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 Over the past five years, Galois has formally verified several cryptographic systems that are used in 
demanding industry environments. This article discusses our approach to these verification projects, 
focusing on the practical engineering challenges that exist when building and deploying proofs in industry.

F or the past five years, Galois has been formally veri-
fying cryptographic software for use in demanding 

industry environments. Using tools developed over two 
decades, we have formally verified key properties of the 
s2n Transport Layer Security (TLS) stack,1 the AWS 
LibCrypto library,2 and the blst library.3 These proofs 
are among the most complex ever deployed in industry, 
and the software they verify protects data confidential-
ity and integrity for hundreds of millions of users.

These proofs represent a significant technical and 
engineering accomplishment. The systems we target 
were not designed with verification in mind and could 
not be substantively modified. These systems are not 
static, and they are embedded into broader systems, 
which themselves are subject to change. The proofs were 
deployed into the workflows of highly dynamic engi-
neering teams. We have developed tools and practices 
to overcome these challenges based on our verification 
tool-suite, the Software Analysis Workbench (SAW).4

This article discusses Galois’s approach to crypto-
graphic verification projects, focusing on the practical 
engineering challenges that exist when building and 

deploying proofs in industry. Readers curious about 
technical matters are directed toward our 2018 and 
2021 research articles.1,2 This article expresses Galois’s 
approach to verification and does not represent the 
practices or opinions of any of our clients.

A Tool in the Toolbox
We see formal verification as one tool for software assur-
ance, alongside other methods such as testing, code 
audits, and fuzzing. Like many assurance tools, formal 
verification is best applied selectively to the pieces of a 
system where it will have the highest impact. For exam-
ple, for the s2n TLS stack, we began by verifying the 
Hash-based Message Authentication Code (HMAC) 
and Deterministic Random Bit Generator (DRBG) cryp-
tographic primitives and then moved to the TLS pro-
tocol code. We find that formal verification works best 
when applied to self-contained components that are par-
ticularly vulnerable or security-critical, such as parsers, 
protocol engines, core operating system functionality, 
and cryptographic systems.

Like other assurance tools, formal verification pro-
vides assurance evidence. The result of the verification 
process is a mathematical proof that can be automatically 
checked, which gives very high confidence that the code 
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satisfies the desired properties in every specified situ-
ation. C, LLVM, or x86 machine codes are often ame-
nable to practical formal verification, especially for two 
software properties of interest in commercial systems:

 ■ The first is safety, meaning the absence of crashes, 
memory safety errors, race conditions, and so forth. 
In our projects, we most often prove that undefined 
behavior in the C and LLVM sense cannot occur.

 ■ The second is functional correctness, meaning equiva-
lence between the code and some reference speci-
fication. In our projects, a specification most often 
describes the cryptographic algorithm implemented.

Before embarking on a verification project, we encour-
age careful thought about the types of bugs or threats 
that verification will guard against. In our cryptographic 
verification work, safety and functional correctness 
address two different security concerns. Safety viola-
tions in a cryptographic module might allow an attacker 
to write to memory and thereby execute an exploit on 
the host device. Meanwhile, a lack of functional cor-
rectness might mean that the encryption has been per-
formed incorrectly, potentially allowing attacks against 
message or protocol security.

Like other assurance tools, formal verification comes 
with a cost. Constructing such proofs requires a signif-
icant proof engineering effort. For a highly optimized 
system of the type that we typically consider, months 
of effort are usually required for thousands of lines of 
code. For example, verifying the AES-256-GCM and 
SHA-384 algorithms in AWS LibCrypto took approxi-
mately nine person-months of work by experienced 
Galois proof engineers.

Cost is a significant consideration when deciding 
where formal verification should be applied relative to 
other assurance techniques. We suggest that it should be 
targeted at the most critical threats to a system. The rel-
ative likelihood and impact of different threats cannot 
be ascertained completely formally. Rather, they must 
be determined in the context of the overall system and 
the engineering team developing it.

Proofs of What?
Proofs are formal artifacts with exact mathematical mean-
ings. However, we have discovered that the raw technical 
theorems are often of little value in explaining the outcomes 
of a proof. It is often necessary to contextualize proofs in 
terms that make sense to the software design team. Teams 
may have different goals for proofs: for example, increasing 
confidence in a system may require a different focus from 
finding bugs. We find that a large proportion of our inter-
action with engineering teams involves iterating on the 
precise properties that will be delivered.

All proofs have limitations to the guarantees they 
provide. One common type of limitation is that, even 
if a piece of code is verified, its dependencies and call-
ing context generally are not. Verification may also 
assume that the compiler is correct or that microarchi-
tectural or supply chain attacks are impossible. Proofs 
may also have technical limitations, such as assuming 
fixed data sizes or fixed numbers of loop iterations 
(this is true for some of Galois’s proofs). As a result, 
systems that have been formally verified may still contain 
bugs. Proofs can increase confidence but cannot guar-
antee absolute certainty.

We take particular care to explain proof limitations 
in a way that can be understood by the teams we work 
with. If expectations are not set appropriately, a bug in 
a formally verified system can severely reduce trust in 
formal verification as a whole. This is true even if the 
bug appears outside the verified components of the sys-
tem. One remedy for this, in our experience, is ensur-
ing that proof limitations are explained in detail, with a 
minimum of jargon. We work with our clients to deter-
mine which proof limitations represent tolerable risks 
and which must be eliminated.

The riskiest elements of a proof are external speci-
fications because these are the boundaries between 
the verified and unverified portions of the system. Our 
proofs require two types of specification: those for the 
system’s dependencies and a high-level specification for 
how the system will be called by the context. Depen-
dency specifications are assumptions about how libraries 
and other dependencies behave. If these are wrong, then 
(for example) a library call may fault or return an unex-
pected value. In contrast, the high-level specification is 
guaranteed by the proof but only so long as the system 
is called as expected. For example, a high-level specifi-
cation might assume that a particular input is positive. 
However, if a negative value is passed by the calling con-
text, then the proof makes no guarantees about the sys-
tem behavior. In these situations, bugs may occur.

To avoid specification bugs, we take care to audit 
and (where possible) test specifications against real 
system behavior. We recommend choosing a speci-
fication style that can be audited by the teams con-
suming the proofs. Our specifications are written in 
a high-level, domain-specific language called Cryp-
tol.5 They are designed to be auditable by engineer-
ing teams with some background in mathematics and 
cryptographic algorithms. Where possible, we also 
target interfaces with stable and unambiguous speci-
fications: for example, for AWS LibCrypto, we target 
the EVP interface, which is shared with OpenSSL and 
is intended as a common public interface for crypto-
graphic primitives. This reduces the probability of bugs 
and misunderstandings.
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Verifying Preexisting Systems
Recent years have seen several high-assurance systems 
explicitly developed to be formally verified. For exam-
ple, a C compiler (CompCert6), an operating system 
(SeL47), and an HTTP stack (Project Everest8). These 
projects provide high-quality and highly reliable drop-in 
alternatives to unverified code, and we recommend them 
for many use cases. But in practice, most systems do not 
use built-for-verification code. To make our approach 
broadly applicable, we target preexisting systems with no 
(or only superficial) modifications. This has the effect of 
making proofs more challenging: our experience is that 
preexisting systems are dramatically more difficult to 
verify than built-for-verification systems.

The first source of difficulty in preexisting sys-
tems is the heavy use of optimization. Cryptographic 
systems contain some of the most heavily optimized 
code in existence. The reason for this is performance. 
A single cryptographic primitive running on a cloud 
platform may be called millions or billions of times 
per second. At scale, even tiny optimizations trans-
late to big gains. We hypothesize that this will be true 
for many critical components of production systems. 
Once a system is deployed at scale, gains in performance 
will become increasingly valuable, creating pressure 
for heavier optimization.

Unfortunately, each optimization makes verification 
more complex because it represents a step away from 
the simple, obviously correct way to implement a sys-
tem. Speaking loosely, each optimization step requires 
a small theorem showing that both the original and the 
optimized code are equivalent. Real cryptographic sys-
tems layer dozens or hundreds of optimizations, devel-
oped over many years. Optimizations may be valid only 
as a result of deep mathematical or probabilistic proper-
ties, and they may alter the natural interfaces of func-
tions, complicating the task of specification. To verify 
the system, each small theorem must be proved. For 
many steps, this can be accomplished in an automated 
manner. But in our experience, many optimization steps 
require manual proofs.

The second source of difficulty in preexisting sys-
tems might be called problem diversity. Any verification 
project presents a series of proof tasks of different kinds: 
for example, supporting a particular library, modeling a 
particular CPU operation, defining a particular specifi-
cation, or completing a particular reasoning step. Every 
verification tool has some proof tasks to which it is well 
suited. In our experience, the cost of verification is over-
whelmingly caused by a small number of difficult proof 
steps. Preexisting systems inherently present a more 
diverse set of problems. This increases the frequency 
of the most problematic proof steps, resulting in more 
expensive proofs and more unpredictable costs. In some 

cases, the most problematic steps can be skipped. But 
this depends on which limitations on the proof are con-
sidered acceptable.

Another effect of problem diversity is that it is very 
difficult to predict up-front what tool capabilities will be 
necessary for a particular type of proof. As a result, it is 
risky to design a proof tool without access to real-world 
proof tasks. We believe that effective tools are built 
incrementally by actually undergoing proof projects. 
Almost every SAW verification project has required us 
to extend our tools. For example, verifying postquan-
tum cryptography pushed us to improve the perfor-
mance of our tools, and verification of TLS pushed us 
to develop new approaches for specifying and verifying 
state machines. SAW is built on a common symbolic 
execution engine called Crucible, which can be used 
for multiple languages and tools. This allows improve-
ments to pay forward in subsequent projects.

Of course, this approach works only for teams that 
develop proofs and proof tools together. This is a com-
mon model for proof engineering as it is practiced in 
2022—however, it is inherently nonscalable. If formal 
verification is to be used much more widely, we must 
reach a point where proof tools do not need to be 
updated for each new proof. We hope to mitigate this 
problem by improving our tools step by step. As we 
complete more projects, our tools increase in power, 
but also, more proof tasks become routine, requiring no 
tool modifications.

Continuous Reasoning
Proofs are tools for assuring systems, and this means 
they must fit into the workflows of the engineering team 
building the system. Change is a constant in real engi-
neering environments, and proofs, like tests, need to be 
repeated every time a design changes. It is essential to 
build proofs that handle change gracefully with minimal 
disruption to existing engineering practices.

One tactic that has proved successful is to build 
our proofs into continuous integration (CI), alongside 
the existing test suite. In doing this, we follow Peter 
O’Hearn and the Infer team at Facebook, who call 
this approach continuous reasoning.9 Our proofs run on 
every commit to the codebase, and errors are raised at 
code review time. In one deployment, SAW has been 
running for more than four years over hundreds of 
code changes.

Running in CI has many advantages: O’Hearn9 
explains these well in his 2018 paper, so we will only 
review them briefly. The key advantage is that poten-
tial failures are flagged before they reach production. 
This is often the main benefit of formal verification for 
engineering teams: fewer mistakes and more guardrails. 
Because teams are under time pressure, the aim is often 
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to reduce assurance time and release software more rap-
idly. Proofs can grant confidence that a system can be 
modified and released without additional quality assur-
ance processes.

Running in CI generates constraints that are often 
just as challenging as developing the proof itself. First, 
the proof tools must integrate into the build system and 
the CI system. These are remarkably diverse and may 
change more often than the code itself. A proof tool 
must run as a container inside the system and must pro-
duce results in a format that suits the error-monitoring 
stack as well as the team’s preferred working practices. 
For SAW, we typically build and maintain custom sup-
port for CI integrations for each proof deployment.

Second, the proof must fit within CI time budgets: 
generally under an hour but often under 20 minutes. 
Large SAW proofs may take several hours to run, so we 
often have to decompose them into smaller proof units 
that can run in parallel. In the best case, we can solve 
this problem by adding function interfaces and veri-
fying compositionally. But several engagements have 
required us to improve the performance of the tool 
itself: for example, for complex arithmetic and array 
operations. There is a substantial difference between 
completing a SAW proof and running it reliably under 
a particular time budget.

Running in CI means that proof failures are block-
ers on deployment. This is a pain point for engineer-
ing teams: if a proof blocks a release without good 
reason, the result is likely to be that the proof is dis-
abled. To mitigate this, SAW makes extensive use of 
solver-backed automation, and we design our proofs 
to resist change. In many cases, small changes to the 
code result in no proof changes, which decreases 
the false-positive rate and increases the utility of the 
proof. However, some small changes still require sig-
nificant proof modifications. In some cases, minor 
code changes actually require significantly different 
reasoning: for example, in code computing mathemat-
ical functions. In other cases, the main culprit is the 
solver-backed automation itself, which can be highly 
sensitive to minor changes in logical terms. The fra-
gility of proofs under change is a known problem in 
many verification tools and the subject of ongoing 
research into proof-repair technologies.

In our experience, change-resistant proofs consist of 
layered specifications from low abstraction to high. The 
lowest level of abstraction should be the code, and the 
highest level of abstraction should be desirable proper-
ties about the code. In general, higher layers will corre-
spond to increased proof effort. This is advantageous 
because the lowest level of abstraction is the most likely 
to experience change. In many cases, changes to code 
require only repairs to the lowest-level proofs without 

requiring the change to bubble all of the way up the 
stack. In SAW, the majority of these low-level changes 
can be discharged using SMT-backed automation.

Typically, SAW proofs require a small number of 
layers. Often, we use just two: a low-level proof from 
the implementation to a proved-safe abstraction and a 
high-level proof from this abstraction to the functional 
correctness property. As a larger example, our proof 
of the s2n HMAC primitive1 was structured into four 
layers. The highest layer was a preexisting proof indis-
tinguishable from randomness, the fundamental cor-
rectness property. This proof was completed using the 
Coq proof assistant and required extensive manual 
effort. Lower layers were verified mostly using SAW, 
with small amounts of Coq. The lowest layer connected 
to the implementation was verified using SAW exclu-
sively to maximize automation.

Proof Engineering Strategies
When building a proof, our most important strat-
egy is to leverage automation wherever possible. The 
SMT-backed automation in SAW means that most of 
the trivial reasoning can be eliminated, which leaves us 
able to focus on legitimately difficult verification prob-
lems. We also avoid introducing internal specifications 
wherever possible as these are typically the most diffi-
cult to write and the most fragile to code change. Inter-
nal specifications are sometimes needed for scalability 
reasons, but by limiting them to the largest scope pos-
sible, we reduce effort and increase proof resilience.

Another important strategy we use is to separate 
concerns in the proof. In our cryptographic proofs, 
it is often possible to verify safety (for example, the 
absence of memory errors) without verifying func-
tional correctness. We have found that much of the 
technical risk of the project exists at this stage. Focus-
ing on this problem early in the project allows us to 
reduce risk. Separating these concerns also results in 
proof terms that are smaller and easier to understand 
and helps isolate failures when developing proofs of 
functional correctness.

When developing proofs, we have learned that most 
proof engineering time is spent working with a failing 
proof. Either the proof is in an incomplete state as it is 
constructed, or more rarely, the target system itself is 
incorrect. In either case, proof engineers must be able 
to inspect proof terms to diagnose errors, and they must 
be able to rapidly rerun updated versions of the proof. 
In software engineering, it is obvious that develop-
ment requires working with incomplete software, but 
this perspective is less common in formal verification 
research. SAW itself provides some support for failing 
proofs, but there remains a lot of room for improved 
tools and practices.
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Proofs Need Proof Engineers
The type of verification Galois does with SAW focuses 
on a system’s most complex and intricate properties. As 
a result, these proofs must be manually constructed by 
proof engineers. This is in contrast to fully automated 
tools, such as Facebook’s Infer,10 which nonexperts can 
use. Automated tools have proved their value at scale, 
but they are inherently limited to simpler properties of 
the system. For example, Infer can verify memory safety 
but only for relatively simple memory usage patterns. 
The type of labor-intensive verification that we practice 
is necessary to verify correctness properties for com-
plex, highly optimized code. Our work has focused on 
cryptographic modules, but the same is true (for exam-
ple) of core operating system components, as demon-
strated by the SeL4 project.7

Proof engineering is analogous to software engineer-
ing in that it requires experienced teams with knowledge 
built up over multiple projects. A team must understand 
the system to be verified, which may be as difficult as 
writing the code in the first place. The team members 
must deeply understand the strengths and limitations of 
the proof tools and be able to modify them, if necessary. 
And they must be able to design proofs to be resilient 
to change, fit into CI budgets, and match the required 
assurance properties.

Galois’s team has operated for five years with mostly 
consistent members over a variety of proof projects, 
both commercial and U.S. government. Over this time, 
we have refined our tools and working practices and 
achieved a dramatic increase in the scale of proofs that 
we can accomplish. Compared to our early engage-
ments, such as the s2n HMAC proof, our most recent 
proof of the blst library was an order of magnitude more 
complex in code size, specification complexity, degree 
of optimization, and range of coding patterns. The 
increased effectiveness we have achieved does not come 
from any single innovation. Instead, we have collected 
many small improvements in our tools and strategies, 
and these improvements have compounded together 
over time.

Teams with this level of expertise are at present 
uncommon, although the number is growing year by 
year. This limits the reach of formal verification: scal-
ability will require teaching many more people to engi-
neer proofs. To some extent, we can solve this problem 
through more usable and better automated tools, which 
would lower the skill ceiling for many tasks. We are 
also optimistic that many proof breakages can be elimi-
nated by building change-resistant proofs and through 
proof-repair techniques. We can also build tools that 
fit with the existing metaphors used by engineers: the 
CBMC tool11 allows users to write “symbolic tests” 
that resemble standard test harnesses. We hope these 

improvements can democratize the process of proof 
engineering, making it accessible to many more engi-
neers. However, we expect that there will always be 
some tasks that require specialist teams, just as there are 
in software engineering more generally.

T he last five years have seen formal verification 
flourish in diverse industry niches. Our work 

on cryptographic verification has been a small but 
important part of this growing acceptance. The prob-
lems we face now as a field are familiar to any nascent 
technology. How can we make our approach better 
address the needs of our users? How can we make our 
tools more scalable, reproducible, and understandable? 
How do we articulate the value of our work in convinc-
ing ways?

Galois has made significant gains on these problems 
over the last five years. Our work shows the improve-
ments that are possible for a single team learning and 
developing over several verification projects. We hope 
to now see a virtuous cycle where more teams adopt for-
mal verification, which leads to more capable tools and 
more effective practices.

We see the potential for innovative research in sev-
eral areas of proof engineering. Current proofs are frag-
ile in the face of change; we need techniques that can 
resist and repair failures when they occur. Current tools 
are oriented around checking completed proofs; we 
need engineering-oriented tools that assist during proof 
construction and refactoring. Current proof projects 
are rather unpredictable in terms of cost and benefit; we 
need to make them a reliable and quantifiable part of 
software assurance. Current proof engineering requires 
deep expertise of the type that Galois’s team has built 
over many years; we need to make proof engineering 
accessible to many more people.

The last five years have demonstrated that formal 
verification is ready to solve some of the most challeng-
ing assurance problems that industry has to offer. Now, 
we look forward to a world where formal verification 
takes its place as a standard assurance tool in industry. 
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