
Using Trace Data to Diagnose Non-Termination

Errors ∗

Mike Dodds & Colin Runciman, University of York

March 5, 2006

Abstract:. This paper discusses black-hat and hat-nonterm,
two tools for locating and diagnosing non-termination errors in
Haskell programs. Both of these tools give a small trace which
is intended to illuminate the cause of the non-termination er-
ror. black-hat analyses programs which contain black holes, a
particularly restricted kind of non-termination error, while hat-
nonterm applies the approach used in black-hat to more gen-
eral non-terminating programs. This paper discusses the traces
generated by black-hat and hat-nonterm, as well as the ap-
proach used to generate these traces.

1 Introduction

Non-termination errors are one of the two kinds of error that can cause
Haskell programs to fail. In general, non-termination errors cannot be de-
tected at run time, and non-terminating programs must be terminated by
hand. The source of the error may also be di�cult to locate and �x in a
large program. Section 3 below discusses discuss hat-nonterm, a tool for
generating traces from non-terminating programs.

Black holes are a kind of simple non-termination error that can be de-
tected at run time. A black hole occurs when the process of reducing a
variable1 to its value results in an expresssion which contains the variable.
Black holes can be extremely simple, as can be seen from this example:

a = b + 2

b = a * 3

It should be clear why the variable a cannot get a �nal result: getting
the value of a requires a value for b, which requires the value of a. Section

∗Included as part of the University of York technical report Hat Day 2005: work in

progress on the Hat tracing system for Haskell
1that is, a function of arity zero

1

2 below discusses Black Hat, which is intended to locate and diagnose these
black hole errors.

2 Tracing Black Holes

black-hat is a tool for analysing programs that have failed as a result of a
black hole. Programs compiled with Hat support generate an Augmented
Redex Trail (ART) �le which describes the execution of a program. black-
hat uses this ART �le to locate and diagnose the causes of black holes, by
giving the series of reductions which lead to the reoccurrance of a variable. To
begin with a simple example, let us consider the small function a, discussed
above. black-hat gives us the following analysis:

---- black-hat: simple-bh ----

> print a

> b + fromInteger 2

> a * fromInteger 3

black-hat's output shows a series of expressions generated by the pro-
gram. Each line holds the result of rewriting one of the previous line's subex-
pressions. The rewritten subexpression is highlighted in each expression. We
call this series of reductions and subexpressions the black-hole path.

The analysis for the ab program shows that a reduces to an expression
containing b, which then reduces to an expression containing a again.

For small programs the black-hole path can be constructed quite easily
by hand, so let us consider slightly more complicated example. The program
below is a faulty program for generating Hamming numbers:

ham = merge ham' ham''

ham' = map (3*) ham

ham'' = map (2*) ham

It should be clear that there are in fact two black-hole paths for ham �
one from evaluating ham', and one from ham�. Which which one will result
in the error depends on the order of reduction in the program. black-hat
generates the following analysis when applied to this program:

---- black-hat: ham-bh ----

> print ham

> merge ham' ham''

> map (fromInteger 2 *) ham

Because black-hat works with the ART graph, which is generated from
the execution of the program, it can work out which of the two potential
black holes actually caused the error. The analysis makes it clear that the

2

black hole occurs through ham� � through the right-hand path through the
result-subexpression graph.

black-hat successfully locates black hole errors in all of the examples
which it has been tested with. With simpler programs, such as the ones dis-
cussed above, black-hat also makes the source of the error obvious imme-
diately. More complicated programs make this more di�cult, as it becomes
harder to follow the sequence of reductions and subexpressions. Also, pro-
grams that use Haskell's list comprehension can be di�cult to understand,
as they are transformed into other functions before being compiled.

2.1 Black Holes in the ART Graph

The ART �le produced by Hat corresponds to a rooted graph with the
intermediate expressions generated while executing the program as nodes.
Several di�erent kinds of edges exist between expression nodes, but black-
hat uses two in particular: the result edge which point from an expression
to its result, and subexpression edges, which point from an expression to its
subexpressions.

An expression node in an ART �les is generated when an expression
is evaluated at run-time. When an expression is being evaluated, before
it's result has been generated, the expression's result pointer has a value
of entered. However, in the case of a black hole, the execution terminates
because an expression has been reduced to a variable which has also been
entered. This means that the result pointer for the �nal executed expression
points back to the variable which caused the black hole, and so the graph will
contain a loop in the result and sub-expression edges. This loop corresponds
to the black-hole path displayed by black-hat, and it can be located by a
simple search of the ART graph.

3 Tracing Non-Termination Errors

hat-nonterm applies the same approach as black-hat to more general
non-termination problems involving functions with an arity greater than
zero. That is, it generates a small trace from the ART which illuminates
the source of the non-termination error.

hat-nonterm assumes that the execution of a non-terminating program
will consist of two general phases. Firstly, a non-terminating program will
execute the bug-free `head' of the program. Then the faulty, non-terminating
`tail' of the program will execute until the program is interrupted by the user.
Because a non-terminating program can be run for an arbitrary amount of
time in the faulty section of the computation, the tail of the computation
can always be made large relative to the head. For the same reason, in any
non-terminating program, a trace can be generated where the number of
function applications is much larger than the number of de�ned functions.

3

Because of these two facts, a non-termination will contain large numbers
of calls to the same functions. These calls will be recursive calls originating
from previous instances of this function, although the function arguments
may be di�erent. This presents a way of displaying non-terminating func-
tions. If the suspicious function involved in the non-termination can be
identi�ed, then the path from one instance of the function to the next can
be displayed. The path between two calls to the same function may not al-
ways be the same, and so it would be a good idea to show the path between
several calls to the function. We call this the non-termination path. For
example, consider this faulty Fibonacci-number program:

fib 0 = 1

fib 1 = 1

fib n = fib n + fib (n-1)

hat-nonterm gives us the following analysis:

---- Hat Non-Term: fib-nt ----

suspicious function is fib in module Main

> print (fib (fromInteger 5))

> fib (fromInteger 5) | False

> fib (fromInteger 5) | False | False

> fib (fromInteger 5) + fib (fromInteger 5 - fromInteger 1)

> fib (fromInteger 5) | False

> fib (fromInteger 5) | False | False

> fib (fromInteger 5) + fib (fromInteger 5 - fromInteger 1)

This non-termination path correctly identi�es the fib function as the
faulty function, and displays the responsible sequence of subexpressions and
results.

3.1 Non-Terminations in the ART Graph

The ART �le explicitly records the fact that a program was interrupted by
the user, rather than terminating normally. As with black holes, nodes that
are being evaluated, or with subexpressions that are evaluating are marked
entered. When a computation is interrupted by the user, all of the nodes
that are marked entered are re-marked interrupted. There will also be a
large number of other nodes with a result pointer which points through to an
entered if the pointer is followed repeatedly. Taken together, these nodes
will form a chain of expressions from the ART root to the expression which
was interrupted by the user.

As was discussed above, the tail of a non-termination will consist of a
large number of reductions involving a small set of functions. Some of these

4

may be terminating functions, but unless the computation is interrupted
inside one of these functions, the corresponding nodes will not be marked
interrupted. This means that the majority of nodes which are marked
interrupted will be the functions involved with the non-termination loop.
The set of suspicious functions which are involved in the non-termination
can therefore be identi�ed by the search process.

This method of selecting suspicious functions can be complicated by non-
terminating programs that call expensive terminating functions. If the pro-
gram is interrupted, it is likely to be interrupted during the execution of
the expensive function, and so this function will be marked as interrupted,
even though the function is not part of the non-termination path.

Once the set of suspicious functions have been identi�ed, hat-nonterm
selects a single function for tracing. Several heuristics are possible. The
simplest is to select the interrupted function that appears last in the ART
�le. Another possibility is to take the interrupted function that appears
most often in the ART �le. Unfortunately, both of these ideas will fail with
non-terminations that call expensive terminating functions. The execution
of such a program is likely to be interrupted inside an instance of the expen-
sive function. This means that the last-interrupted heuristic will incorrectly
select it as the suspicious function. Similarly, if the expensive function is
large enough it may occur more often in the �le than real non-terminating
functions. The most-common heuristic would then also incorrectly select
this function.

The solution used by hat-nonterm is to select the function that appears
furthest apart in the ART �le. The functions involved in the non-termination
will not only be marked interrupted at the point of interruption; They will
also be interrupted all the way through the non-terminating program tail.
This is in contrast to an expensive terminating function called by the non-
terminating loop, which will terminate in all but the �nal case, and so will
only be marked interrupted right at the end of the ART.

Once a suspicious function has been selected, hat-nonterm looks for a
path through the ART graph which contains the required number of inter-
rupted instances of the selected function.

3.2 Evaluating hat-nonterm

hat-nonterm generally deals well with simple non-terminations. However,
it is quite easy to come up with examples where the tool's analysis is obscure
or nonexistant. hat-nonterm su�ers from the same problem as black-
hat, in that the sequence of subexpressions and reductions can be di�cult
to follow. The tool can also have problems with functions that are passed
in�nite data structures � if a normal function is passed an in�nite data
structure, it may not terminate, but hat-nonterm will give no indication
of why the data structure is in�nite.

5

Another problem with hat-nonterm's approach is that it fails to cor-
rectly analyse non-terminating programs that generate data-structures as
they run. This is because these programs do not produce large numbers of
interrupted nodes in the ART, as functions are constantly begin reduced
to constructors. For example, consider the program:

repeat a = a : repeat a

Almost all of the instances of repeat will evaluate to a result where the
constructor is a `:' node. Only the �nal instance of repeat will be interrupted
when the program terminates. This means that hat-nonterm will fail to
locate the non-termination in this program. One solution may be to follow
the parent edges from the terminated expression up towards the ART root,
and record the functions which are found along this path, but this approach
has not yet been investigated.

It is interesting that hat-nonterm fails on `structure-generating' non-
terminating functions. These are quite di�erent from non-terminating func-
tions which do not generate data structures, and which therefore cause any
function that evaluates them to fail. In contrast, Haskell's lazyness means
that structure-generating non-terminating functions can sometimes be used
safely in terminating programs. For this reason, it may be inaccurate to
always describe such functions as erroneous.

4 Conclusions

black-hat is generally successful in locating the causes of black holes in
test programs. However, it can be di�cult to interpret the trace data that it
produces for complicated programs. hat-nonterm successfully locates and
traces some simple non-terminating programs, but it is quite easy to �nd
programs for which it generates poor or nonexistant analysis. Much more
detail and analysis of black-hat and hat-nonterm can be found in [1],
along with a number of larger examples.

References

[1] Mike Dodds. Using trace data to diagnose non-termination errors. Final-
year MEng project at York University, May 2004.

6

