
Deny-Guarantee
Reasoning

Mike Dodds, Xinyu Feng,
Matthew Parkinson & Viktor Vafeiadis

November 3rd, 2008

Deny-guarantee

• Rely-guarantee is the best current
approach to reasoning about concurrency.

• However, it only deals with parallel
composition, not fork / join.

• With deny-guarantee we can deal naturally
with fork / join, by dynamically splitting
interference

• Deny-guarantee is a powerful approach
applicable beyond fork-join programs.

Deny-guarantee and the heap

This is a separation logic talk, in disguise

We depend crucially on the insights of abstract
separation logic1

However, this isn’t a talk about the heap, mostly.
• States have a fixed set of disjoint variables.
• Separate over interference only.

1See Local Action and Abstract Separation Logic, Calcagno,
O’Hearn & Yang

Why do we need
deny-guarantee?

Fork, join, and parallel composition

We can structure concurrency using parallel
composition:

C1 ‖ C2

This executes C1 and C2 in parallel.

More natural to use fork and join

fork C1 join C1

Start C1 and continue execution of the parent
thread. Join C1 later.

An example using fork and join

t1 := fork (x := 1) ;

t2 := fork (x := 2) ;

join t1;

x := 2;

join t2;

An example using fork and join

{true}
t1 := fork (x := 1) ;

t2 := fork (x := 2) ;

join t1;

x := 2;

join t2;

An example using fork and join

{true}
t1 := fork (x := 1) ;

t2 := fork (x := 2) ;

join t1;

x := 2;

join t2;

{x = 2}

A sketch proof

{true}
t1 := fork (x := 1) ;

{Thread(t1)}
t2 := fork (x := 2) ;

{Thread(t1)∧Thread(t2)}
join t1;

{Thread(t2)}
x := 2;

{Thread(t2)∧x = 2}
join t2;

{x = 2}

Rely-guarantee reasoning

Model concurrent interference as relations.
• Rely: what the environment can do.
• Guarantee: what the program can do.

Rely-guarantee judgements are of the form:

R,G ` {P}C{Q}

…where R,G ⊆ State×State.

Parallel composition in RG

Reasoning about parallel composition is easy.

R1,G1 ` {P1} C1 {Q1} G1 ⊆ R2

R2,G2 ` {P2} C2 {Q2} G2 ⊆ R1
R1∩R2,G1∪G2 ` {P1∧P2} C1‖C2 {Q1∧Q2}

Interference is statically scoped: the same at the
beginning and end of the parallel composition.

Static scoping won’t work for fork / join!

Separation and interference

We want to split and join interference.

We already know how to dynamically split and
join things.

separation logic!

Separation logic and the parallel rule

Consider the parallel rule in separation logic

`SL {P1} C1 {Q1}
`SL {P2} C2 {Q2}

`SL {P1 ∗P2} C1‖C2 {Q1 ∗Q2}

Separation allows us to naturally deal with
dynamic scoping.

Conclusion: To deal with fork and join we need a
star-operator for interference.

Developing deny-guarantee

First attempt

Take inspiration from the parallel rule.

R1,G1 ` {P1} C1 {Q1} G1 ⊆ R2

R2,G2 ` {P2} C2 {Q2} G2 ⊆ R1
R1∩R2,G1∪G2 ` {P1∧P2} C1‖C2 {Q1∧Q2}

Define ∗ using union and intersection.

(R1,G1)∗(R2,G2) =

{
(R1∩R2,G1∪G2) G1 ⊆ R2 & G2 ⊆ R1

undefined otherwise

Problem: we need cancellativity

Cancellative: for all x , y and z , if x ∗y is defined
and x ∗y = x ∗z , then y = z .

Non-cancellative operators lose information,
breaking soundness for separation logic.

Union and intersection are not cancellative, so
our first attempt fails.

Deny, not rely

Intuition: if we increase the context, proofs
should be easier.

Rely-guarantee is the other way round!

We define a deny, saying what the environment
can’t do, instead of a rely.

(D1∪D2,G1∪G2) is still not cancellative, but it’s
more uniform.

Second attempt
Disjoint union?

(D1,G1)∗ (D2,G2) =


(D1]D2,G1]G2) G1∩D2 = /0

& G2∩D1 = /0

undefined otherwise

Forbids any sharing between the two assertions.

For example, we can’t prove:

{true}
t1 := fork (x:=2)
x := 2;
{x = 2}

Permissions and sharing

In concurrent separation logic we share
locations using fractional permissions.

x 7→ y ↔ x
1
27−→ y ∗x

1
27−→ y

Can give a thread 1
2-permission on a location.

Associate actions with a fractional permission?

State×State→ Interval[0,1]

Third (successful) attempt

Define labelled permissions

PermDG def
= ({guar}× (0,1))] ({deny}× (0,1))
] {0}] {1}

Top and bottom elements 1 and 0.

Label fractions in (0,1) with
• ‘deny’, for deny permissions.
• ‘guar’, for guarantee permissions.

Deny-guarantee permissions

Associate actions with labelled permissions.

pr : State×State→ PermDG

Deny-guarantee permissions can be split and
joined in the way that we want.

From a relation to a function

Note that we have moved from sets of actions to
a function on actions.

Justification: RG relation is a function from
actions to 0 or 1.

Intuition: who can do something?

me, ¬you

1

¬me,
¬you (deny,π)

<
(guar,π)
> me,

you

0 <
>

¬me, you

Adding permissions
0 and 1 behave conventionally.

0⊕x def
= x ⊕0 def

= x

1⊕x def
= x ⊕1 def

= if x = 0 then 1 else undef

Can’t add a deny to a guar.

(deny,π)⊕ (deny,π′)
def
= if π+π′ < 1 then (deny,π+π′)

else if π+π′ = 1 then 1 else⊥

(guar,π)⊕ (guar,π′) def
= if π+π′ < 1 then (guar,π+π′)

else if π+π′ = 1 then 1 else⊥

A star for interference

We can define a cancellative star for interference

For any action a and pair of permissions pr and
pr , the star is defined so that

(pr ∗pr ′)(a) = pr (a)⊕pr ′(a)

Extracting rely-guarantee conditions

Extract rely-guarantee conditions from
deny-guarantee permission pr

Jpr K def
= ({a | pr (a) = (guar,_)∨pr (a) = 0},
{a | pr (a) = (guar,_)∨pr (a) = 1})

Write pr .R for extracted rely, and pr .G for
guarantee.

The logic of interference

Define an assertion language.

P ,Q ::= B | pr | false | Thread(E ,P) |
P →Q | P ∗Q | ∃X . P

Thread assertions record the expected
post-condition for a running thread.

Judgements in the logic

Define judgements over a state σ, permission
pr , and thread-queue γ

σ,pr ,γ |= P

Permissions and states defined as before.

Thread-queue γ : TID→ Stmts records the
post-conditions for threads.

Assertion stability

Stable assertions are invariant under the
permitted interference.

stable(P) states that if σ,pr ,γ |= P and
(σ,σ′) ∈ pr .R, then σ′,pr ,γ |= P .

We require that all assertions written in triples
are stable.

Reasoning about fork and join

{P1} C {P2} Thread(x ,P2)∗P3→ P4
{P1 ∗P3} x := fork C {P4}

(fork)

{P ∗Thread(E ,P ′)} join E {P ∗P ′} (join)

(simplified from the rules in the paper)

Reasoning about assignment

P → [E/x]P ′ allowed([[x := E]],P)

{P} x := E {P ′} (assn)

Assignments have to be allowed by the
permission.

allowed(A,P) where A ⊆ State×State asserts
that if σ,pr ,γ |= P and (σ,σ′) ∈ A then
(σ,σ′) ∈ pr .G.

Reasoning with deny-guarantee

Proving the example

{true}
t1 := fork (x := 1;)

t2 := fork (x := 2;)

join t1;

x := 2;

join t2;

{x = 2}

Cutting up interference

Thread starts with permission 1 for every action.

First, define a small syntax for assertions:

[x : A
p
 B]

def
= {((σ,σ[x 7→ v]),p) |σ(x)∈A∧v ∈B}

Split into
[x : Z 1

 {1,2}]∗K

Here K is permission 1 on all actions not
defined in the first conjunct.

Cutting up interference

Split the permission again.

[x : Z 1
 {1,2}] −→ [x : Z 1

 1]∗ [x : Z 1
 2]

−→ [x : Z
1
2g
 1]∗ [x : Z

1
2g
 1]

∗ [x : Z
1
2g
 2]∗ [x : Z

1
2g
 2]

Define G1 = [x : Z
1
2g
 1], and G2 = [x : Z

1
2g
 2]

Proving the example

Precondition for the example is as follows:

{G1 ∗G1 ∗G2 ∗G2 ∗K }
t1 := fork (x := 1;)
t2 := fork (x := 2;)
join t1;
x := 2;
join t2;

where G1 = [x : Z
1
2 g
 1] and G2 = [x : Z

1
2 g
 2]

Proving thread specifications

P → [E/x]P ′ allowed([[x := E]],P)

{P} x := E {P ′} (assn)

Apply the assignment rule:

{[x : Z
1
2g
 1]} x := 1; {[x : Z

1
2g
 1]}

With a valid triple for x := 1 we can apply the fork
rule in the main program.

Proving the example

{P1} C {P2} Thread(x ,P2)∗P3→ P4
{P1 ∗P3} x := fork C {P4}

(fork)

Apply the fork rule:

{G1 ∗G1 ∗G2 ∗G2 ∗K }
t1 := fork (x := 1;)

{G1 ∗G2 ∗G2 ∗K ∗Thread(t1,G1}

where G1 = [x : Z
1
2 g
 1] and G2 = [x : Z

1
2 g
 2]

Proving the example

{P1} C {P2} Thread(x ,P2)∗P3→ P4
{P1 ∗P3} x := fork C {P4}

(fork)

Apply the fork rule again:

{G1 ∗G2 ∗G2 ∗K ∗Thread(t1,G1}
t2 := fork (x := 2;)

{G1 ∗G2 ∗K ∗Thread(t1,G1)∗Thread(t2,G2)}

where G1 = [x : Z
1
2 g
 1] and G2 = [x : Z

1
2 g
 2]

Proving the example

{P ∗Thread(E ,P ′)} join E {P ∗P ′} (join)

Apply the join rule

{G1 ∗G2 ∗K ∗Thread(t1,G1)∗Thread(t2,G2)}
join t1;

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)}

where G1 = [x : Z
1
2 g
 1] and G2 = [x : Z

1
2 g
 2]

Proving the example

P → [E/x]P ′ allowed([[x := E]],P)

{P} x := E {P ′} (assn)

Apply the assignment rule

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)}
x := 2;

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)∧x = 2}

where G1 = [x : Z
1
2 g
 1] and G2 = [x : Z

1
2 g
 2]

Proving the example

Recall that we require that every pre- and
postcondition is stable

The following assertion pr is stable

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)∧x = 2}

…because pr .R contains only actions of the
form (σ,σ[x 7→ 2]).

Everything else is excluded by permissions G1,
G2 and K .

Proving the example

{G1 ∗G1 ∗G2 ∗G2 ∗K }
t1 := fork (x := 1;)

{G1 ∗G2 ∗G2 ∗K ∗Thread(t1,G1}
t2 := fork (x := 2;)

{G1 ∗G2 ∗K ∗Thread(t1,G1)∗Thread(t2,G2)}
join t1;

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)}
x := 2;

{G1 ∗G1 ∗G2 ∗K ∗Thread(t2,G2)∧x = 2}
join t2;

{G1 ∗G1 ∗G2 ∗G2 ∗K ∧x = 2}

Correctness results

We have defined
• semantics for deny-guarantee judgements
• logical operational semantics
• machine operational semantics

We have proved, by hand and mechanically
• soundness of the proof system w.r.t the

logical semantics
• correctness of erasure from logical to

machine semantics

Deny-guarantee and rely-guarantee

We can encode rely-guarantee pairs into sets of
PermDG permissions

JR,GK def
= {〈R,G〉f | f ∈ Actions→ (M \{0,1})}

〈R,G〉f
def
= λa.


(guar, f (a)) a ∈ R ∧a ∈G
0 a ∈ R ∧a /∈G
1 a /∈ R ∧a ∈G
(deny, f (a)) a /∈ R ∧a /∈G

Translating judgements

Translate rely-guarantee judgements into a set
of triples in deny-guarantee

JR,G ` {P}C {Q}K def
= {{P ∗pr} C {Q ∗pr} | pr ∈ JR,GK}

Judgements still hold, as we can also translate
proofs from rely-guarantee into deny-guarantee.

Proofs still hold in deny-guarantee

We can translate the RG parallel rule

JR1,G1 ` {P1}C1{Q1}K G1 ⊆ R2

JR2,G2 ` {P2}C2{Q2}K G2 ⊆ R1
JR1∩R2,G1∪G2 ` {P1∧P2}C1 ‖ C2{Q1∧Q2}K

…and the RG weakening rule.

JR1,G1 ` {P}C {Q}K R2 ⊆ R1 G1 ⊆G2
JR2,G2 ` {P}C {Q}K

Further applications

Dealing with the heap

Deny-guarantee is mostly orthogonal to the
heap.

Define permissions over heaps, rather than
states:

Heap×Heap→ PermDG

Otherwise deny-guarantee reasoning remains
the same.

Singleton permissions

Alternative use for permissions in the heap:

SingleDG def
= Val×Val→ PermDG

Define the heap with singleton permissions built
in:

Heap : Locs→ Vals×SingleDG

Permit an update of a location if it is allowed by
its permission.

Locks in the Heap

Dynamically-allocated locks are difficult to
reason about

Existing solutions use invariants, which prevent
compositional reasoning

Deny-guarantee may give us a solution to this

Locks in the Heap

Associate locations with heap permissions?

HeapDG def
= Locs→ Vals×LockPerm

LockPerm def
= Vals×HeapDG×HeapDG→ PermDG

Problems:
• Definition not well-founded!
• Self-referring locks.
• Recursive stability checking.

Conclusions

• We can define a cancellative star for
interference.

• Deny-guarantee allows us to reason
compositionally about fork and join.

• We expect that deny-guarantee will be
applicable to other problems, e.g. locks in
the heap.

• Meta-conclusion: Separation logic isn’t just
a logic of heaps.

