
Higher-order Actions
in Deny-Guarantee

Reasoning

Matthew
Parkinson

Mike
Dodds &

overview
Temporal properties of interference are hard to
reason about in rely-guarantee.

We define interference by splittable and joinable
state.

Interference can rewrite interference, permitting
or preventing future events.

Main examples: shared variable program, lock-
coupling list.

interference
tolerated from
environment

interference allowed
to thread

R,G ⊢ { P } C { Q }

Interference in rely-guarantee is modelled by
two sets of Actions.

Actions
def= States× States

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

 { true }
incr(x,l) || incr(x,l) || read(x);
 { true }

program:

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

After this point, the
variable x cannot be
incremented by any
other thread.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

at this point, only
the current thread
is allowed to write
to x.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

At this point x is
released for other
threads to increment.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Thread interference
can’t be captured by a
relation.

The fact that l is locked
or not does not express
whether x can be
incremented.

lock(l)

unlock(l)

inc(x)interference is a
state machine.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Could move the variable x to protected local state...
(this is the RGSep solution)

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Could move the variable x to protected local state...
(this is the RGSep solution)

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

No! The variable x needs to be readable by the
read(x) thread

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Could add an auxiliary variable to record which thread
locked l ...

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Could add an auxiliary variable to record which thread
locked l ...

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

Ugly, doesn’t really capture the semantics of the
algorithm in the proof.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

read(x) = {
 t1 := x;
 t2 := x;
 if (t2 < t1) error;
}

What is really going on?

⊢ { P } C { Q }

Permissions are treated like normal state, so
judgements are now of the form:

state and interference
precondition

state and interference
postcondition

In deny-guarantee, interference is captured by
permissions, which express both rely and
guarantee.

Just like state in RGSep, permissions can be
shared or local.

• shared permissions cannot be used by any
thread.

• local permissions can only be used by the
owner thread.

To perform an action, the thread must have
sufficient permission.

Actions can be denied, meaning they cannot
occur.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Actions capture state
update and permission
update.

Need lock, unlock and
increase actions.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Inc(x) : x = n ∧m > n ! x = m

Actions capture state
update and permission
update.

Need lock, unlock and
increase actions.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Inc(x) : x = n ∧m > n ! x = m

Lock(l) : l = 0 ∗ [Inc(x)]1 ! l = 1

Actions capture state
update and permission
update.

Need lock, unlock and
increase actions.

incr(x,l) = {
 n := *;
 lock(l);
 t := x;
 x := t + n;
 if (x != t+n) error;
 unlock(l);
}

Inc(x) : x = n ∧m > n ! x = m

Lock(l) : l = 0 ∗ [Inc(x)]1 ! l = 1

Unlock(l) : l = 1 ! l = 0 ∗ [Inc(x)]1

Actions capture state
update and permission
update.

Need lock, unlock and
increase actions.

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

We write shared state
as boxed and local state
as unboxed

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = t ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = t ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = (t + n) ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = t ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = (t + n) ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = (t + n) ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

 lock(l);

 t := x;

 x := t + n;

 if (x != t+n) error;

 unlock(l);

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = t ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = (t + n) ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
l = 1 ∗ x = (t + n) ∗ [Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

{
[Inc(x)]1 ∗ [Lock(l)](g, 1

2) ∗ [Unlock(l)](g, 1
2)

}

semantics of

deny-guarantee

interference semantics

Permission gives each action a level of permission

Actions are purely syntactic.

Actions
def= Names× Locs∗

PermDG
def= Actions→ FractionDG

interference semantics
Actions are purely syntactic.

Actions
def= Names× Locs∗

PermDG
def= Actions→ FractionDG

interference semantics

Level of permission recorded by FractionDG

Actions are purely syntactic.

Actions
def= Names× Locs∗

FractionDG
def= {(deny, k) | k ∈ (0, 1)}

∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

PermDG
def= Actions→ FractionDG

interference semantics
FractionDG

def= {(deny, k) | k ∈ (0, 1)}
∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

interference semantics
FractionDG

def= {(deny, k) | k ∈ (0, 1)}
∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

Join elements of FractionDG by addition.

interference semantics
FractionDG

def= {(deny, k) | k ∈ (0, 1)}
∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

0⊕ p = p

(deny, k)⊕ (deny, k′) =

{
(deny, k + k′) if k + k′ < 1
1 if k + k′ = 1

1⊕ 0 = 1

(guar, k)⊕ (guar, k′) =

{
(guar, k + k′) if k + k′ < 1
1 if k + k′ = 1

interference semantics
FractionDG

def= {(deny, k) | k ∈ (0, 1)}
∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

(guar, k)(deny, k)

1

0

interference semantics

thread, not
environment

FractionDG
def= {(deny, k) | k ∈ (0, 1)}

∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

(guar, k)(deny, k)

1

0

interference semantics

thread, not
environment

thread,
environment

FractionDG
def= {(deny, k) | k ∈ (0, 1)}

∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

(guar, k)(deny, k)

1

0

interference semantics

thread, not
environment

thread,
environment

not thread, not
environment

FractionDG
def= {(deny, k) | k ∈ (0, 1)}

∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

(guar, k)(deny, k)

1

0

interference semantics

thread, not
environment

thread,
environment

not thread, not
environment

not thread,
environment

FractionDG
def= {(deny, k) | k ∈ (0, 1)}

∪ {(guar, k) | k ∈ (0, 1)}
∪ {0, 1}

(guar, k)(deny, k)

1

0

interference semantics
The semantics of an action is defined by an action
environment.

Worlds
def= States× PermDG

Envs
def= Actions→Worlds×Worlds

Note that the indirection through syntax here
avoids a recursive domain equation.

Assertions

shared
 permission

shared
state

local
 permission

(σ, pr), (σ′, pr′), i |= p

local
 state

Stability

stable(p, η) def⇐⇒ (σ, pr), (σ′, pr′), i |= p

∧ ((σ, pr), (σ′′, pr′′)) ∈ R(pr⊕pr′),η

=⇒ (σ′′, pr′′), (σ′, pr′), i |= p

Gpr,η
def= {a | ∃γ, "x. η(γ, "x) = a ∧ pr(γ, "x) ∈ {(guar, k), 1}}

Rpr,η
def= {a | ∃γ, "x. η(γ, "x) = a ∧ pr(γ, "x) ∈ {(guar, k), 0}}

bigger example:

the lock-coupling list

Algorithm overview

Traverse a list by hand-over-hand locking.

Threads cannot overtake other threads locking
nodes.

A fine-grained algorithm for adding and
removing elements from a list.

locate(e) {
 local p, c;
 p := hd;
 lock(p);
 c := p.next;
 while (c != nil) {
 lock(c);
 if (c.value = e)
 return (p,c);
 unlock(p);
 p := c;
 c := p.next;
 }
 return(p, c);
}

remove(e) {
 local x, y, z;
 (x, y) := locate(e);
 if (y != nil) {
 z := y.next;
 x.next := z;
 dispose(y);
 }
 unlock(x);
}

locate(e) {
 local p, c;
 p := hd;
 lock(p);
 c := p.next;
 while (c != nil) {
 lock(c);
 if (c.value = e)
 return (p,c);
 unlock(p);
 p := c;
 c := p.next;
 }
 return(p, c);
}

Lock the fixed head
of the list.

Fine-grained locking

Head

Fine-grained locking

Head

Lock the head

locate(e) {
 local p, c;
 p := hd;
 lock(p);
 c := p.next;
 while (c != nil) {
 lock(c);
 if (c.value = e)
 return (p,c);
 unlock(p);
 p := c;
 c := p.next;
 }
 return(p, c);
}

Traverse down the
list, hand-over-hand.

locate(e) {
 local p, c;
 p := hd;
 lock(p);
 c := p.next;
 while (c != nil) {
 lock(c);
 if (c.value = e)
 return (p,c);
 unlock(p);
 p := c;
 c := p.next;
 }
 return(p, c);
}

lock the next node
in the list.

locate(e) {
 local p, c;
 p := hd;
 lock(p);
 c := p.next;
 while (c != nil) {
 lock(c);
 if (c.value = e)
 return (p,c);
 unlock(p);
 p := c;
 c := p.next;
 }
 return(p, c);
}

unlock the previous
node.

Fine-grained locking

Head

Fine-grained locking

Head

Extend
forward

Fine-grained locking

Head

Release previous
lock

Fine-grained locking

Head

Extend
forward

Fine-grained locking

Head

Fine-grained locking

Head

remove(e) {
 local x, y, z;
 (x, y) := locate(e);
 if (y != nil) {
 z := y.next;
 x.next := z;
 dispose(y);
 }
 unlock(x);
}

remove(e) {
 local x, y, z;
 (x, y) := locate(e);
 if (y != nil) {
 z := y.next;
 x.next := z;
 dispose(y);
 }
 unlock(x);
}

If the located region is
not nil, remove the node

remove(e) {
 local x, y, z;
 (x, y) := locate(e);
 if (y != nil) {
 z := y.next;
 x.next := z;
 dispose(y);
 }
 unlock(x);
}

swing pointer forward
to the next node

remove(e) {
 local x, y, z;
 (x, y) := locate(e);
 if (y != nil) {
 z := y.next;
 x.next := z;
 dispose(y);
 }
 unlock(x);
}

safely dispose of the
removed node.

Fine-grained locking

Head

Fine-grained locking

Head

Remove locked node
by a pointer swing

Fine-grained locking

Free the
redundant node

Head

RGSep proof

Head

SHARED

LOCAL

Locked nodes stay in the shared state.

RGSep actions

X Y YX

Consequently, blocks have to be manipulated
explicitly by actions.

RGSep actions

Nodes added and removed by explicit pointer
swings in the shared state.

ADD:

X Z

Y

X Z

Y

RGSep actions

Nodes added and removed by explicit pointer
swings.

X ZY X Z

Y

REMOVE:

Conceptual view

Head

Conceptual view

Head

Conceptual view

Head

cloud denotes a
hidden portion

of the list

Conceptual view

Head

cloud denotes a
hidden portion

of the list

Other threads only know that
when the head of the cloud is
unlocked, the list structure will

be restored

Conceptual view

Head

extend
forward

Conceptual view

locked nodes are hidden
from the public state

Head

Conceptual view

Head

Conceptual view

Head

release some list from
the hidden state

Conceptual view

Head

Conceptual view

Head

Conceptual view

Head

can remove the lock and release
a single node from hidden area

Conceptual view

Head

Conceptual view

Head

 can replace hidden area
with arbitrary unlocked list

Head

Y Y

Head

Lock the head and
add a hidden section

Intuitive actions

X
ZZX Y

Extend the hidden section
(hide more of the list)

Intuitive actions

Z
X

X
Z

X Y Z

Split the hidden section,
or

return an unlocked list segment

Intuitive actions

Head

X Y

Permission to insert a list
from (X+1) to Y, or

extend the permission

Replace(X,Y)

Model gaps in the list as the permission to insert
something into the gap.

Deny-guarantee solution:

Shared state

Head

Shared state consists of a list with gaps:

Local state

Replace(X,Y)

Head

X Y

Permissions on gaps are held in local state

ZX Y

Replace(X,Y)

Replace(X,Y):

Z

X

Y

Replace(X,Z)

ZX Y

Replace(X,Y)

Replace(X,Y):

Z

X

Y

Replace(X,Z)

note recursion

ZX Y

Replace(X,Y)

Replace(X,Y):

Z

X

Y

Replace(X,Z)

X
ZZX Y

Corresponds to this intuitive action:

note recursion

Replace(_,_)

Unused actions

Unused permissions are held in the public state.

Head

Replace(_,_)

Replace(_,_)
Replace(_,_)

Replace(_,_)

Replace(_,_)

ZX Y

Replace(X,Y)

Replace(X,Y):

Z

X

Y

Replace(X,Z)

Replace(X,Y)Replace(X,Z)

ZX Y

Replace(X,Y)

Replace(X,Y):

Z

X

Y

Replace(X,Z)

Replace(X,Y)Replace(X,Z)

Rep(x, y) : L(x) ∗ [Rep(x, z)]1 ∗ Un(y, v, z) ! L(x) ∗ [Rep(x, y)]1

Y

X

Replace(X,Y)

X+1

Replace(X,Y):

YX

Replace(X,Y)

X+1

Y

X

Replace(X,Y)

X+1

Replace(X,Y):

YX

Replace(X,Y)

X+1

Rep(x, y) : L(x) ! L(x) ∗ lseg(x + 1, y) ∗ [Rep(x, y)]1∗

Replace(X,Y):

Replace(X,Y)

Replace(Z,Y)Replace(X,Z)

Z
Replace(Z,Y)Replace(X,Z)

Replace(X,Y)

Z

Replace(X,Y):

Replace(X,Y)

Replace(Z,Y)Replace(X,Z)

Z
Replace(Z,Y)Replace(X,Z)

Replace(X,Y)

Z

Rep(x, y) : [Rep(x, z)]1 ∗ [Rep(z, y)]1 ! L(z) ∗ [Rep(x, y)]1

Proof of soundness removes the need for
auxiliary variables.

Actions are more general than the algorithm: any
list can be restored to an unlocked segment.

Actions capture semantically the changes in the
public interference.

Algorithm insights

Algorithm insights

Lock extension just requires a test, not locking

Algorithm insights

Lock extension just requires a test, not locking

Algorithm insights

Lock extension just requires a test, not locking

Algorithm insights

Lock extension just requires a test, not locking

Consequently, we don’t need a CAS to extend.
(we do need one at the list head though)

Higher-order deny-guarantee removes the need
for auxiliary variables in many cases.

Allows temporal reasoning about complex
properties.

Captures more clearly the structure of the
algorithm in the proof.

Conclusions

Our semantics avoids problems with recursion.

Compositionality is difficult: environments don’t
compose unless they are disjoint.

Constructing the right set of actions is often
complex.

- Locality may be the answer, but we don’t
know how to make this work yet.

Limitations

Would like a completeness result of some kind.

