointer structures, logical formulas must obey compatibility constraints.

• Every individual has exactly one *n*-labelled out-edge

$$\forall v_1, v_2 : (\exists v_3 : n(v_3, v_1) \land n(v_3, v_2)) \Rightarrow v_1 = v_2$$

Every variable points to at most one individual

for each
$$x \in PVar, \forall v_1, v_2 \colon x(v_1) \land x(v_2) \Rightarrow v_1 = v_2$$

We have to enforce these constraints explicitly during analysis by coercion

Operational semantics

Define the operational semantics of state updates by logical formulas on variables.

```
For a statement y:=y->n ...we have update: y'(v)=\exists v_1.\,y(v_1)\wedge n(v_1,v)
```

Other predicates are unchanged, as they are unaffected by the rewrite.

Handle memory allocation by adding a new individual to the universe, then applying an update as above.

Updating the List

	\boldsymbol{x}	$\mid y \mid$
u_1	1	1
u_2	0	0
u_3	0	0

n	u_1	u_2	u_3
$ u_1 $	0	1	0
$ u_2 $	0	0	1
u_3	0	0	0

Updating the List

	\boldsymbol{x}	y
u_1	1	1
u_2	0	0
u_3	0	0

n	u_1	u_2	u_3
u_1	0	1	0
$ u_2 $	0	0	1
$ u_3 $	0	0	0

Updates:
$$x'(v) = x(v)$$

 $y'(v) = \exists v_1. y(v_1) \land n(v_1, v)$
 $n'(v_1, v_2) = n(v_1, v_2)$

Updatir is updated according to the semantics

	x	y	
u_1	1	1	\
$ u_2 $	(0]
u_3	0	0	

		w2	$[u_3]$
u_1	0	1	0
u_2	0	0	1
u_3	0	0	0

Updates:
$$x'(v) = x(v)$$
 $y'(v) = \exists v_1. y(v_1) \land n(v_1, v)$ $n'(v_1, v_2) = n(v_1, v_2)$

Updatir is updated according to the semantics

	x	y	
u_1	1	0	\
$egin{array}{c} u_1 \ u_2 \ u_3 \end{array}$	(1	
u_3	0	0	

		w2	$[u_3]$
u_1	0	1	0
u_2	0	0	1
u_3	0	0	0

Updates:
$$x'(v) = x(v)$$
 $y'(v) = \exists v_1. y(v_1) \land n(v_1, v)$ $n'(v_1, v_2) = n(v_1, v_2)$

Updating the List

	\boldsymbol{x}	y
u_1	1	0
u_2	0	1
u_3	0	0

n	u_1	u_2	u_3
u_1	0	1	0
$ u_2 $	0	0	1
u_3	0	0	0

3-valued structures

We call I and 0 definite values, and 1/2 the indefinite value.

In a 3-value structure ι^S maps each arity-k predicate and tuple (u_1,\ldots,u_k) to 0, I, or 1/2

3-valued logic

Operators in 3-valued logic have definitions as if the indefinite value could be either 0 or 1

$$1 \wedge \frac{1}{2} = \frac{1}{2}$$

 $0 \vee \frac{1}{2} = \frac{1}{2}$

Given a variable interpretation Z we denote the 3-valued meaning of a formula φ by:

$$\llbracket \varphi
rbracket^S_3(Z)$$

Abstraction

Use 3-valued structures to represent classes of 2-valued structures

Associate definite values with elements that are guaranteed to be present in the structure.

The indefinite value 1/2 represents things that may be present.

Embedding

We define an information order \sqsubseteq on logical values so $l \sqsubseteq l'$ if l = l' or l' = 1/2

For two structures S, S and a function $f: U^S \to U^{S'}$ we say f embeds S in S if:

$$\iota^{S}(p)(u_1,\ldots,u_k) \subseteq \iota^{S'}(p)(f(u_1),\ldots,f(u_k))$$

...for all predicates p and $u_i \in U^S$

Embedding theorem

Let S, S' be two structures and $f: U^S \to U^{S'}$ and an embedding function such that $S \sqsubseteq^f S'$

Then for any formula φ and complete assignment Z:

$$\llbracket \varphi \rrbracket_3^S(Z) \sqsubseteq \llbracket \varphi \rrbracket_3^{S'}(Z)$$

That is, we can use a three-value structure to summarise any structure embedded in it, for any formula.

	x	y
$\mid u_1 \mid$	1	1
$ u_2 $	0	0
$egin{array}{c} u_3 \ u_4 \end{array}$	0	0
$\mid u_4 \mid$	0	0

n	$ u_1 $	$ u_2 $	u_3	u_4
$ u_1 $	0	1	0	0
$ u_2 $	0	0	1	0
$ u_3 $	0	0	0	1
$ u_4 $	0	0	0	0

n	$ u_1 $	u_2	u_3	u_4
$ u_1 $	0	1	0	0
$ u_2 $	0	0	1	0
$ u_3 $	0	0	0	1
$ u_4 $	0	0	0	0

...abstracts to

	x	y	sm
$ u_1 $	1	1	0
$ u_{234} $	0	0	1/2

n	u_1	$ u_{234} $
u_1	0	1/2
$ u_{234} $	0	1/2

	\boldsymbol{x}	y	sm
$\mid u_1 \mid$	1	1	0
$ u_{234} $	0	0	1/2

n	u_1	u_{234}
$\mid u_1 \mid$	0	1/2
$ u_{234} $	0	1/2

Embedding and abstraction

The resulting 3-valued structure should embed the original 2-valued structure

Note that we could have more indefinite values than we need, eg by making u_1 indefinite.

Call a minimally-indefinite embedding a tight embedding

Analysis algorithm

Construct a control-flow graph G for the program.

Assign a set of 3-valued structures StructSet[v] to every vertex v of the graph.

StructSet[v] is defined as the least fixed-point of the following system of equations

$$StructSet[v] = \begin{cases} \bigcup_{w \to v \in G} \{embed[S, st(w)] \mid S \in StructSet[w]\} & \text{if } v \neq start \\ \{\langle \emptyset, \lambda p. \lambda u_1, \dots, u_k, \frac{1}{2} \rangle\} & \text{if } v = start \end{cases}$$

Shape analysis algorithm

$$StructSet[v] = \begin{cases} \bigcup_{w \to v \in G} \{embed[S, st(w)] \mid S \in StructSet[w]\} & \text{if } v \neq start \\ \{\langle \emptyset, \lambda p. \lambda u_1, \dots, u_k, \frac{1}{2} \rangle\} & \text{if } v = start \end{cases}$$

st(w) is the update formula for the transition $w \to v$

embed[S, st(w)] takes a structure S, applies update st(w) and constructs a set of 3-value structures summarising the resulting structures

 $\langle \emptyset, \lambda p, \lambda u_1, \dots, u_k, 1/2 \rangle$ is the empty structure, where all predicates have indefinite values

Termination

Termination is ensured by defining a finite class of bounded structures for a set of predicate symbols.

A structure $S = \langle U^S, \iota^S \rangle$ is bounded if for every pair of elements $u_1, u_2 \in U^S$ where $u_1 \neq u_2$ there exists a unary predicate p such that:

- $\iota^{S}(p)(u_1) \neq 1/2$ and $\iota^{S}(p)(u_2) \neq 1/2$
- $\iota^S(p)(u_1) \neq \iota^S(p)(u_2)$

The set of bounded structures is finite, and the embedding of a structure into a bounded structure is unique.

Naively updating structures

Statement: x := x->n

Apply the same update as in a 2-value structure:

$$x'(v) = \exists v_1. x(v_1) \land n(v_1, v)$$

Naively updating structures

Statement: x := x->n

$$x'(v) = \exists v_1. x(v_1) \land n(v_1, v)$$

Naively updating structures

Improving precision

Three methods of improving precision:

- Instrumentation predicates attach more information in the structure
- Focussing split cases to ensure more precise updating
- Coercion make structures more precise by eliminating indefinite values and inconsistent structures

Instrumentation predicates

Core predicates do not capture important properties

- Sharing, patterns of edges
- Reachability, cyclicity, etc.

Shape analysis counters this with instrumentation predicates

- separate cases using predicates
- explicitly record properties

Sharing

	x	y	sm
u_1	1	1	0
$ u_{234} $	0	0	1/2

n	u_1	u_{234}
u_1	0	1/2
$ u_{234} $	0	1/2

This three-value structure also summarises lists with cycles, such as:

Add a sharing predicate

Predicate is(u) holds if the node u is shared by two or more fields of heap elements

	x	y	sm	is
u_1	1	0	0	0
$ u_{234} $	0	0	1/2	0

Acyclic list:

n	u_1	$ u_{234} $
u_1	0	1/2
$ u_{234} $	0	1/2

Add a sharing predicate

Acyclic list:

n	u_1	u_{234}
u_1	0	1/2
$ u_{234} $	0	1/2

Cyclic list:

	x	y	sm	is
u_1	1	0	0	1
$ u_{234} $	0	0	1/2	0

n	u_1	$ u_{234} $
u_1	0	1/2
$ u_{234} $	0	1/2

Updating the is predicates

Instrumentation predicates are updated in the same way as core predicates.

Statement:
$$x->n = y$$

Update formula for is(u):

$$is'(v) \stackrel{\mathbf{def}}{=} \begin{pmatrix} is(v) \land \exists v_1, v_2. v_1 \neq v_2 \\ \land n(v_1, v) \land n(v_2, v) \\ \land \neg x(v_1) \land \neg x(v_2) \end{pmatrix} \\ \lor (y(v) \land \exists v_1. n(v_1, v) \land \neg x(v_1))$$

Updating the is predicates

Updating the is predicates

Other predicates

The is-shared predicate is a comparatively simple instrumentation predicate.

The analysis also uses:

- Edge-pattern predicates, e.g `an n edge must be followed by a t edge'
- Reachability predicate
- Cyclicity predicate

Focussing

Applying a naive update to a 3-valued structure may give very imprecise results, eg:

To improve precision, define an operation focus that forces a given formula φ to a definite value.

Solution to imprecision is to *focus* on a formula, instantiating it with definite values by case-splitting

Focus formula: $\varphi_x(v) \stackrel{\mathbf{def}}{=} \exists v_1. \, x(v_1) \land n(v_1,v)$

Focus formula: $\varphi_x(v) \stackrel{\mathbf{def}}{=} \exists v_1. \, x(v_1) \land n(v_1,v)$

Focus formula: $\varphi_x(v) \stackrel{\mathbf{def}}{=} \exists v_1. \, x(v_1) \land n(v_1,v)$

$$\varphi_x(u) = 0$$

Focus formula: $\varphi_x(v) \stackrel{\mathbf{def}}{=} \exists v_1. x(v_1) \land n(v_1, v)$

$$\varphi_x(u) = 0$$

$$\varphi_x(u) = 1$$

Focus formula: $\varphi_x(v) \stackrel{\mathbf{def}}{=} \exists v_1. x(v_1) \land n(v_1, v)$

$$\varphi_x(u) = 0$$

$$\varphi_x(u) = 1$$

$$\varphi_x(u.1) = 1$$

$$\varphi_x(u.0) = 0$$

Abstract execution

Statement: x := x->n

Updates: $x'(v) = \exists v_1. x(v_1) \land n(v_1, v)$ y'(v) = y(v) sm'(v) = sm(v) $n'(v_1, v_2) = n(v_1, v_2)$ is'(v) = is(v)

n

Coercion

Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing predicate is

The prohibition on sharing implies that the indefinite edge doesn't exist.

Coercion

Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing predicate is

The prohibition on sharing implies that the indefinite edge doesn't exist.

Coercing a list

Coerce into a more precise representation

Recall that

$$is(u_1) = is(u.1) = is(u.0) = 0$$

Node u.1 consequently must be a definite node in order to fit with semantics of is

Coercina list

u.1 can't be shared as is(u.1) = 0, so this edge definitely

doesn't exist

Coerce into a more presentation

Recall that

$$is(u_1) = is(u.1) = is(u.0) = 0$$

Node u.1 consequently must be a definite node in order to fit with semantics of is

n

n

Coercinalist

u.1 can't be

shared as is(u.1) = 0, so this edge definitely doesn't exist

Coerce into a more p representation

Recall that

$$is(u_1) = is(u.1) = is(u.0) = 0$$

Node u.1 consequently must be a definite node in order to fit with semantics of is

this edge definitely doesn't exist for the same reason

n

n

n

u.0

Coercing a list

Coerce into a more prepresentation

This node is the target of a definite edge, therefore must

exist

n

n

n

n

Recall that

$$is(u_1) = is(u.1) = is(u.0) = 0$$

Node u.1 consequently must be a definite node in order to fit with semantics of is

Coercing a list

Coerce into a more precise representation

Recall that

$$is(u_1) = is(u.1) = is(u.0) = 0$$

Node u.1 consequently must be a definite node in order to fit with semantics of is

Update structure

Analysis uses the focus and coercion operations to improve the precision of analysis

Both take a set of structures and construct an equivalent set of more precise structures.

Collapse output formulas to bounded structures to ensure termination.

Summary

Analysis based on 3-valued structures

- Definite values are used to represent definite heap element; indefinite values represent possible heap elements
- 2-valued structures are *embedded* in representative 3-valued structures

3-valued structures are attached to a control-flow graph

- Abstract semantics of C statements based on logical updates
- Termination is ensured by a finite representation

Summary (2)

Simple abstract execution is extremely imprecise, so several strategies are needed to improve precision:

- Instrumentation predicates record explicit information about large-scale properties
- Focussing splits structures into sets of smaller, more precise structures
- Coercion makes structures more precise by collapsing indefinite values to definite values