
GT-VC 2005 Preliminary Version

Extending C for Checking Shape Safety

Mike Dodds 1 and Detlef Plump 2

The University of York, UK

Abstract

The project Safe Pointers by Graph Transformation at the University of York has
developed a method for specifying the shape of pointer-data structures by graph
reduction, and a static checking algorithm for proving the shape safety of graph
transformation rules modelling operations on pointer structures. In this paper, we
outline how to apply this approach to the C programming language. We extend
ANSI C with so-called transformers which model graph transformation rules, and
with shape specifications for pointer structures. For the resulting language C-GRS,
we present both a translation to C and and an abstraction to graph transformation.
Our main result is that the abstraction of transformers to graph transformation
rules is correct in that the C code implementing transformers is compatible with
the semantics of graph transformation.

Key words: Pointer programming; shape safety; C; graph transformation.

1 Introduction

Pointers in imperative programming languages are indispensable for the ef-
ficient implementation of many algorithms at both applications and systems
level, but pointer programming is notoriously prone to undetected errors. This
is because the type systems of current programming languages are too weak
to detect ill-shaped pointer structures.

To improve this situation, the project Safe Pointers by Graph Transforma-
tion 3 (SPGT) at the University of York has developed a method to specify
the intended shape of a family of pointer data-structures by graph reduction

specifications (GRSs). A GRS consists of a signature of admissible node and
edge labels, a set of graph reduction rules, and a so-called accepting graph.
The shape specified by a GRS contains all graphs that can be reduced to the
accepting graph by some series of rule applications [?,?].

1 Email: miked@cs.york.ac.uk
2 Email: det@cs.york.ac.uk
3 http://cs-people.bu.edu/bake/spgt/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://cs-people.bu.edu/bake/spgt/

Dodds, Plump

Acc: LR

top

aux

R1

2 3

top aux ⇒

R1

2 3

top aux

B1

L L

l r
⇒

L1

Fig. 1. Graph reduction specification of binary trees with an auxiliary pointer

For example, Figure 1 shows a GRS for full binary trees with an auxiliary
pointer. Tree nodes are either L-labelled leaves or B-labelled branch nodes
with outgoing pointers l and r, and there is a unique R-labelled node with
pointers top and aux which point to the root of the tree and to an arbitrary
tree node, respectively. The accepting graph, Acc, is the smallest graph of
this kind. The left reduction rule redirects the auxiliary pointer to the top of
the tree (regardless of the labels of nodes 2 and 3), the right rule deletes two
leaves with the same father and relabels their parent node as a leaf. Every
full binary tree with an auxiliary pointer can be reduced to Acc by these two
rules, but no other graph can be reduced to Acc.

Operations on pointer data-structures are also modelled by graph trans-
formation rules. A static checking algorithm for proving that such operations
are shape preserving is presented in [?] (generalizing a similar algorithm for
context-free shapes given in [?,?]). Figure 7 shows an operation on the shape
of Figure 1 that replaces a leaf destination of the auxiliary pointer with a
branch node and two new leaves. This is an example of a shape preserving
operation: when applied to a full binary tree with an auxiliary pointer, it will
always produce a graph of the same shape.

In what follows, we outline how to apply the SPGT approach to the C pro-
gramming language. The next section summarises how shapes are defined by
graph reduction and sketches the checking algorithm for shape-preservation.
Section 3 describes constructs which allow C programmers to write shape
specifications and operations on shapes, Section 4 indicates how to translate
the extended language—called C-GRS—to standard C, Section 5 discusses the
correctness of an abstraction of C-GRS shape-specifications and operations to
GRSs and graph transformation rules, and Section 6 concludes with a brief
discussion of related work.

2 Safe Pointers by Graph Transformation

This sections summarises our method of specifying shapes [?,?] and briefly
discusses the shape-checking method of [?].

A graph G = 〈VG, EG, sG, tG, lG, mG〉 consists of a finite set of nodes (or
vertices) VG, a finite set of edges EG, functions sG, tG: EG → VG assigning

2

Dodds, Plump

L ← K → R

g ↓ (1) ↓ (2) ↓

G ← D → H

Fig. 2. A double-pushout diagram

a source and a target node to each edge, a partial node labelling function
lG: VG → LV , and an edge labelling function mG: EG → LE. Graph G models
a pointer-data structure by retaining only the pointer fields of records and
abstracting from other values. Each node models a tagged record of pointers
where the node label, drawn from the node-label alphabet LV , is the tag.
Each edge leaving a node corresponds to a pointer field where the edge label,
drawn from the edge-label alphabet LE, is the name of the pointer field. We
use a function type:LV → ℘(LE) to associate with each record tag its set of
field names: if node v is labelled l and has an outgoing edge e, then the label
of e must be in type(l) and no other edge leaving v must have this label. The
triple Σ = 〈LV ,LE, type〉 is called a signature and graphs conforming to the
above constraints are called Σ-graphs. A Σ-graph is Σ-total if every node v is
labelled and for each label in type(lG(v)) there is an outgoing edge with that
label. A shape is a set of Σ-total graphs. So shape members model pointer
structures with no missing or dangling pointers.

A graph morphism g: G→ H between Σ-graphs G and H consists of a node
mapping gV : VG → VH and an edge mapping gE: EG → EH such that sources,
targets and labels are preserved: sH ◦gE = gV ◦sG, tH ◦gE = gV ◦tG, mH ◦gE =
mG, and lH(gV (v)) = lG(v) for all nodes v where lG(v) is defined. Morphism
g is an inclusion if g(x) = x for all nodes and edges x. An isomorphism is a
graph morphism that is injective and surjective in both components and maps
unlabelled nodes to unlabelled nodes. If g is an isomorphism then G and H

are isomorphic, denoted by G ∼= H .

A rule r = 〈L ← K → R〉 consists of three Σ-graphs L, K and R, and
inclusions K → L and K → R. Graph K is the interface of r. Intuitively, a
rule deletes the nodes and edges in L−K, preserves those in K and allocates
those in R−K. Our pictures of rules show only the left- and right-hand graphs,
the interface always consists just of the numbered nodes of the left- and right-
hand graphs. Σ-graphs in rules need not be Σ-total, they can contain nodes
with an incomplete set of outgoing edges or unlabelled nodes with no outgoing
edges. We refer to [?] for conditions on unlabelled nodes and outgoing edges in
rules which ensure that rule applications preserve both Σ-graphs and Σ-total
graphs. Rules satisfying these conditions are called Σ-total rules.

Graph G directly derives graph H through rule r = 〈L ← K → R〉 and
injective morphism g, denoted by G ⇒r,g H or G ⇒r H or just G ⇒ H , if
squares (1) and (2) in Figure 2 are natural pushouts. (See [?] for the definition
of natural pushouts.)

3

Dodds, Plump

Operationally, graph D is obtained from G by deleting the nodes and edges
in g(L) − g(K), and making each node unlabelled that is the image of an
unlabelled node in K that is labelled in L. By the pushout property of square
(1), deleted nodes cannot be incident to any edges in G−(g(L)−g(K)); this is
called the dangling condition. Graph H is obtained from D by adding all items
in R−K, and labelling unlabelled nodes with the labels of their counterparts
in R. We write G⇒∗

R H if there a sequence G = G0 ⇒ . . .⇒ Gn
∼= H , n ≥ 0,

where each direct derivation uses a rule from the set R. If no graph can be
directly derived from G through a rule in R, we say that G is R-irreducible.

A graph reduction specification S = 〈Σ,R,Acc〉 consists of a signature Σ,
a set of Σ-total rules R and a Σ-total R-irreducible accepting graph Acc. It
defines the graph language L(S) = {G | G⇒∗

R Acc}.

A GRS can be turned into an equivalent graph grammar by swapping left-
and right-hand sides of the rules and using the accepting graph as a start
graph. But we insist on the reduction-rule view as we usually impose con-
ditions such as termination and closedness to ensure that shape membership
can be efficiently checked (see below). In addition to the above definition,
nonterminal labels can be allowed, see [?]. Because the rules in R are Σ-total,
we have for every step G⇒R H that G is a Σ-total if and only if H is Σ-total.
So the graphs defined by GRSs are Σ-total and L(S) is a shape.

A GRS S is polynomially terminating if there is a polynomial p such that
for every reduction G0 ⇒R . . .⇒R Gn on Σ-total graphs, n ≤ p(|VG|+ |EG|).
It is closed if for all G ∈ L(S), G ⇒R H implies H ∈ L(S). A polynomial

graph reduction specification, PGRS for short, is a polynomially terminating
and closed GRS. Membership of PGRS shapes is decidable in polynomial
time—see [?], where also sufficient conditions for closedness and polynomial
termination are discussed.

Unrestricted GRSs are universally powerful in that they can define every
recursively enumerable shape, but their membership problem is undecidable
in general. The power of PGRSs goes beyond the reach of context-free graph
grammars (used by Fradet and Le Métayer to specify shapes [?,?]). For ex-
ample, [?] contains PGRSs for various forms of balanced trees, including
red-black trees. Balance is known to be not context-free specifiable.

To illustrate the above notions, consider again the GRS of Figure 1. Its
signature is given by LV = {R, L, B}, LE = {top, aux , l, r}, type(R) =
{top, aux}, type(B) = {l, r} and type(L) = ∅. Every full binary tree with
an auxiliary pointer can be reduced to the accepting graph: using the left
rule in Figure 1 one first redirects the aux -edge to the target of the top-edge
(if the aux -edge points to some other node), and then repeatedly applies the
other rule which removes two leaves and relabels their parent node as a leaf.
To see that the rules cannot reduce ill-shaped graphs to Acc, consider their
inverses (which are obtained by swapping left- and right-hand sides): these
rules clearly preserve full binary trees with an auxiliary pointer which im-
plies that the specified shape cannot contain other graphs. The GRS is poly-

4

Dodds, Plump

bt *insert(int i, bt *b) {

int t;

bt_auxreset(b);

while (bt_getval(b, &t)) {

if (t == i) return b;

else if (t > i) bt_goleft(b);

else bt_goright(b);

}

bt_insert(b, &i);

return(b);

}

Fig. 3. C-GRS function to insert a value into a binary search tree

nomially terminating—actually linearly terminating—because for every step
G ⇒ H on Σ-graphs, the number of nodes without outgoing parallel edges
is reduced. The GRS is also non-overlapping, meaning that for each pair of
steps H1 ⇐ G ⇒ H2 on Σ-graphs, either H1

∼= H2 or there is a Σ-graph M

such that H1 ⇒ M ⇐ H2. This property implies closedness and hence the
GRS is a PGRS.

Operations on pointer structures—such as the replacement of a leaf in
a tree shown in Figure 7—are also modelled by graph-transformation rules
(which need not obey the restrictions of PGRSs). A graph-transformation
rule r is safe with respect to a shape L(S) if for all G in L(S), G ⇒r H

implies H ∈ L(S). 4 The static checking algorithm for shape safety developed
in the SPGT project is described in [?]. Briefly, given a graph-transformation
rule r and a GRS S, the algorithm constructs two abstract reduction graphs

(ARGs) which represent all contexts of r’s left- and right-hand side in members
of L(S). The rule is safe if the right-hand ARG includes the left-hand ARG.
Some ARGs are infinite and hence their construction does not terminate, but
in many practical cases the algorithm produces finite ARGs representing all
left- and right-hand contexts so that inclusion can be checked. The general
shape-safety problem is undecidable even for context-free shapes [?] and hence
every checking method is necessarily incomplete.

3 C-GRS – An Extension to C

The language C-GRS is a small extension to ANSI C which is intended to
implement the approach to shape specification and shape checking described
above. The main idea (adopted from [?]) is that pointers are only manipulated
by transformers which correspond to graph transformation rules. For example,
Figure 3 shows a C-GRS function which inserts an integer value i into a binary
search tree b whose shape bt corresponds to the GRS of Figure 1.

4 For simplicity, this paper assumes that rules have the same input and output shape. The
shape-checking method of [?] can handle shape-changing rules, too.

5

Dodds, Plump

signature bintree {

root nodetype btroot {

edge top, aux;

}

nodetype branchnode {

edge l, r;

int val;

}

nodetype leafnode {}

}

shape bt bintree {

accept {

btroot rt;

leafnode leaf;

rt.top => leaf;

rt.aux => leaf;

}

rules {

moveaux2root;

branch2leaf;

}

}

Fig. 4. Left: Signature for a structure composed of branches and leaves. Right:
shape declarations corresponding the GRS declaration in Figure 1

This function uses the transformer bt auxreset to first move the auxiliary
pointer to the root of the tree. Then the tree is traversed by repeatedly com-
paring the integer values in branch nodes (retrieved by bt getval) with the
integer i and following either the left or the right pointer, using the transform-
ers bt goleft and bt goright. If the search ends at a leaf, then bt insert

transforms the leaf into a branch node and inserts i into that node. The
definition of bt insert is shown on the right of Figure ??.

3.1 Shapes

Nodes in a C-GRS shape are similar to C structures. In addition to values
of normal C data-types, nodes can contain pointers to nodes, declared by the
keyword edge. Unlike C pointers, edges are defined without stating the type
of the objects they are pointing to—edges can point to every (non-root) node
of the given shape. For example, the type of a branch node of the binary-tree
shape is declared as follows:

nodetype branchnode {

edge l, r;

int val;

}

The collection of node-type definitions of a C-GRS shape declaration cor-
responds to a GRS signature. C-GRS signatures are defined separately from
shapes, meaning that they can be reused between sevaral shapes. Shape decla-
rations also contain reducers, described below, which correspond to the reduc-
tion rules of a GRS. The accepting graph of a C-GRS shape is defined after
the keyword accept, using the same syntax as for the left- and right-hand
sides of a reducer. Figure 4 shows the declaration of the signature ⁀bintree and
the shape bt which corresponds to the GRS of Figure 1 (where the node types
btroot, branchnode and leafnode correspond to the node labels R, B and

6

Dodds, Plump

transformer

bt_insert

bintree (bt *tree,

int *inval) {

left (rt, n1) {

btroot rt;

leafnode n1;

rt.aux => n1;

}

right (rt, n1, l1, l2) {

branchnode n1;

leafnode l1, l2;

rt.aux => n1;

n1.l => l1;

n1.r => l2;

n1.val = *inval;

}

}

reducer

branch2leaf bintree {

left (br, l1, l2) {

branchnode br;

leafnode l1, l2;

br.left => l1;

br.right => l2;

}

right (br) {

leafnode br;

}

}

Fig. 5. Left: transformer to create a branch and insert a value into it. Right:
Reducer for the binary tree example shown in Figure 4

L.) Note that nodes in a C-GRS shape can contain values such as the integer
val which do not occur in the graphs specified by a GRS.

3.2 Transformers and Reducers

Transformers are the mechanism by which pointer data-structures are manip-
ulated in C-GRS programs. To ensure shape safety, all manipulations of shape
members must be written as transformers. Like graph transformation rules,
transformers consist of a left- and right-hand graph. For example, consider the
transformer bt insert of Figure 5 which replaces a leaf with a value-carrying
branch. To apply this transformer to a tree, its left-hand node rt must match
the source node of the auxiliary pointer aux in the tree and node n1 must
match a leaf in the tree that is pointed to by the auxiliary pointer.

The constituent nodes of the left- and right-hand sides of a transformer
are declared in a list, as follows:

left(rt,n1)

Nodes are assigned a type (or tag in the terminology of Section 2) using a
syntax similar to C variable declarations:

btroot rt;

leafnode n1;

It is important to note that transformers can alter node types. One can also
declare nodes without assigning a type, these nodes correspond to unlabelled
nodes in graph transformation rules and will match nodes of every type.

7

Dodds, Plump

The target of the aux-edge leaving rt is specified as follows:

rt.aux => n1;

Edges must point to nodes, null edges are not allowed. The right-hand
side of bt insert allocates the leaves l1 and l2 as children of n1. The types
of the new leaves are assigned in the same way as shown for the left-hand side.
Leaf n1 is retyped as a branch node by the following type-assignment on the
right-hand side:

branchnode n1;

Transformers can overwrite the values held in nodes or return them through
transformer parameters. Arguments to a transformer are passed by reference
to ensure that several values can be manipulated simultaneously, as C makes
it difficult for a function to return several values. The transformer bt insert,
for instance, inserts an integer value into the branchnode on its right-hand
side as follows:

n1.val = *inval;

A transformer such as bt insert is used in the same way as an ordinary
C function, as shown in the search-tree insertion example of Figure 3.

The EBNF syntax definition of C-GRS is given in Appendix A, together
with some (but not all) context conditions. The definition extends the syntax
of ANSI C by adding transformer and shape declarations to the categories
fun-def and type-def.

Reducers correspond to the reduction rules of a GRS, and have a similar
syntax to transformers. They do not have arguments, and so cannot be used
as functions in the program. Figure 5 shows a reducer for the binary tree
example.

3.3 Rootedness

Adding graph transformation rules to C presents two problems. Rules can be
applied in a graph wherever their left-hand sides match, which does not fit
with C’s deterministic world. Moreover, the search for a match of a (fixed)
rule requires polynomial time which is too expensive. We solve both problems
by requiring that C-GRS shape-structures and left-hand sides of transformers
contain unique roots and that all nodes in the left-hand sides of transformers
are reachable from the roots.

Roots are distinguished node. In C-GRS roots are distinguished by their
type. Node types can be declared as root types in the signature with the
keyword root. Nodes which have one of these types are root nodes. For
example, the node rt in the declaration of bt in Figure 4 with its outgoing
edges top and aux is a root node, and so is an entry point for every binary-
tree structure. In general, we require that every shape structure has at least
one root and that different roots in the same structure must have different

8

Dodds, Plump

root types. The same applies to the left-hand sides of transformers where, in
addition, each node must be reachable from some root by a directed path of
edges. Also, transformers must not delete or add root nodes.

Under these conditions the application of a transformer to a shape struc-
ture is a deterministic process: the roots of the left-hand side occur in unique
places in the structure and whenever a node of the left-hand side has been
matched, it is checked if all its outgoing edges are among the outgoing edges
of the corresponding node in the structure. The matching of the transformer
fails as soon as one of the edge comparisons fails. The matching is successful
if all edges of the left-hand side have been found, if the sharing of target nodes
in the left-hand side corresponds to the sharing in the structure, and if the
dangling condition for direct derivations (see Section 2) is satisfied.

It is not difficult to see that for a fixed transformer, the matching process
requires only constant time. This is because every member of a shape comes
with a fixed selection of roots (which can be found in constant time) and
because the number of outgoing edges of each node is bounded (as shape
structures correspond to Σ-total graphs).

4 Translating C-GRS to C

For execution, C-GRS is translated into ANSI C by the translation function
C given in Appendix B (shape translation) and Appendix C (transformer
translation). Only shapes and transformers result in modified code, while the
C portion of a C-GRS program is left unmodified by the translation.

The translation of shapes transforms node types into C structures with
the same name. All non-root structures of a shape S are wrapped into a
single C union S node and edges become pointers to S node. This allows the
transformer function to retype nodes in-place in memory. For example, the
type btroot from the signature bintree of Figure 4 is translated into the
following C structure:

struct btroot {

bintree_node *top, *aux;

}

Appendix C shows the translation of transformers into C functions which
can be applied to shape members. The application of such a function proceeds
in two major phases: first, the transformer’s left-hand side is matched against
nodes in the shape member, and second the image of the left-hand side is
transformed into the right-hand side by deleting and adding nodes and altering
the contents of preserved nodes.

The matching phase of a transformer uses matching variables which corre-
spond to nodes in the left-hand graph. These variables hold pointers to nodes
in the shape member such that a variable holds a pointer to a node if and only
if the left-hand node corresponding to the variable has been matched with the

9

Dodds, Plump

if (! typeeq((rt->btroot).aux, "leafnode"))

return False;

else if (n1 == NULL) n1 = (rt->btroot).aux;

else if (n1 != (rt->btroot).aux) return False;

Fig. 6. Matching code for the edge aux in the left-hand side of bt insert

shape-member node.

Root nodes correspond to pointer fields in the C structure S representing a
shape member, so they can be easily assigned to matching variables. As only
one root of each type can exist in a shape member, the fields are distinctly
named after the types of the root nodes. For example, the following code in
the translation of the transformer bt insert,

rt = tree->btroot;

assigns the pointer to the root of a binary-tree to the matching variable
rt, where tree is the parameter of bt insert holding a pointer to the tree.

When a root has been matched, the matching process proceeds by follow-
ing the edges outgoing from matched nodes. To keep the description of the
translation simple, we assume that edge statements are ordered in a way such
that non-root nodes never occur as the source of an edge before they occur as
a target of some edge. This ensures that nodes are matched in a correct order.
As all nodes in the left-hand side of a transformer are reachable from some
root, each node will eventually be matched. For example, Figure 6 shows the
matching code produced for the edge aux from rt to n1 in the left-hand side
of bt insert.

This code first checks that the node found by following the aux-edge is a
leaf. Then, if the matching variable n1 is null, it is assigned a pointer to the
target of the aux-edge. This gives n1 an initial value if it is the first time it
has been reached. If n1 already holds a non-null value, then node n1 on the
left-hand side of the transformer has more than one incoming edge and the
code checks that the pointers n1 and aux point to the same node. If any of
the checks fail, the transformer function returns False without modifying the
shape member.

Once all nodes of the left-hand side of a transformer have been matched,
the system performs two more checks. First, it checks by comparison of pointer
values that each pair of distinct transformer nodes has been matched with
distinct nodes in the shape member. This is required due to the assumption
that matches are injective. Then the dangling condition for deleted nodes
(see Section 2) is checked by reference counting, using the indegree field of
deleted nodes. Failure of the dangling condition is treated in the same way as
failure in the above cases.

If the matching process has been successful, the image of the transformer’s
left-hand side in the shape member is modified to the right-hand side by delet-
ing, allocating and retyping nodes, and recreating edges. Nodes are managed

10

Dodds, Plump

R rt

L n1

aux ⇒

R rt

B n1

L l1 L l2

aux

l r

Fig. 7. Graph transformation rule produced from bt insert by the abstraction G

using the normal C memory allocation functions. Edges are recreated by as-
signing new values to pointer fields in nodes. For example, the edge aux in
the right-hand side is recreated by

(rt->btroot).aux = n1;

where rt and n1 are the matching variables for the nodes of the same
names.

After the C-GRS code has been translated, the resulting C code can be
compiled and executed in the normal way.

5 Abstracting C-GRS to Graph Transformation

Our main aim in adding shapes and transformers to C is to make it possible to
statically check the shape safety of graph transformation rules corresponding
to transformers, using the algorithm described in [?]. We denote by G the
function which abstracts C-GRS shapes and transformers to GRSs and graph
transformation rules, respectively. The form of C-GRS shapes and transform-
ers is intentionally very close to GRSs and graph transformation rules, so G’s
straightforward definition is omitted from this paper. As an example, Figure
7 shows the graph transformation rule produced by applying G to the trans-
former bt insert of Figure ??. The node labels R, B and L stand for btroot,
branchnode and leafnode, respectively.

The translation G maps C-GRS shape declarations to GRSs whose shapes
consist of graphs which model pointer data-structures by abstracting from
non-pointer values. Accordingly, graph transformation rules produced from
transformers only model structural modifications of pointer structures and
ignore value changing operations. For instance, G forgets the integer held in
node n1 when abstracting the transformer bt insert to the rule in Figure 7.
Other work has looked at value-modifying graph-transformation rules, such
as [?,?], and so in future we may model these value-changes.

To analyse the correctness of the translation C with respect to the graph
model given by G, we fix a few notions. By a pointer structure we mean a set of
individual records (’structures’ in C’s terminology) in a C program-state such
that all pointers in the records point to records in the set. A pointer structure
is consistent with a signature Σ = 〈LV ,LE, type〉 if each record contains a

11

Dodds, Plump

G G′

S S ′

GJF K

CJF K

αΣ αΣ

Σ-total graphs

C pointer-structures

=

Fig. 8. Correctness of the translation C

field type holding a value l ∈ LV such that type(l) consists of the names of
the pointer fields in the record. We denote by αΣ the function that abstracts
(in the obvious way) pointer structures consistent with Σ to Σ-total graphs.

Using these notions, we say that the translation C is correct with respect
to G if for every transformer F and every pointer structure S that is consistent
with F ’s signature Σ,

GJF K(αΣ(S)) = αΣ(CJF K(S)).

In other words, the diagram of Figure 8 has to commute. Here we assume that
a failed application of the graph-transformation rule GJF K returns the input
graph unmodified.

Suppose that this correctness property holds and that all pointer manip-
ulations in a C-GRS program P happen through applications of transformers
to pointer structures that correspond to members of the shapes associated
with the transformers. Then we can check that P is shape safe by checking
the corresponding graph-transformation rules produced by G.

To show that the diagram of Figure 8 commutes for every transformer F ,
we first show that GJF K and CJF K select corresponding graph elements in their
matching phases. This can be proved by induction on the size of the left-hand
side of F :

(i) Roots are correctly matched, as both graphs and pointer structures can
only contain a single instance of a particular root.

(ii) The children of correctly matched nodes are correctly matched, as in both
the graph and the pointer structure they are connected to their parent
by a distinctly-labelled edge.

The same kind of argument shows that in the case of a matching failure,
it fails for corresponding nodes processed by GJF K and CJF K. Similarly, GJF K
violates the dangling condition for a deleted node if and only if the C code in
CJF K checking the dangling condition reports failure for the C record corre-
sponding to that node. The proof of correctness is completed by showing that
corresponding right-hand modifications are performed by GJF K and CJF K.

12

Dodds, Plump

6 Related Work

Our language C-GRS is similar to Fradet’s and Le Métayer’s Shape-C [?], the
main difference is that Shape-C is restricted to shapes specified by context-free
graph grammars. The graph reduction specifications incorporated in C-GRS—
even when restricted to polynomial GRSs—allow programmers to specify non-
context-free data structures such as grids and various forms of balanced trees.
In addition, shapes defined by polynomial GRSs come with an efficient mem-
bership test which can be used for testing and debugging shape specifications.
Shapes defined by context-free graph grammars, on the other hand, are known
to have an NP-complete membership problem.

Graph types [?] are spanning trees with additional pointers defined by
path expressions; they form the basis of pointer assertion logic [?], a monadic
second-order logic for expressing properties of pointer structures in program
annotations. This requires programmers to use quite a sophisticated logic,
but the formalism is still too weak to express some important properties such
as balance in trees. These drawbacks also apply to the TVLA system [?]
which demands that data structures and the effects of program statements
are expressed in three-valued logic with transitive closure. TVLA employs the
shape analysis method of [?] to verify invariants.

Separation logic [?,?] extends classical Hoare-style program verification so
that specifications and proofs can deal with properties of linked data struc-
tures. The logic allows the heap to be divided into regions for which different
logical formulas hold, making it possible to reason locally about pointers. But
so far there seems to be no automatic verification method for separation logic.

Acknowledgement. We would like to thank Adam Bakewell and the anony-
mous referees for comments that helped to improve this paper.

13

Dodds, Plump

Appendix

A EBNF Syntax of C-GRS

fun-def ::=

transformer trid sigid (shid *id, [tid *id]∗) {
left ([nid]∗) { [node-dec;]+ [left-graph;]∗ }
right ([nid]∗) { [node-dec;]∗ [right-graph;]∗ }
}

| ...

node-dec ::= ntid nid [, nid]∗

left-graph ::= nid.ed => nid

right-graph ::= nid.ed => nid | nid.id = id | id = nid.id

sig-def ::= signature sigid{ [node-def;]+ }

shape-def ::=

shape shid sigid {
accept { [node-dec;]+ [nid.ed => nid ;]∗ }
rules { [trid ;]∗ }
}

node-def ::= nodetype ntid { [node-cont;]+ }

root nodetype ntid { [node-cont;]+ }

node-cont ::= edge ed [, ed]∗ | struct-decl-cont

• id and tid stand for identifiers of C variables and C types, respectively.
nid, ntid, sid, trid and tid stand for identifiers of nodes, node types, shapes
and transformers, respectively. ed stands for edge labels.

• struct-decl-cont corresponds to the statements that can be part of a C
structure-declaration.

Context Conditions

• Root nodes must not be deleted by a transformer.
• On both sides of a transformer, all nodes must be reachable from some

root node.
• Nodes that are created or retyped on the right-hand side of a transformer

must have all the edges for their type declared.
• All rules of a shape must be defined as transformers.

14

Dodds, Plump

B Shape Translation

C Jsignature C { N1;. . . Nn; }K =

[N J N K]N∈{N1...Nn}

typedef struct C node {
char *type;

int indegree;

union {
[struct n;]n∈Defs

} node;

}

where:
Defs = names of nodes defined in {N1 . . . Nn}

C

u
wwv

shape S C {
accept { A1;. . . An; }
rules { P1;. . . Pn; }
}

}
��~ =

typedef struct S {
[C node *r;]r∈Roots

}

S * newgraph S () {
[C node *v;]v∈Nodes

S *new;

new = malloc(sizeof(S));

[IJ A K]A∈{A1...An}

return new;

}

where:
Nodes = {A1 . . .An}
Roots = root nodes declared in {A1 . . .An}

N J nodetype N { C } K = struct N { T J C K }
T J edge E1. . . En K = [S node *e;]e∈{E1...En}

T J C K = C

IJ T V K
T ∈ RootTypes

=
new.V = createnode(T);
define ta(V) = T

IJ T V1. . . VN K
T /∈ RootTypes

=
[Vi = createnode(T);]Vi∈{V1...Vn}
define ta(v) = T, for v ∈ {V1 . . . VN}

IJ S.E => T K = (S->ta(S)).E = T;

15

Dodds, Plump

C Transformer Translation

C

u
wwv

transformer F C (S *G; A)
left(Nl){ L1;. . . Ln; }
right(Nr){ R1;. . . Rn; }
}

}
��~ =

bool F (S *G; A) {
[LJLK]L∈{L1...Ln}

[if (x == y) return False;](x,y)∈Pairs

[if (d.indegree != C(d))

return False;]d∈Delete

[n.indegree
= n.indegree - C(n);]n∈Nl

[retypenode(p, tr(p));]p∈Retype

[a = createnode(tr(a)));]a∈Allocate

[RJRK]R∈{R1...Rn}

[deletenode(d);]d∈Delete

return True;

}

where:
Nodes = {L1 . . . Ln} ∪ {R1 . . . Rn}
C(i) = # {(s, e) | (s.e => i) ∈ {L1 . . . Ln}}
Delete = {d ∈ Nl | d /∈ Nr}
Allocate = {a ∈ Nr | a /∈ Nl}
Retype = {p ∈ Nl | p ∈ Nr ∧ tl(p) 6= tr(p)}
Pairs = {(x, y) | x ∈ Nl ∧ y ∈ Nl ∧ x 6= y}

LJ T V K
T ∈ RootTypes

=
C node *V;
V = G->T;
define tl(V) = T

LJ T V1. . . VN K
T /∈ RootTypes

=
[C node Vi; Vi = NULL]Vi∈{V1...VN}
define tl(v) = T, for v ∈ {V1 . . . VN}}

LJ S.E => T K =

if (!typeeq((S->tl(S)).E, tl(T)))

return False;

else if (T == NULL)

T = (S->tl(S)).E;
else if (T == (S->tl(S)).E)

return False;

RJ T V1. . . VN K = define tr(v) = T, for v ∈ {V1 . . .VN}

RJ S.V = X K = (S->tr(S)).V = X;

RJ X = S.V K = X = (S->tr(S)).V;

RJ S.E => T K =
(S->tr(S)).E = T;
T.indegree = T.indegree + 1;

16

	Introduction
	Safe Pointers by Graph Transformation
	C-GRS -- An Extension to C
	Shapes
	Transformers and Reducers
	Rootedness

	Translating C-GRS to C
	Abstracting C-GRS to Graph Transformation
	Related Work
	EBNF Syntax of C-GRS
	Shape Translation
	Transformer Translation

