
A Fast, Correct Time-Stamped Stack

Mike Dodds1, Andreas Haas2, Christoph M. Kirsch2

1 University of York, UK. mike.dodds@york.ac.uk
2 University of Salzburg, Austria. firstname.lastname@cs.uni-salzburg.at

Order in concurrent data-structures. Efficient and scalable concurrent data-structures
are key to high-performance multicore systems. Algorithms such as stacks and queues are
widely used to handle synchronisation and distribute work between cores. In an ideal concurrent
data-structure each method call executes in zero time, giving a sequential order on calls and
avoiding the need for concurrent reasoning when using the data structure. Naturally such
an implementation is impossible – however it can be simulated. Informally the correctness
condition linearizability [4] requires that each call for the algorithm appears to take effect
atomically between its invocation and response.

Many linearizable data-structures not only simulate a sequential execution, but also generate
a total sequence internally, for example by arranging elements into a linked list. Linearizability
is comparatively easy to prove for these structures, as it only requires that the internal sequence
respects the data structure semantics. However, our work suggests that enforcing a total order
internally misses opportunities for performance and scalability, especially in high-contention
scenarios.

The time-stamped stack. We have developed a data-structure called the TS (time-
stamped) stack [2] which avoids building a total order between elements. Elements that are
pushed in parallel can be left internally unordered. Nonetheless, a total order can be recon-
structed, meaning the TS stack is linearizable with respect to sequential stack semantics. Prov-
ing linearizability is challenging, however, because this linearization order cannot be derived
directly from the implementation.

A TS stack consists of a collection of buffers, each allowing insertion, removal, and search
for elements. Each buffer is independent, allowing threads to insert elements without expensive
synchronization [1]. Elements are timestamped to record the insertion order, but elements
inserted concurrently may get the same timestamp, i.e may be unordered. This is sound because
such operations could be ordered either way in the simulated sequential order. We use the x86
RDTSCP [5, 6] instruction to generate timestamps.

Each pop operations searches through the buffers to find the elements with the latest time-
stamp, and then removes one of them. If there exist multiple elements with the same timestamp
the pop operation tries to remove any of these elements. If a pop encounters an element times-
tamped after the search started, it tries to remove that element instead: in this case the corre-
sponding push operation is executed concurrently, and therefore the operations can eliminate
one another [3].

Far from presenting a problem, elements that share a common timestamp can increase
performance, because such elements can be removed parallel. We can thus optimise the TS
stack by deliberately increasing the amount of timestamp parallelism. To do this we associate
elements with two timestamps, rather than one, and say that two elements are unordered if
their timestamp intervals overlap. The amount of parallelism can be increased by adding a
delay between the generation of the two timestamps.

1



A Fast, Correct Time-Stamped Stack Mike Dodds, Andreas Haas, Christoph M. Kirsch

Establishing linearizability. The linearizability of the TS stack is based on two properties:
(a) if the timestamp of element A is later than of an element B, and the pop operation which
removes B starts after A was inserted into the buffer, then A is removed before B; and (b)
elements are timestamped after they are inserted into a buffer.

The first property guarantees that elements are not removed out-of-order, i.e. that any
removed element was youngest in the buffers at some point during the search. The second
property induces a kind of monotonicity on elements: if A is seen by a pop with its timestamp
assigned and an element B is not seen, then the timestamp of B is later than that of A.

To establish linearizability, we must show that for any execution we can construct a lin-
earization order which satisfies the stack specification. We do this in three steps.

1. Construct an order between push and pop operations. Element visibility gives an initial
approximation, i.e. a push is ordered before a pop when it inserts its element before the
pop starts searching. We refine this approximation to remove inconsistencies and give a
total order.

2. Order pairs of pop operations according to the timestamps of removed elements. Prop-
erty (b), the monotonicity of element timestamps, guarantees that the newly constructed
order is transitive. Some pop operations may remain unordered, but we can show that
these pop operations can be ordered arbitrarily.

3. Order push operations as late as possible while preserving stack semantics. With prop-
erty (a) we can show that this is always possible.

We have completed a hand proof of linearizability, and a mechanisation in Isabelle is in progress.

Algorithm performance. In our high-contention producer-consumer benchmark the TS
stack is about twice as fast as the elimination backoff stack [3], the fastest alternative we are
aware of. An implementation of the TS stack is available at http://scal.cs.uni-salzburg.
at/, and additional benchmark results can be found in the technical report [2].

References

[1] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M.M. Michael, and M. Vechev. Laws of order:
expensive synchronization in concurrent algorithms cannot be eliminated. In POPL. ACM, 2011.

[2] M. Dodds, A. Haas, and C. M. Kirsch. Fast concurrent data-structures through explicit timestamp-
ing. Technical Report 2014–03, University of Salzburg, 2014.

[3] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In SPAA. ACM,
2004.

[4] M.P. Herlihy and J.M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12(3), 1990.

[5] Intel. Intel 64 and ia-32 architectures software developer’s manual, volume 3b: System programming
guide, part 2, 2013.

[6] W. Ruan, Y. Liu, and M. Spear. Boosting timestamp-based transactional memory by exploiting
hardware cycle counters. TACO, 10, 2013.

2

http://scal.cs.uni-salzburg.at/
http://scal.cs.uni-salzburg.at/

	Bibliography

