
From Separation Logic to

Hyperedge Replacement and Back

- Extended Abstract -

Mike Dodds

md466@cl.cam.ac.uk

University of Cambridge, UK⋆

1 Introduction

Hyperedge replacement grammars and separation-logic formulas both define
classes of graph-like structures. In this paper, we describe two effective trans-
lations between restricted hyperedge replacement grammars and formulas in a
fragment of separation logic. These translations preserve the semantics of for-
mulas and grammars.

Hyperedge-replacement grammars [1] are a natural extension of context-free
string grammars to the world of hypergraphs. An HR grammar defines language
of structures that can be constructed from an initial graph.

Separation logic [2] is a recently-developed logic for specifying the proper-
ties of heaps that extends normal first-order logic with a so-called separating
conjunction. This allows a formula to specify the spatial relationships between
assertions in the heap. Recent work based on separation logic has made consid-
erable progress in verifying programs with pointers [3].

Our translations demonstrate that formulas in our fragment of separation
logic are of corresponding expressive power to HR grammars under our restric-
tions. We have used this correspondence to prove some interesting results about
our fragment of separation logic using the theoretical results for hyperedge-
replacement grammars.

2 The Intuitive Correspondence

A correspondence exists between separation logic formulas and hyperedge re-
placement grammars because (1) the recursive definitions commonly used in
separation logic closely resemble hyperedge replacement productions, and (2)
the separating property enforced by separating conjunction corresponds to the
context-free property of hyperedge-replacement grammars.

The following example illustrates this correspondence.

⋆ Work completed during study towards a PhD at the University of York.



Example 1 (Binary tree). The predicate bt(x) is defined as the least predicate
satisfying the following equality.1

bt(x1) = (x1 7→ nil, nil) ∨ (∃x2, x3 : (x1 7→ x2, x3) ∗ bt(x2) ∗ bt(x3))

bt(x) is satisfied if either x points to a location holding a pair of nil-values, or
if x points to a pair of locations, both of which also satisfy bt. The separating
conjunction ∗ between the branch and the two subtrees differs from conventional
conjunction in that it prohibits sharing between its conjuncts. This enforces the
tree property by preventing sharing between the subtrees.

This predicate definition corresponds to the hyperedge replacement grammar
BT = 〈T, N, Z, P 〉. This defines the language of binary tree graphs with a shared
leaf. The sets of terminal and non-terminal edge labels are respectively T = {E}
and N = {B}. The initial graph Z and set of productions P are:

Z = B

1

2

B ⇒

1

E

1

2

2 3

1

E

B B

2
2 2

1

2 3

1 1

The root (top node) of the initial graph Z corresponds to the variable x with
which the predicate bt is called, while the leaf (bottom node) of Z corresponds
to the nil constant. The individual cases of the production defined for label B

in the grammar correspond to the two disjuncts defining the predicate bt. The
first disjunct corresponds to a terminal branch, and the second a branch and a
pair of child trees.

3 Defining the Translations

We define a mapping g[[◦]] from separation logic formulas to hyperedge replace-
ment grammars, and a reverse mapping s[[◦]] from hyperedge-replacement gram-
mars to separation logic formulas.

The mappings g[[◦]] and s[[◦]] are defined syntactically as functions over the
structure of a grammar and a formula respectively. The elements of hyperedge
replacement grammars and separation logic formulas are related as follows:

– The productions over a single nonterminal symbol in the grammar corre-
sponds to the definition of a single recursive predicate in separation logic.

– Terminal edges in the grammar’s initial graph and in the right-hand sides of
productions correspond to separation logic’s points-to assertion (7→).

– Non-terminal edges in the grammar correspond to instances of recursively-
defined predicates in separation logic. The attachment nodes of the edges
correspond to the arguments passed to the predicate.

1 To express this formula in our fragment of separation logic we make use of a recursive
‘let’ operator. For simplicity this is omitted from the example.



Hyperedge replacement grammars define languages of graphs, while separa-
tion logic formulas define classes of graph-like states. To resolve this mismatch
between the domains we define the notion of a heap-graph for graphs which cor-
respond to states, and a bijective mapping α from states to heap-graphs. Each
node in a heap graph can be the first attachment point to at most one termi-
nal edge. Our mappings are defined only over grammars which construct sets of
heap-graphs.

Our mappings are defined over a fragment of full separation logic as given
in (for example) [2]. This fragment includes separating conjunction (∗), disjunc-
tion (∨), ‘points-to’ (7→) and existential quantification (∃). To allow recursive
definitions, we introduce a recursive let construct (let Γ in P ). Omitted oper-
ators include conjunction, negation, and separating implication (the adjoint of
separating conjunction).

4 Results

Our major results are as follows:

1. We have proved that our definitions of both g[[◦]] and s[[◦]] are semantics
preserving modulo the mapping α. That is, α◦g = g◦α, and α−1◦s = s◦α−1.

2. As a consequence of (1), our fragment of separation logic is of equivalent
expressive power to hyperedge-replacement grammars for heap graphs.

3. We have proved that the operators omitted from our fragment of separation
logic cannot be simulated by a corresponding hyperedge replacement gram-
mar. Notably conjunction corresponds to language intersection, and negation
to language complement, both of which are known to be HR-inexpressible.

4. As a consequence of (2), results for hyperedge replacement languages, such as
the inexpressibility results, can be imported into the fragment of separation
logic. For example, the languages of red-black trees, balanced binary trees,
grid graphs are all known to be HR-inexpressible. Therefore no formula exists
in our fragment which is satisfied by the class of states containing these
structures.

References

1. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1. World Scientific (1997) 95–162

2. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer
Science. (2002)

3. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on sepa-
ration logic. In: 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. (2006)


