
Parametric Shape Analysis
via 3-valued Logic

Talk: Mike Dodds

Authors: Mooly Sagiv, Thomas Reps
 & Reinhard Wilhelm

1

Approach
Represent structures by logical structures

• Concretely - predicates represent connections
between nodes

• Abstractly - use 3-valued logic to summarise
properties

Construct sets of 3-valued structures by shape analysis

• Define a semantics for abstract execution over 3-
value structures

• Construct fixed-points of abstract execution

2

Represent stores by logical structures:

• is a universe of individuals

• associates predicates with values

In a 2-value structure maps each arity-k predicate and
tuple to 0 or 1.

Also require a variable interpretation

2-valued structures

ιS

(u1, . . . , uk)

US

ιS

S = 〈US , ιS〉

Z : {v1, v2, . . .}→ US

3

2-valued logic
Write formulas with the following operators:

• first-order conjunction, disjunction, universal
quantification.

• Equality assertions

• Transitive closure,

Given a variable interpretation we
denote the 2-valued meaning of a formula by:

!ϕ"S
2 (Z)

Z : {v1, v2, . . .}→ US

ϕ

ϕ

(TC v1, v2 : ϕ)(v3, v4)

4

2-valued representation
Define core predicates recording the structure of a data
structure by logical values

Unary predicates hold for a variable if the variable points to
the argument value:

u1
x

u1 u2

n

x(u1)

n(u1, u2)

Edges are recorded by binary predicates:

5

2-valued list

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Unary predicates x and y: Binary predicate n:

u1 u2 u3
x n n

y

x y
u1
u2
u3

1 1
0 0
0 0

These logical values represent the following structure:

6

Compatibility constraints
In order to represent pointer structures, logical formulas
must obey compatibility constraints.

• Every individual has exactly one n-labelled out-edge

• Every variable points to at most one individual

We have to enforce these constraints explicitly during
analysis by coercion

for each x ∈ PV ar,∀v1, v2 : x(v1) ∧ x(v2) ⇒ v1 = v2

∀v1, v2 : (∃v3 : n(v3, v1) ∧ n(v3, v2)) ⇒ v1 = v2

7

Operational semantics
Define the operational semantics of state updates by logical
formulas on variables.

For a statement y := y->n

...we have update: y′(v) = ∃v1. y(v1) ∧ n(v1, v)

Other predicates are unchanged, as they are unaffected by
the rewrite.

Handle memory allocation by adding a new individual to the
universe, then applying an update as above.

8

Updating the List

x y
u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement: y := y->n

u1 u2 u3
x n n

y

9

Updating the List
x y

u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement: y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)

9

Updating the List
x y

u1
u2
u3

1 1
0 0
0 0

n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement: y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)

only y
is updated according

to the semantics

9

Updating the List
n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement: y := y->n

Updates: x′(v) = x(v)
y′(v) = ∃v1. y(v1) ∧ n(v1, v)

n′(v1, v2) = n(v1, v2)

x y
u1
u2
u3

1 0
0 1
0 0

only y
is updated according

to the semantics

9

Updating the List
n u1 u2 u3
u1
u2
u3

0 1 0
0 0 1
0 0 0

Statement: y := y->n

x y
u1
u2
u3

1 0
0 1
0 0

u1 u2 u3
x n n

y

9

We call 1 and 0 definite values, and the indefinite value.

In a 3-value structure maps each arity-k predicate and
tuple to 0, 1, or

3-valued structures

ιS

(u1, . . . , uk)

1/2

1/2

10

3-valued logic
Operators in 3-valued logic have definitions as if the
indefinite value could be either 0 or 1

Given a variable interpretation we denote the 3-valued
meaning of a formula by:

!ϕ"S
3 (Z)

ϕ
Z

. . .
0 ∨ 1/2 = 1/2

1 ∧ 1/2 = 1/2

11

Abstraction

Use 3-valued structures to represent classes of 2-valued
structures

Associate definite values with elements that are guaranteed
to be present in the structure.

The indefinite value represents things that may be
present.

1/2

12

Embedding

We define an information order on logical values so
l l’ if l = l’ or l’ =

For two structures S, S’ and a function we
say f embeds S in S’ if:

...for all predicates and

!
1/2!

f : US → US′

ιS(p)(u1, . . . , uk) ! ιS
′
(p)(f(u1), . . . , f(uk))

p ui ∈ US

13

Embedding theorem
Let be two structures and and an
embedding function such that

Then for any formula and complete assignment :

That is, we can use a three-value structure to summarise any
structure embedded in it, for any formula.

S, S′ f : US → US′

S !f S′

ϕ Z

!ϕ"S
3 (Z) ! !ϕ"S′

3 (Z)

14

List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

u1 u2 u3
x n n

y

u4
n

15

List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

15

List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

node u234
summarises nodes

u2, u3, u4

15

List abstraction
x y

u1

u2
u3
u4

1 1

0 0
0 0
0 0

n u1 u2 u3 u4

u1

u2
u3
u4

0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

...abstracts to

predicate sm
records that a node has

been summarised

15

List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

u1 u234
x, y n

n

15

List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

represent
summary nodes by

double circles

u1 u234
x, y n

n

15

List abstraction

x y sm
u1

u234 1/2

1 1 0

0 0

n u1 u234

u1 1/2

u234 1/2

0

0

represent
summary nodes by

double circles

represent
indefinite values by

dotted edges

u1 u234
x, y n

n

15

Embedding and abstraction

u1 u2 u3
x n n

y

u4
n !f

The resulting 3-valued structure should embed the
original 2-valued structure

Note that we could have more indefinite values than we
need, eg by making indefinite.

Call a minimally-indefinite embedding a tight embedding

u1

u1 u234
x, y n

n

16

Analysis algorithm
Construct a control-flow graph for the program.

Assign a set of 3-valued structures to every
vertex of the graph.

 is defined as the least fixed-point of the
following system of equations

G

StructSet[v]
v

StructSet[v]

StructSet[v] =






⋃

w→v∈G

{embed!S, st(w)" | S ∈ StructSet[w]} if v "= start

{〈∅, λp.λu1, . . . , uk, 1
2 〉} if v = start

17

Shape analysis algorithm

 is the update formula for the transition

 takes a structure S, applies update
and constructs a set of 3-value structures summarising the
resulting structures

 is the empty structure, where all
predicates have indefinite values

StructSet[v] =






⋃

w→v∈G

{embed!S, st(w)" | S ∈ StructSet[w]} if v "= start

{〈∅, λp.λu1, . . . , uk, 1
2 〉} if v = start

st(w)

embed!S, st(w)" st(w)

w → v

〈∅, λp.λu1, . . . , uk, 1/2〉

18

Termination
Termination is ensured by defining a finite class of bounded
structures for a set of predicate symbols.

A structure is bounded if for every pair of
elements where there exists a unary
predicate such that:

• and

•

The set of bounded structures is finite, and the embedding
of a structure into a bounded structure is unique.

S = 〈US , ιS〉
u1, u2 ∈ US u1 != u2

p

ιS(p)(u1) != 1/2 ιS(p)(u2) != 1/2

ιS(p)(u1) != ιS(p)(u2)

19

Naively updating structures

u1
n

n

u
x, y

Statement: x := x->n

Apply the same update as in a 2-value structure:

x′(v) = ∃v1. x(v1) ∧ n(v1, v)

20

Naively updating structures

u1
n

n

u
x, y

Statement: x := x->n

u1
n

n

u
xy

x′(v) = ∃v1. x(v1) ∧ n(v1, v)

20

Naively updating structures

u1
n

n

u
x, y

Statement: x := x->n

u1
n

n

u
xy

x′(v) = ∃v1. x(v1) ∧ n(v1, v)
x is indefinite

because the list may be of
length one - so x may not

have a valid value

20

Improving precision
Three methods of improving precision:

• Instrumentation predicates - attach more information
in the structure

• Focussing - split cases to ensure more precise
updating

• Coercion - make structures more precise by
eliminating indefinite values and inconsistent
structures

21

Instrumentation predicates
Core predicates do not capture important properties

• Sharing, patterns of edges

• Reachability, cyclicity, etc.

Shape analysis counters this with instrumentation predicates

• separate cases using predicates

• explicitly record properties

22

Sharing
x y sm

u1
u234 1/2

1 1 0
0 0

n u1 u234
u1 1/2

u234 1/2

0
0

This three-value structure also summarises lists with cycles,
such as:

u1 u234
x n

n

u1 u2 u3

x n n

n

23

Add a sharing predicate

Predicate holds if the node u is shared by two or more
fields of heap elements

x y sm is
u1

u234 1/2

1 0 0 0
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

u1 u234
x n

n

Acyclic list:

is(u)

24

Add a sharing predicate
x y sm is

u1
u234 1/2

1 0 0 0
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

u1 u234
x n

n

Acyclic list:

x y sm is
u1

u234 1/2

1 0 0 1
0 0 0

n u1 u234
u1 1/2

u234 1/2

0
0

Cyclic list:
u1 u234

x n

n

n
is

24

Updating the is predicates

Instrumentation predicates are updated in the same way as
core predicates.

Update formula for is(u):

Statement: x->n = y

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))

25

Updating the is predicates

Instrumentation predicates are updated in the same way as
core predicates.

Update formula for is(u):

Statement: x->n = y

v is
shared between

two elements that
aren’t pointed to

by x

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))

25

Updating the is predicates

Instrumentation predicates are updated in the same way as
core predicates.

Update formula for is(u):

Statement: x->n = y

v is
shared between

two elements that
aren’t pointed to

by x

is′(v) def=




is(v) ∧ ∃v1, v2. v1 #= v2

∧ n(v1, v) ∧ n(v2, v)
∧ ¬x(v1) ∧ ¬x(v2)





∨ (y(v) ∧ ∃v1. n(v1, v) ∧ ¬x(v1))

v is now
shared between x

and y

25

Other predicates
The is-shared predicate is a comparatively simple
instrumentation predicate.

The analysis also uses:

• Edge-pattern predicates, e.g `an n edge must be
followed by a t edge’

• Reachability predicate

• Cyclicity predicate

26

Focussing
Applying a naive update to a 3-valued structure may give
very imprecise results, eg:

To improve precision, define an operation focus that forces a
given formula to a definite value.ϕ

u1
n

n

u
x, y

x := x->n

u1
n

n

u
xy

27

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

Solution to imprecision is to focus on a formula, instantiating
it with definite values by case-splitting

28

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

28

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

ϕx(u) = 0

28

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

ϕx(u) = 0 ϕx(u) = 1

28

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

ϕx(u) = 0 ϕx(u) = 1

note that this
only embeds lists of

size 2

28

Focussing on a list

Focus formula: ϕx(v) def= ∃v1. x(v1) ∧ n(v1, v)

u1
n

n

u
x, y

u1

n

u
x, y

u1
n

n

u
x, y

u1
n

n

x, y n

n

n

u.1 u.0

ϕx(u) = 0 ϕx(u) = 1 ϕx(u.1) = 1

ϕx(u.0) = 0

28

Abstract execution

u1
n

n

n

n

n

u.1 u.0
y

x

u1
n

n

x, y n

n

n

u.1 u.0
Statement: x := x->n

Updates: x′(v) = ∃v1. x(v1) ∧ n(v1, v)
y′(v) = y(v)

sm′(v) = sm(v)
n′(v1, v2) = n(v1, v2)

is′(v) = is(v)

29

Coercion
Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing
predicate

The prohibition on sharing implies that the indefinite edge
doesn’t exist.

u1
n

n
¬is

u2

¬is

is

30

Coercion
Increase precision by collapsing indefinite to definite values

Consider the following 3-value structure using the sharing
predicate

The prohibition on sharing implies that the indefinite edge
doesn’t exist.

Coerceu1
n

n
¬is

u2

¬is

u1
n

¬is

u2

¬is

is

30

Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise
representation

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

31

Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise
representation

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

u.1 can’t be
shared as is(u.1) = 0, so

this edge definitely
doesn’t exist

31

Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise
representation

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

u.1 can’t be
shared as is(u.1) = 0, so

this edge definitely
doesn’t exist

this edge
definitely doesn’t
exist for the same

reason

31

Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

Coerce into a more precise
representation

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

is(u1) = is(u.1) = is(u.0) = 0

This node is the
target of a definite

edge, therefore must
exist

31

Recall that

Coercing a list

u1
n

n

n

n

n

u.1 u.0
y

x

x

u1
n n

n

u.1 u.0
y

Coerce into a more precise
representation

Node u.1 consequently must be a
definite node in order to fit with
semantics of is

is(u1) = is(u.1) = is(u.0) = 0
Coerce

31

Update structure

Coerce

Update formula

Focus

Output formula

Input formula
Analysis uses the focus and
coercion operations to improve
the precision of analysis

Both take a set of structures and
construct an equivalent set of
more precise structures.

Collapse output formulas to
bounded structures to ensure
termination.

32

Summary
Analysis based on 3-valued structures

• Definite values are used to represent definite heap
element; indefinite values represent possible heap
elements

• 2-valued structures are embedded in representative 3-
valued structures

3-valued structures are attached to a control-flow graph

• Abstract semantics of C statements based on logical
updates

• Termination is ensured by a finite representation
33

Summary (2)
Simple abstract execution is extremely imprecise, so several
strategies are needed to improve precision:

• Instrumentation predicates record explicit information
about large-scale properties

• Focussing splits structures into sets of smaller, more
precise structures

• Coercion makes structures more precise by collapsing
indefinite values to definite values

34

