
 Copublished by the IEEE Computer and Reliability Societies May/June 2022 65

FORMAL METHODS AT SCALE

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,
see https://creativecomons.org/licenses/by/4.0/deed.ast.

Formally Verifying
Industry Cryptography

Mike Dodds | Galois, Inc.

 Over the past five years, Galois has formally verified several cryptographic systems that are used in
demanding industry environments. This article discusses our approach to these verification projects,
focusing on the practical engineering challenges that exist when building and deploying proofs in industry.

F or the past five years, Galois has been formally veri-
fying cryptographic software for use in demanding

industry environments. Using tools developed over two
decades, we have formally verified key properties of the
s2n Transport Layer Security (TLS) stack,1 the AWS
LibCrypto library,2 and the blst library.3 These proofs
are among the most complex ever deployed in industry,
and the software they verify protects data confidential-
ity and integrity for hundreds of millions of users.

These proofs represent a significant technical and
engineering accomplishment. The systems we target
were not designed with verification in mind and could
not be substantively modified. These systems are not
static, and they are embedded into broader systems,
which themselves are subject to change. The proofs were
deployed into the workflows of highly dynamic engi-
neering teams. We have developed tools and practices
to overcome these challenges based on our verification
tool-suite, the Software Analysis Workbench (SAW).4

This article discusses Galois’s approach to crypto-
graphic verification projects, focusing on the practical
engineering challenges that exist when building and

deploying proofs in industry. Readers curious about
technical matters are directed toward our 2018 and
2021 research articles.1,2 This article expresses Galois’s
approach to verification and does not represent the
practices or opinions of any of our clients.

A Tool in the Toolbox
We see formal verification as one tool for software assur-
ance, alongside other methods such as testing, code
audits, and fuzzing. Like many assurance tools, formal
verification is best applied selectively to the pieces of a
system where it will have the highest impact. For exam-
ple, for the s2n TLS stack, we began by verifying the
Hash-based Message Authentication Code (HMAC)
and Deterministic Random Bit Generator (DRBG) cryp-
tographic primitives and then moved to the TLS pro-
tocol code. We find that formal verification works best
when applied to self-contained components that are par-
ticularly vulnerable or security-critical, such as parsers,
protocol engines, core operating system functionality,
and cryptographic systems.

Like other assurance tools, formal verification pro-
vides assurance evidence. The result of the verification
process is a mathematical proof that can be automatically
checked, which gives very high confidence that the code

Digital Object Identifier 10.1109/MSEC.2022.3153035
Date of current version: 11 March 2022

66 IEEE Security & Privacy May/June 2022

FORMAL METHODS AT SCALE

satisfies the desired properties in every specified situ-
ation. C, LLVM, or x86 machine codes are often ame-
nable to practical formal verification, especially for two
software properties of interest in commercial systems:

 ■ The first is safety, meaning the absence of crashes,
memory safety errors, race conditions, and so forth.
In our projects, we most often prove that undefined
behavior in the C and LLVM sense cannot occur.

 ■ The second is functional correctness, meaning equiva-
lence between the code and some reference speci-
fication. In our projects, a specification most often
describes the cryptographic algorithm implemented.

Before embarking on a verification project, we encour-
age careful thought about the types of bugs or threats
that verification will guard against. In our cryptographic
verification work, safety and functional correctness
address two different security concerns. Safety viola-
tions in a cryptographic module might allow an attacker
to write to memory and thereby execute an exploit on
the host device. Meanwhile, a lack of functional cor-
rectness might mean that the encryption has been per-
formed incorrectly, potentially allowing attacks against
message or protocol security.

Like other assurance tools, formal verification comes
with a cost. Constructing such proofs requires a signif-
icant proof engineering effort. For a highly optimized
system of the type that we typically consider, months
of effort are usually required for thousands of lines of
code. For example, verifying the AES-256-GCM and
SHA-384 algorithms in AWS LibCrypto took approxi-
mately nine person-months of work by experienced
Galois proof engineers.

Cost is a significant consideration when deciding
where formal verification should be applied relative to
other assurance techniques. We suggest that it should be
targeted at the most critical threats to a system. The rel-
ative likelihood and impact of different threats cannot
be ascertained completely formally. Rather, they must
be determined in the context of the overall system and
the engineering team developing it.

Proofs of What?
Proofs are formal artifacts with exact mathematical mean-
ings. However, we have discovered that the raw technical
theorems are often of little value in explaining the outcomes
of a proof. It is often necessary to contextualize proofs in
terms that make sense to the software design team. Teams
may have different goals for proofs: for example, increasing
confidence in a system may require a different focus from
finding bugs. We find that a large proportion of our inter-
action with engineering teams involves iterating on the
precise properties that will be delivered.

All proofs have limitations to the guarantees they
provide. One common type of limitation is that, even
if a piece of code is verified, its dependencies and call-
ing context generally are not. Verification may also
assume that the compiler is correct or that microarchi-
tectural or supply chain attacks are impossible. Proofs
may also have technical limitations, such as assuming
fixed data sizes or fixed numbers of loop iterations
(this is true for some of Galois’s proofs). As a result,
systems that have been formally verified may still contain
bugs. Proofs can increase confidence but cannot guar-
antee absolute certainty.

We take particular care to explain proof limitations
in a way that can be understood by the teams we work
with. If expectations are not set appropriately, a bug in
a formally verified system can severely reduce trust in
formal verification as a whole. This is true even if the
bug appears outside the verified components of the sys-
tem. One remedy for this, in our experience, is ensur-
ing that proof limitations are explained in detail, with a
minimum of jargon. We work with our clients to deter-
mine which proof limitations represent tolerable risks
and which must be eliminated.

The riskiest elements of a proof are external speci-
fications because these are the boundaries between
the verified and unverified portions of the system. Our
proofs require two types of specification: those for the
system’s dependencies and a high-level specification for
how the system will be called by the context. Depen-
dency specifications are assumptions about how libraries
and other dependencies behave. If these are wrong, then
(for example) a library call may fault or return an unex-
pected value. In contrast, the high-level specification is
guaranteed by the proof but only so long as the system
is called as expected. For example, a high-level specifi-
cation might assume that a particular input is positive.
However, if a negative value is passed by the calling con-
text, then the proof makes no guarantees about the sys-
tem behavior. In these situations, bugs may occur.

To avoid specification bugs, we take care to audit
and (where possible) test specifications against real
system behavior. We recommend choosing a speci-
fication style that can be audited by the teams con-
suming the proofs. Our specifications are written in
a high-level, domain-specific language called Cryp-
tol.5 They are designed to be auditable by engineer-
ing teams with some background in mathematics and
cryptographic algorithms. Where possible, we also
target interfaces with stable and unambiguous speci-
fications: for example, for AWS LibCrypto, we target
the EVP interface, which is shared with OpenSSL and
is intended as a common public interface for crypto-
graphic primitives. This reduces the probability of bugs
and misunderstandings.

www.computer.org/security 67

Verifying Preexisting Systems
Recent years have seen several high-assurance systems
explicitly developed to be formally verified. For exam-
ple, a C compiler (CompCert6), an operating system
(SeL47), and an HTTP stack (Project Everest8). These
projects provide high-quality and highly reliable drop-in
alternatives to unverified code, and we recommend them
for many use cases. But in practice, most systems do not
use built-for-verification code. To make our approach
broadly applicable, we target preexisting systems with no
(or only superficial) modifications. This has the effect of
making proofs more challenging: our experience is that
preexisting systems are dramatically more difficult to
verify than built-for-verification systems.

The first source of difficulty in preexisting sys-
tems is the heavy use of optimization. Cryptographic
systems contain some of the most heavily optimized
code in existence. The reason for this is performance.
A single cryptographic primitive running on a cloud
platform may be called millions or billions of times
per second. At scale, even tiny optimizations trans-
late to big gains. We hypothesize that this will be true
for many critical components of production systems.
Once a system is deployed at scale, gains in performance
will become increasingly valuable, creating pressure
for heavier optimization.

Unfortunately, each optimization makes verification
more complex because it represents a step away from
the simple, obviously correct way to implement a sys-
tem. Speaking loosely, each optimization step requires
a small theorem showing that both the original and the
optimized code are equivalent. Real cryptographic sys-
tems layer dozens or hundreds of optimizations, devel-
oped over many years. Optimizations may be valid only
as a result of deep mathematical or probabilistic proper-
ties, and they may alter the natural interfaces of func-
tions, complicating the task of specification. To verify
the system, each small theorem must be proved. For
many steps, this can be accomplished in an automated
manner. But in our experience, many optimization steps
require manual proofs.

The second source of difficulty in preexisting sys-
tems might be called problem diversity. Any verification
project presents a series of proof tasks of different kinds:
for example, supporting a particular library, modeling a
particular CPU operation, defining a particular specifi-
cation, or completing a particular reasoning step. Every
verification tool has some proof tasks to which it is well
suited. In our experience, the cost of verification is over-
whelmingly caused by a small number of difficult proof
steps. Preexisting systems inherently present a more
diverse set of problems. This increases the frequency
of the most problematic proof steps, resulting in more
expensive proofs and more unpredictable costs. In some

cases, the most problematic steps can be skipped. But
this depends on which limitations on the proof are con-
sidered acceptable.

Another effect of problem diversity is that it is very
difficult to predict up-front what tool capabilities will be
necessary for a particular type of proof. As a result, it is
risky to design a proof tool without access to real-world
proof tasks. We believe that effective tools are built
incrementally by actually undergoing proof projects.
Almost every SAW verification project has required us
to extend our tools. For example, verifying postquan-
tum cryptography pushed us to improve the perfor-
mance of our tools, and verification of TLS pushed us
to develop new approaches for specifying and verifying
state machines. SAW is built on a common symbolic
execution engine called Crucible, which can be used
for multiple languages and tools. This allows improve-
ments to pay forward in subsequent projects.

Of course, this approach works only for teams that
develop proofs and proof tools together. This is a com-
mon model for proof engineering as it is practiced in
2022—however, it is inherently nonscalable. If formal
verification is to be used much more widely, we must
reach a point where proof tools do not need to be
updated for each new proof. We hope to mitigate this
problem by improving our tools step by step. As we
complete more projects, our tools increase in power,
but also, more proof tasks become routine, requiring no
tool modifications.

Continuous Reasoning
Proofs are tools for assuring systems, and this means
they must fit into the workflows of the engineering team
building the system. Change is a constant in real engi-
neering environments, and proofs, like tests, need to be
repeated every time a design changes. It is essential to
build proofs that handle change gracefully with minimal
disruption to existing engineering practices.

One tactic that has proved successful is to build
our proofs into continuous integration (CI), alongside
the existing test suite. In doing this, we follow Peter
O’Hearn and the Infer team at Facebook, who call
this approach continuous reasoning.9 Our proofs run on
every commit to the codebase, and errors are raised at
code review time. In one deployment, SAW has been
running for more than four years over hundreds of
code changes.

Running in CI has many advantages: O’Hearn9
explains these well in his 2018 paper, so we will only
review them briefly. The key advantage is that poten-
tial failures are flagged before they reach production.
This is often the main benefit of formal verification for
engineering teams: fewer mistakes and more guardrails.
Because teams are under time pressure, the aim is often

68 IEEE Security & Privacy May/June 2022

FORMAL METHODS AT SCALE

to reduce assurance time and release software more rap-
idly. Proofs can grant confidence that a system can be
modified and released without additional quality assur-
ance processes.

Running in CI generates constraints that are often
just as challenging as developing the proof itself. First,
the proof tools must integrate into the build system and
the CI system. These are remarkably diverse and may
change more often than the code itself. A proof tool
must run as a container inside the system and must pro-
duce results in a format that suits the error-monitoring
stack as well as the team’s preferred working practices.
For SAW, we typically build and maintain custom sup-
port for CI integrations for each proof deployment.

Second, the proof must fit within CI time budgets:
generally under an hour but often under 20 minutes.
Large SAW proofs may take several hours to run, so we
often have to decompose them into smaller proof units
that can run in parallel. In the best case, we can solve
this problem by adding function interfaces and veri-
fying compositionally. But several engagements have
required us to improve the performance of the tool
itself: for example, for complex arithmetic and array
operations. There is a substantial difference between
completing a SAW proof and running it reliably under
a particular time budget.

Running in CI means that proof failures are block-
ers on deployment. This is a pain point for engineer-
ing teams: if a proof blocks a release without good
reason, the result is likely to be that the proof is dis-
abled. To mitigate this, SAW makes extensive use of
solver-backed automation, and we design our proofs
to resist change. In many cases, small changes to the
code result in no proof changes, which decreases
the false-positive rate and increases the utility of the
proof. However, some small changes still require sig-
nificant proof modifications. In some cases, minor
code changes actually require significantly different
reasoning: for example, in code computing mathemat-
ical functions. In other cases, the main culprit is the
solver-backed automation itself, which can be highly
sensitive to minor changes in logical terms. The fra-
gility of proofs under change is a known problem in
many verification tools and the subject of ongoing
research into proof-repair technologies.

In our experience, change-resistant proofs consist of
layered specifications from low abstraction to high. The
lowest level of abstraction should be the code, and the
highest level of abstraction should be desirable proper-
ties about the code. In general, higher layers will corre-
spond to increased proof effort. This is advantageous
because the lowest level of abstraction is the most likely
to experience change. In many cases, changes to code
require only repairs to the lowest-level proofs without

requiring the change to bubble all of the way up the
stack. In SAW, the majority of these low-level changes
can be discharged using SMT-backed automation.

Typically, SAW proofs require a small number of
layers. Often, we use just two: a low-level proof from
the implementation to a proved-safe abstraction and a
high-level proof from this abstraction to the functional
correctness property. As a larger example, our proof
of the s2n HMAC primitive1 was structured into four
layers. The highest layer was a preexisting proof indis-
tinguishable from randomness, the fundamental cor-
rectness property. This proof was completed using the
Coq proof assistant and required extensive manual
effort. Lower layers were verified mostly using SAW,
with small amounts of Coq. The lowest layer connected
to the implementation was verified using SAW exclu-
sively to maximize automation.

Proof Engineering Strategies
When building a proof, our most important strat-
egy is to leverage automation wherever possible. The
SMT-backed automation in SAW means that most of
the trivial reasoning can be eliminated, which leaves us
able to focus on legitimately difficult verification prob-
lems. We also avoid introducing internal specifications
wherever possible as these are typically the most diffi-
cult to write and the most fragile to code change. Inter-
nal specifications are sometimes needed for scalability
reasons, but by limiting them to the largest scope pos-
sible, we reduce effort and increase proof resilience.

Another important strategy we use is to separate
concerns in the proof. In our cryptographic proofs,
it is often possible to verify safety (for example, the
absence of memory errors) without verifying func-
tional correctness. We have found that much of the
technical risk of the project exists at this stage. Focus-
ing on this problem early in the project allows us to
reduce risk. Separating these concerns also results in
proof terms that are smaller and easier to understand
and helps isolate failures when developing proofs of
functional correctness.

When developing proofs, we have learned that most
proof engineering time is spent working with a failing
proof. Either the proof is in an incomplete state as it is
constructed, or more rarely, the target system itself is
incorrect. In either case, proof engineers must be able
to inspect proof terms to diagnose errors, and they must
be able to rapidly rerun updated versions of the proof.
In software engineering, it is obvious that develop-
ment requires working with incomplete software, but
this perspective is less common in formal verification
research. SAW itself provides some support for failing
proofs, but there remains a lot of room for improved
tools and practices.

www.computer.org/security 69

Proofs Need Proof Engineers
The type of verification Galois does with SAW focuses
on a system’s most complex and intricate properties. As
a result, these proofs must be manually constructed by
proof engineers. This is in contrast to fully automated
tools, such as Facebook’s Infer,10 which nonexperts can
use. Automated tools have proved their value at scale,
but they are inherently limited to simpler properties of
the system. For example, Infer can verify memory safety
but only for relatively simple memory usage patterns.
The type of labor-intensive verification that we practice
is necessary to verify correctness properties for com-
plex, highly optimized code. Our work has focused on
cryptographic modules, but the same is true (for exam-
ple) of core operating system components, as demon-
strated by the SeL4 project.7

Proof engineering is analogous to software engineer-
ing in that it requires experienced teams with knowledge
built up over multiple projects. A team must understand
the system to be verified, which may be as difficult as
writing the code in the first place. The team members
must deeply understand the strengths and limitations of
the proof tools and be able to modify them, if necessary.
And they must be able to design proofs to be resilient
to change, fit into CI budgets, and match the required
assurance properties.

Galois’s team has operated for five years with mostly
consistent members over a variety of proof projects,
both commercial and U.S. government. Over this time,
we have refined our tools and working practices and
achieved a dramatic increase in the scale of proofs that
we can accomplish. Compared to our early engage-
ments, such as the s2n HMAC proof, our most recent
proof of the blst library was an order of magnitude more
complex in code size, specification complexity, degree
of optimization, and range of coding patterns. The
increased effectiveness we have achieved does not come
from any single innovation. Instead, we have collected
many small improvements in our tools and strategies,
and these improvements have compounded together
over time.

Teams with this level of expertise are at present
uncommon, although the number is growing year by
year. This limits the reach of formal verification: scal-
ability will require teaching many more people to engi-
neer proofs. To some extent, we can solve this problem
through more usable and better automated tools, which
would lower the skill ceiling for many tasks. We are
also optimistic that many proof breakages can be elimi-
nated by building change-resistant proofs and through
proof-repair techniques. We can also build tools that
fit with the existing metaphors used by engineers: the
CBMC tool11 allows users to write “symbolic tests”
that resemble standard test harnesses. We hope these

improvements can democratize the process of proof
engineering, making it accessible to many more engi-
neers. However, we expect that there will always be
some tasks that require specialist teams, just as there are
in software engineering more generally.

T he last five years have seen formal verification
flourish in diverse industry niches. Our work

on cryptographic verification has been a small but
important part of this growing acceptance. The prob-
lems we face now as a field are familiar to any nascent
technology. How can we make our approach better
address the needs of our users? How can we make our
tools more scalable, reproducible, and understandable?
How do we articulate the value of our work in convinc-
ing ways?

Galois has made significant gains on these problems
over the last five years. Our work shows the improve-
ments that are possible for a single team learning and
developing over several verification projects. We hope
to now see a virtuous cycle where more teams adopt for-
mal verification, which leads to more capable tools and
more effective practices.

We see the potential for innovative research in sev-
eral areas of proof engineering. Current proofs are frag-
ile in the face of change; we need techniques that can
resist and repair failures when they occur. Current tools
are oriented around checking completed proofs; we
need engineering-oriented tools that assist during proof
construction and refactoring. Current proof projects
are rather unpredictable in terms of cost and benefit; we
need to make them a reliable and quantifiable part of
software assurance. Current proof engineering requires
deep expertise of the type that Galois’s team has built
over many years; we need to make proof engineering
accessible to many more people.

The last five years have demonstrated that formal
verification is ready to solve some of the most challeng-
ing assurance problems that industry has to offer. Now,
we look forward to a world where formal verification
takes its place as a standard assurance tool in industry.

Acknowledgments
This article is a product of many conversations with the
Galois team working on industry verification. Thanks
to Matt Bauer, Brett Boston, Samuel Breese, Charisee
Chiw, Andrey Chudnov, Nathan Collins, Joey Dodds,
Brian Huffman, Ajay Kumar Eeralla, Giuliano Losa,
Stephen Magill, Eric Mertens, Eric Mullen, Andrei
Stefanescu, Mark Saaltink, Aaron Tomb, and Eddy
Westbrook. Thanks also to the many Galwegians who
have contributed to the SAW and Cryptol projects over
two decades.

70 IEEE Security & Privacy May/June 2022

FORMAL METHODS AT SCALE

References
 1. J. Dodds et al., “Continuous formal verification of Amazon

s2n,” in Computer Aided Verification, vol 10982, H. Chock-
ler and G. Weissenbacher, Eds. Cham: Springer-Verlag,
2018, pp. 430–446.

 2. B. Boston et al., “Verified cryptographic code for every-
body,” in Computer Aided Verification, vol. 12759, A. Silva
and K. R. M. Leino, Eds. Cham: Springer-Verlag, 2021,
pp. 645–668.

 3. J. Dodds. “Announcing the ‘blst’ BLS verification proj-
ect.” Galois.com. https://galois.com/blog/2020/09/ann
ouncing-the-blst-bls-verification-project

 4. “The software analysis workbench.” SAW.Galois.com.
https://saw.galois.com/ (Accessed: Mar. 3, 2022).

 5. “Cryptol.” Cryptol.Galois.com. https://cryptol.net (Accessed:
Mar. 3, 2022).

 6. CompCert. https://compcert.org (Accessed: Mar. 3, 2022).
 7. “The SeL4 Microkernel.” SeL4. https://sel4.systems

(Accessed: Mar. 3, 2022).

 8. “Project Everest: Provably secure communication soft-
ware.” Project Everest. https://project-everest.github.io
(Accessed: Mar. 3, 2022).

 9. P. W. O’Hearn, “Continuous reasoning: Scaling the
impact of formal methods,” in Proc. 33rd Annu. ACM/
IEEE Symp. Logic Comput. Sci. (LICS ’18), pp. 13–25,
doi: 10.1145/3209108.3209109.

 10. “A tool to detect bugs in Java and C/C++/Objective-C
code before it ships.” fbinfer.com. https://fbinfer.com
(Accessed: Mar. 3, 2022).

 11. “CBMC: Bounded model checking for software.” cprover.org.
http://www.cprover.org/cbmc/ (Accessed: Mar. 3, 2022).

Mike Dodds is a principal scientist at Galois Inc, Portland,
Oregon, 97204, USA. His research interests include
applying formal methods tools in industry, with a partic-
ular focus on cryptographic, concurrent, and distributed
systems. Dodds received a Ph.D. from the University of
York, U.K. Contact him at miked@galois.com.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MSEC.2022.3171997

