
Mike Dodds 
miked@galois.com

Verified Cryptography for Everybody



© 2022 Galois, Inc.2

● PhD, York: graph grammars, graph 
transformation, pointer verification

● Post-doc, Cambridge: separation logic, 
concurrency, tool building

● Assistant prof, York: (more) separation 
logic, relaxed memory 

● Principal, Galois: crypto, parser security, 
distributed systems, AI/ML proof repair… 

Who am I? 
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What is Galois anyway? 
130+ person industrial lab based in Portland OR, USA  

Programming languages research meets real-world applications 

Our favorite tools: 
● Automated solvers 
● Interactive theorem provers
● Safe programming languages
● Fancy type systems 
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This talk: cryptographic primitives 

The building blocks of security: 
● Block ciphers: AES, …  
● Hash functions: SHA-2, … 
● Signature functions: ECDSA, BLS, …  

Eg: 
● Core libraries: OpenSSL, BoringSSL, … 
● Exotic stuff: quantum-resistant primitives, 

blockchain-specific libraries 

Source: https://xkcd.com/2347/ - CC BY-NC 2.5

https://xkcd.com/2347/
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Who cares?  
Cryptographic libraries matter:
● (billions of users) * (millions of calls per day)
● Security-critical in nearly every dimension   
● Highly optimized, incredibly gnarly code, very difficult to audit 

But also: 
● A small number of libraries cover nearly all usage    
● The code is highly encapsulated and changes very slowly 

Verifying this code  ⇒  verified cryptographic code for everybody 
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Galois does difficult proofs 

● 2018: “Continuous Formal Verification of Amazon s2n” (CAV)
○ Target: core components of Amazon’s TLS library

● 2021: “Verified Cryptographic Code for Everybody” (CAV)
○ Target: core components of AWS-LibCrypto (OpenSSL fork)

● 2022: Verification of the blst library 
○ Target: signature library focused on performance and security 



What are we verifying, anyway? 
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Threat model for cryptographic primitives

Code crashes 
● More precisely, C / LLVM undefined behaviour, e.g. writes out of 

memory bounds 
● Potential attack: break memory safety / security on host 

Code does not not implement the algorithm correctly 
● Eg. might not compute AES-GCM correctly for some input  
● Potential attack: decrypt messages in transit 
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Out of scope: 

● Side-channels generally 
○ Timing - eg. different messages take different times to decrypt  
○ Microarchitectural - eg SPECTRE / MELTDOWN etc

● Algorithm-level cryptographic security properties
○ We verify: code implements algorithm
○ Not verified: algorithm is cryptographically secure
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Verification means program equivalence 

≈
simple 

program 
complex 
program 

That is, a 
reference implementation 
or specification
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So, verification is just fancy testing 

Testing: 
program(input) ≠ crash   ∧   program(input) ≈ expected_result

Formal verification: 
∀ input. 

program(input) ≠ crash   ∧   program(input) ≈ specification(input)
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E.g hash-based message authentication code 

≈BoringSSL
HMAC code

‘book’ HMAC
(RFC 2104) 
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E.g hash-based message authentication code: 

≈ ‘book’ HMAC
(RFC 2104) 

https://github.com/awslabs/aws-lc/blob/main/
crypto/fipsmodule/hmac/hmac.c

https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
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E.g hash-based message authentication code: 

≈

https://github.com/awslabs/aws-lc/blob/main/
crypto/fipsmodule/hmac/hmac.c

https://datatracker.ietf.org/doc/html/rfc2104.html

We define two fixed and different strings ipad and opad as follows
(the 'i' and 'o' are mnemonics for inner and outer):

                  ipad = the byte 0x36 repeated B times
                  opad = the byte 0x5C repeated B times.

To compute HMAC over the data `text' we perform

                    H(K XOR opad, H(K XOR ipad, text))

https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://datatracker.ietf.org/doc/html/rfc2104.html
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https://datatracker.ietf.org/doc/html/rfc2104.html

hmac hash hash2 hash3 key message = hash2 (okey # internal)

 where

  ks = kinit hash3 key // K’

  okey = [k ^ 0x5C | k <- ks] // K’ xor opad

  ikey = [k ^ 0x36 | k <- ks] // K’ xor ipad

  // H((K’ xor ipad) || message)

  internal = split (hash (ikey # message))

https://github.com/GaloisInc/cryptol-specs/blob/master/Primitive/Symmetric/MAC/HMAC.cry

We define two fixed and different strings ipad and opad as follows
(the 'i' and 'o' are mnemonics for inner and outer):

                  ipad = the byte 0x36 repeated B times
                  opad = the byte 0x5C repeated B times.

To compute HMAC over the data `text' we perform

                    H(K XOR opad, H(K XOR ipad, text))

⇒ 

We can’t verify a 
specification in natural 
language, like RFC2104 

Solution: Convert natural 
language RFC into a 
high-level specification 
language, Cryptol - 
https://cryptol.net/

The specification is close 
enough for cryptographers 
to audit and establish high 
confidence 

https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/GaloisInc/cryptol-specs/blob/master/Primitive/Symmetric/MAC/HMAC.cry
https://cryptol.net/
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E.g hash-based message authentication code: 

≈

hmac hash hash2 hash3 key message = hash2 (okey # internal)

 where

  ks = kinit hash3 key // K’

  okey = [k ^ 0x5C | k <- ks] // K’ xor opad

  ikey = [k ^ 0x36 | k <- ks] // K’ xor ipad

  // H((K’ xor ipad) || message)

  internal = split (hash (ikey # message))

BoringSSL HMAC code Cryptol HMAC specification
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Proof tool: SAW (Software Analysis 
Workbench)

Program
(LLVM / Rust / 

Java / C) 

Symbolic 
execution  

Program 
term

Cryptol 
Specification  

≈
Symbolic  
execution 

Spec 
term

 

 
Verified? 
yes / no

SMT solver

Term: a mathematical 
model of the program

Checks whether the 
program can crash

Builds a precise 
model of the program

Or timeout  😭
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Result - high confidence of this:  

∀ input. 
primitive(input) ≠ crash   ∧   primitive(input) ≈ cryptol_spec(input)

Verified for AWS-libcrypto:  
● HMAC with SHA-384
● SHA-2 384 & 512 
● AES-GCM 256
● AES-KW(P) 256
● ECDSA with P-384, SHA-384
● ECDH with P-384 

Verified for s2n TLS library
● DRBG
● HMAC 
● TLS 1.2 state machine

Verified for blst: 
● All operations



Difficult proofs are difficult (for now)
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Verifying cryptography is easy!

● Code is mostly bounded in input size; loops can be unrolled 

● Data-structures are static; v. restricted pointers / dynamic allocation  

● Interfaces are fixed and have precise, commonly agreed 
specifications (RFCs / white papers) 

● Code is extremely stable over time; major libraries share a lot of code 
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Conservation of difficulty rule:

Software that was difficult to write will be difficult to verify

NB: this is a joke

Corollary:  software that was easy to write is easy to verify! 
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Why is it difficult to verify cryptography? 

≈‘book’
HMAC 

OpenSSL
HMAC≈HMAC1 ≈ HMAC2 ≈ …

● Multiple use cases / platforms
● Legacy considerations
● (most important) optimization

Intuition:  each step requires a theorem
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Verifying cryptography is difficult 

● Generally: some of the most heavily optimized code in existence 

● Implementations use C and specialized x86 instructions. Some of the 
code is generated by Perl scripts 

● Many optimizations rely on facts about math(s) in order to be sound 

● Many optimizations break abstraction boundaries, e.g. by pipelining 
instructions, unrolling loops



© 2022 Galois, Inc.24

Tools for controlling difficulty in SAW 

● Change the code 

● Rewriting / uninterpreted functions 

● Composition 
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Changing the code is incredibly powerful! 

Very similar programs can have dramatically different verification 
characteristics 

Why? Some hypotheses: 
● Many obvious-to-humans equivalences depend on deep theorems
● Solver nondeterminism - small perturbations can make a goal 

unsolvable 
● Problem diversity - any tool makes some patterns easier and other 

patterns harder 
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We (mostly) don’t change the code 

Built-for-verification systems are awesome (seL4, HACL*, …) 

But: we want to verify the code everybody is using

Engineers might trust pre-existing code more than verified alternatives: 
● Existing code has been tested / fuzzed / inspected
● Existing code has been used for 1000s of hours in production 
● Existing code may be certified, e.g. through FIPS (HUGE deal) 
● Built-for-verification code may not have a long-term support story 
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Tools for controlling difficulty in SAW 

● Change the code 

● Rewriting / uninterpreted functions 

● Composition 
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Rewriting / uninterpreted functions 

Spec Term Implementation Term

=
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Do a sub-proof

=Spec function 1 Subterm
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Rewrite

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Subterm
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Rewrite

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Spec function 1
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Uninterpret and prove the overall equivalence 

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Spec function 1
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Rewrites in practice (from SHA 384)

Cryptol

Perl that generates assembly
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Rewrites in practice (from SHA 384)

Cryptol

SAW Rewrite Rule
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Tools for controlling difficulty in SAW 

● Change the code 

● Rewriting / uninterpreted functions 

● Composition 
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Programs come with structure
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Break the proof down with that structure
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Composition in SAW
● During symbolic execution a called function can be replaced by its 

specification
● Saves symbolic execution time
● Can result in simpler formulas
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Composition in SAW
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Composition in SAW
C function name

Overrides

Path 
satisfiability 
checking

SAW 
Specification Tactic
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Composition has a cost   
● If we have to specify internal functions, we have to specify their state
● We might need internal specs too specific for general use
● We might need multiple specs for the same function
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Composition has a cost
Example, monolithic cryptography functions
monolithic : key -> message -> output

Vs iterative:
init : key -> state
update : state -> message -> state
final : state -> output

monolithic k m = final (update (init key) message) 



Proofs as Engineering Tools
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Problems engineers care about:
● Increasing confidence in particularly critical functionality 
● Catching important bugs or eliminating classes of bugs
● Increasing test coverage  
● Passing certification more quickly / cheaply 
● Making justified claims about reliability / security to customers 

Proofs can help with these problems!

Proofs are one expensive tool in the reliability toolbox
along with testing, fuzzing code review, safe languages, CI/CD, good 
dev practices, hiring clever people, using well-tested components … 
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Cost/benefit matters - at the current margin

Unrealistic: “Let’s formally verify our whole stack”

Realistic: “Should we spend $X and Y months on this particular proof 
- or spend the same budget on tests / fuzzing?”

Proofs have to win the argument project-by-project
● low, predictable costs
● large, quantifiable benefits
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Predictability matters
How much will a given proof cost, in $$ / time / expertise? 

Current proof projects are unpredictable at multiple scales: 
● Micro: will the solver discharge a particular goal? 
● Macro: how difficult is a particular piece of software to verify? 

We mitigate this problem with team experience across multiple proofs and 
careful proof design 

More R&D needed 
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Target selection matters

Good qualities: 
● Security / safety critical; faults would be disastrous 
● A large number of users rely on the code   
● Well-understood interfaces that can be phrased in math 
● Stable, slow-changing codebase 
● Limited use of ‘difficult’ features: memory allocation, complex 

invariants, embedded assembly … 

Not all of these qualities are necessary, and tools are developing rapidly 
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Understandability matters
Who are the users for the proof? What benefit do they gain from proof? 

Multiple audiences: 
● A customer for a product that has been improved
● An engineer who will interact with the proof
● Formal methods experts

Each audience needs an explanation that is understandable and accurate

More R&D needed
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Integration matters
Proofs have to fit into the existing 
engineering workflow (lowers proof cost) 

Our proofs run in CI/CD on every 
commit to the codebase 

This is often a significant challenge: 
● Proofs have to run within time / 

memory budgets 
● Proofs block deployment - need to 

fix problems quickly 
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Proof engineering matters

Earlier: “Software that was difficult to write will be difficult to verify”

Building cryptographic libraries required: 
● Well-designed mature tools 
● A professional, experienced team of engineers
● Well-tested engineering practices 
● A significant amount of time

Formally verifying cryptographic libraries requires the same! 
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How proof engineers spend their time

Proof doesn’t work

Proof Works

Sub-proof doesn’t 
work

Sub-proof works

Sub-proof doesn’t work

sub-Proof Works

Sub-proof doesn’t work

Sub-proof works

Sub-proof doesn’t work

Sub-proof works

P
roject P

rogress

Start

End
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We spend most of our time with broken proofs

If we didn’t the effort would be done!

UX for broken proofs is the most important UX for proof tools
● Solver feedback
● Execution exploration
● Goal exploration and manipulation

More R&D needed!
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Some questions when deploying proofs:  

● Who cares? Who will have their problem solved by the proof? 
● What will the proof cost and how long will it take? 
● What threats will the proof prevent? How are they currently 

prevented? What do they currently cost? 
● How will the proof fit into the existing engineering process? 
● Who will build and maintain the proof? 
● What happens when the system changes?

These are mostly just rephrased Heilmeier catechisms: 
https://www.darpa.mil/work-with-us/heilmeier-catechism 

https://www.darpa.mil/work-with-us/heilmeier-catechism


Wrap-up: Verified Cryptography for Everybody 
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Wrap-up    
● Galois has verified cryptographic libraries used by everybody  

● Proofs are equivalences between executable specifications (written in 
Cryptol) and implementation code (C / x86) 

● Proofs are difficult thanks to extremely gnarly optimisations; we 
control difficulty using composition and rewriting (& experience)

● Proofs are tools for engineers; cost/benefit tradeoffs matter in multiple 
dimensions 
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Further reading 

● Verified Cryptographic Code for Everybody (CAV 2021)
Technical paper on the AWS-LC proof and tools. 
https://doi.org/10.1007/978-3-030-81685-8_31 

● Formally Verifying Industry Cryptography (S&P 2022) 
Non-technical paper on our proof engineering process. 
https://doi.org/10.1109/MSEC.2022.3153035 

https://doi.org/10.1007/978-3-030-81685-8_31
https://doi.org/10.1109/MSEC.2022.3153035



