
Mike Dodds
miked@galois.com

Verified Cryptography for Everybody

© 2022 Galois, Inc.2

● PhD, York: graph grammars, graph
transformation, pointer verification

● Post-doc, Cambridge: separation logic,
concurrency, tool building

● Assistant prof, York: (more) separation
logic, relaxed memory

● Principal, Galois: crypto, parser security,
distributed systems, AI/ML proof repair…

Who am I?

© 2022 Galois, Inc.3

What is Galois anyway?
130+ person industrial lab based in Portland OR, USA

Programming languages research meets real-world applications

Our favorite tools:
● Automated solvers
● Interactive theorem provers
● Safe programming languages
● Fancy type systems

© 2022 Galois, Inc.4

This talk: cryptographic primitives

The building blocks of security:
● Block ciphers: AES, …
● Hash functions: SHA-2, …
● Signature functions: ECDSA, BLS, …

Eg:
● Core libraries: OpenSSL, BoringSSL, …
● Exotic stuff: quantum-resistant primitives,

blockchain-specific libraries

Source: https://xkcd.com/2347/ - CC BY-NC 2.5

https://xkcd.com/2347/

© 2022 Galois, Inc.5

Who cares?
Cryptographic libraries matter:
● (billions of users) * (millions of calls per day)
● Security-critical in nearly every dimension
● Highly optimized, incredibly gnarly code, very difficult to audit

But also:
● A small number of libraries cover nearly all usage
● The code is highly encapsulated and changes very slowly

Verifying this code ⇒ verified cryptographic code for everybody

© 2022 Galois, Inc.6

Galois does difficult proofs

● 2018: “Continuous Formal Verification of Amazon s2n” (CAV)
○ Target: core components of Amazon’s TLS library

● 2021: “Verified Cryptographic Code for Everybody” (CAV)
○ Target: core components of AWS-LibCrypto (OpenSSL fork)

● 2022: Verification of the blst library
○ Target: signature library focused on performance and security

What are we verifying, anyway?

© 2022 Galois, Inc.8

Threat model for cryptographic primitives

Code crashes
● More precisely, C / LLVM undefined behaviour, e.g. writes out of

memory bounds
● Potential attack: break memory safety / security on host

Code does not not implement the algorithm correctly
● Eg. might not compute AES-GCM correctly for some input
● Potential attack: decrypt messages in transit

© 2022 Galois, Inc.9

Out of scope:

● Side-channels generally
○ Timing - eg. different messages take different times to decrypt
○ Microarchitectural - eg SPECTRE / MELTDOWN etc

● Algorithm-level cryptographic security properties
○ We verify: code implements algorithm
○ Not verified: algorithm is cryptographically secure

© 2022 Galois, Inc.1010 © 2022 Galois, Inc.

Verification means program equivalence

≈
simple

program
complex
program

That is, a
reference implementation
or specification

© 2022 Galois, Inc.11

So, verification is just fancy testing

Testing:
program(input) ≠ crash ∧ program(input) ≈ expected_result

Formal verification:
∀ input.

program(input) ≠ crash ∧ program(input) ≈ specification(input)

© 2022 Galois, Inc.1212 © 2022 Galois, Inc.

E.g hash-based message authentication code

≈BoringSSL
HMAC code

‘book’ HMAC
(RFC 2104)

© 2022 Galois, Inc.1313 © 2022 Galois, Inc.

E.g hash-based message authentication code:

≈ ‘book’ HMAC
(RFC 2104)

https://github.com/awslabs/aws-lc/blob/main/
crypto/fipsmodule/hmac/hmac.c

https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c

© 2022 Galois, Inc.1414 © 2022 Galois, Inc.

E.g hash-based message authentication code:

≈

https://github.com/awslabs/aws-lc/blob/main/
crypto/fipsmodule/hmac/hmac.c

https://datatracker.ietf.org/doc/html/rfc2104.html

We define two fixed and different strings ipad and opad as follows
(the 'i' and 'o' are mnemonics for inner and outer):

 ipad = the byte 0x36 repeated B times
 opad = the byte 0x5C repeated B times.

To compute HMAC over the data `text' we perform

 H(K XOR opad, H(K XOR ipad, text))

https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://github.com/awslabs/aws-lc/blob/main/crypto/fipsmodule/hmac/hmac.c
https://datatracker.ietf.org/doc/html/rfc2104.html

© 2022 Galois, Inc.1515 © 2022 Galois, Inc.

https://datatracker.ietf.org/doc/html/rfc2104.html

hmac hash hash2 hash3 key message = hash2 (okey # internal)

 where

 ks = kinit hash3 key // K’

 okey = [k ^ 0x5C | k <- ks] // K’ xor opad

 ikey = [k ^ 0x36 | k <- ks] // K’ xor ipad

 // H((K’ xor ipad) || message)

 internal = split (hash (ikey # message))

https://github.com/GaloisInc/cryptol-specs/blob/master/Primitive/Symmetric/MAC/HMAC.cry

We define two fixed and different strings ipad and opad as follows
(the 'i' and 'o' are mnemonics for inner and outer):

 ipad = the byte 0x36 repeated B times
 opad = the byte 0x5C repeated B times.

To compute HMAC over the data `text' we perform

 H(K XOR opad, H(K XOR ipad, text))

⇒

We can’t verify a
specification in natural
language, like RFC2104

Solution: Convert natural
language RFC into a
high-level specification
language, Cryptol -
https://cryptol.net/

The specification is close
enough for cryptographers
to audit and establish high
confidence

https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/GaloisInc/cryptol-specs/blob/master/Primitive/Symmetric/MAC/HMAC.cry
https://cryptol.net/

© 2022 Galois, Inc.1616 © 2022 Galois, Inc.

E.g hash-based message authentication code:

≈

hmac hash hash2 hash3 key message = hash2 (okey # internal)

 where

 ks = kinit hash3 key // K’

 okey = [k ^ 0x5C | k <- ks] // K’ xor opad

 ikey = [k ^ 0x36 | k <- ks] // K’ xor ipad

 // H((K’ xor ipad) || message)

 internal = split (hash (ikey # message))

BoringSSL HMAC code Cryptol HMAC specification

© 2022 Galois, Inc.1717 © 2022 Galois, Inc.

Proof tool: SAW (Software Analysis
Workbench)

Program
(LLVM / Rust /

Java / C)

Symbolic
execution

Program
term

Cryptol
Specification

≈
Symbolic
execution

Spec
term

Verified?
yes / no

SMT solver

Term: a mathematical
model of the program

Checks whether the
program can crash

Builds a precise
model of the program

Or timeout 😭

© 2022 Galois, Inc.18

Result - high confidence of this:

∀ input.
primitive(input) ≠ crash ∧ primitive(input) ≈ cryptol_spec(input)

Verified for AWS-libcrypto:
● HMAC with SHA-384
● SHA-2 384 & 512
● AES-GCM 256
● AES-KW(P) 256
● ECDSA with P-384, SHA-384
● ECDH with P-384

Verified for s2n TLS library
● DRBG
● HMAC
● TLS 1.2 state machine

Verified for blst:
● All operations

Difficult proofs are difficult (for now)

© 2022 Galois, Inc.20

Verifying cryptography is easy!

● Code is mostly bounded in input size; loops can be unrolled

● Data-structures are static; v. restricted pointers / dynamic allocation

● Interfaces are fixed and have precise, commonly agreed
specifications (RFCs / white papers)

● Code is extremely stable over time; major libraries share a lot of code

© 2022 Galois, Inc.21

Conservation of difficulty rule:

Software that was difficult to write will be difficult to verify

NB: this is a joke

Corollary: software that was easy to write is easy to verify!

© 2022 Galois, Inc.2222 © 2022 Galois, Inc.

Why is it difficult to verify cryptography?

≈‘book’
HMAC

OpenSSL
HMAC≈HMAC1 ≈ HMAC2 ≈ …

● Multiple use cases / platforms
● Legacy considerations
● (most important) optimization

Intuition: each step requires a theorem

© 2022 Galois, Inc.23

Verifying cryptography is difficult

● Generally: some of the most heavily optimized code in existence

● Implementations use C and specialized x86 instructions. Some of the
code is generated by Perl scripts

● Many optimizations rely on facts about math(s) in order to be sound

● Many optimizations break abstraction boundaries, e.g. by pipelining
instructions, unrolling loops

© 2022 Galois, Inc.24

Tools for controlling difficulty in SAW

● Change the code

● Rewriting / uninterpreted functions

● Composition

© 2022 Galois, Inc.25

Changing the code is incredibly powerful!

Very similar programs can have dramatically different verification
characteristics

Why? Some hypotheses:
● Many obvious-to-humans equivalences depend on deep theorems
● Solver nondeterminism - small perturbations can make a goal

unsolvable
● Problem diversity - any tool makes some patterns easier and other

patterns harder

© 2022 Galois, Inc.26

We (mostly) don’t change the code

Built-for-verification systems are awesome (seL4, HACL*, …)

But: we want to verify the code everybody is using

Engineers might trust pre-existing code more than verified alternatives:
● Existing code has been tested / fuzzed / inspected
● Existing code has been used for 1000s of hours in production
● Existing code may be certified, e.g. through FIPS (HUGE deal)
● Built-for-verification code may not have a long-term support story

© 2022 Galois, Inc.27

Tools for controlling difficulty in SAW

● Change the code

● Rewriting / uninterpreted functions

● Composition

© 2022 Galois, Inc.28

Rewriting / uninterpreted functions

Spec Term Implementation Term

=

© 2022 Galois, Inc.29

Do a sub-proof

=Spec function 1 Subterm

© 2022 Galois, Inc.30

Rewrite

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Subterm

© 2022 Galois, Inc.31

Rewrite

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Spec function 1

© 2022 Galois, Inc.32

Uninterpret and prove the overall equivalence

Spec Term

…

…

Implementation Term

…

…

=
Spec function 1 Spec function 1

© 2022 Galois, Inc.33

Rewrites in practice (from SHA 384)

Cryptol

Perl that generates assembly

© 2022 Galois, Inc.34

Rewrites in practice (from SHA 384)

Cryptol

SAW Rewrite Rule

© 2022 Galois, Inc.35

Tools for controlling difficulty in SAW

● Change the code

● Rewriting / uninterpreted functions

● Composition

© 2022 Galois, Inc.36

Programs come with structure

© 2022 Galois, Inc.37

Break the proof down with that structure

© 2022 Galois, Inc.38

Composition in SAW
● During symbolic execution a called function can be replaced by its

specification
● Saves symbolic execution time
● Can result in simpler formulas

© 2022 Galois, Inc.39

Composition in SAW

© 2022 Galois, Inc.40

Composition in SAW
C function name

Overrides

Path
satisfiability
checking

SAW
Specification Tactic

© 2022 Galois, Inc.41

Composition has a cost
● If we have to specify internal functions, we have to specify their state
● We might need internal specs too specific for general use
● We might need multiple specs for the same function

© 2022 Galois, Inc.42

Composition has a cost
Example, monolithic cryptography functions
monolithic : key -> message -> output

Vs iterative:
init : key -> state
update : state -> message -> state
final : state -> output

monolithic k m = final (update (init key) message)

Proofs as Engineering Tools

© 2022 Galois, Inc.44

Problems engineers care about:
● Increasing confidence in particularly critical functionality
● Catching important bugs or eliminating classes of bugs
● Increasing test coverage
● Passing certification more quickly / cheaply
● Making justified claims about reliability / security to customers

Proofs can help with these problems!

Proofs are one expensive tool in the reliability toolbox
along with testing, fuzzing code review, safe languages, CI/CD, good
dev practices, hiring clever people, using well-tested components …

© 2022 Galois, Inc.45

Cost/benefit matters - at the current margin

Unrealistic: “Let’s formally verify our whole stack”

Realistic: “Should we spend $X and Y months on this particular proof
- or spend the same budget on tests / fuzzing?”

Proofs have to win the argument project-by-project
● low, predictable costs
● large, quantifiable benefits

© 2022 Galois, Inc.46

Predictability matters
How much will a given proof cost, in $$ / time / expertise?

Current proof projects are unpredictable at multiple scales:
● Micro: will the solver discharge a particular goal?
● Macro: how difficult is a particular piece of software to verify?

We mitigate this problem with team experience across multiple proofs and
careful proof design

More R&D needed

© 2022 Galois, Inc.47

Target selection matters

Good qualities:
● Security / safety critical; faults would be disastrous
● A large number of users rely on the code
● Well-understood interfaces that can be phrased in math
● Stable, slow-changing codebase
● Limited use of ‘difficult’ features: memory allocation, complex

invariants, embedded assembly …

Not all of these qualities are necessary, and tools are developing rapidly

© 2022 Galois, Inc.48

Understandability matters
Who are the users for the proof? What benefit do they gain from proof?

Multiple audiences:
● A customer for a product that has been improved
● An engineer who will interact with the proof
● Formal methods experts

Each audience needs an explanation that is understandable and accurate

More R&D needed

© 2022 Galois, Inc.49

Integration matters
Proofs have to fit into the existing
engineering workflow (lowers proof cost)

Our proofs run in CI/CD on every
commit to the codebase

This is often a significant challenge:
● Proofs have to run within time /

memory budgets
● Proofs block deployment - need to

fix problems quickly

© 2022 Galois, Inc.50

Proof engineering matters

Earlier: “Software that was difficult to write will be difficult to verify”

Building cryptographic libraries required:
● Well-designed mature tools
● A professional, experienced team of engineers
● Well-tested engineering practices
● A significant amount of time

Formally verifying cryptographic libraries requires the same!

© 2022 Galois, Inc.51

How proof engineers spend their time

Proof doesn’t work

Proof Works

Sub-proof doesn’t
work

Sub-proof works

Sub-proof doesn’t work

sub-Proof Works

Sub-proof doesn’t work

Sub-proof works

Sub-proof doesn’t work

Sub-proof works

P
roject P

rogress

Start

End

© 2022 Galois, Inc.52

We spend most of our time with broken proofs

If we didn’t the effort would be done!

UX for broken proofs is the most important UX for proof tools
● Solver feedback
● Execution exploration
● Goal exploration and manipulation

More R&D needed!

© 2022 Galois, Inc.53

Some questions when deploying proofs:

● Who cares? Who will have their problem solved by the proof?
● What will the proof cost and how long will it take?
● What threats will the proof prevent? How are they currently

prevented? What do they currently cost?
● How will the proof fit into the existing engineering process?
● Who will build and maintain the proof?
● What happens when the system changes?

These are mostly just rephrased Heilmeier catechisms:
https://www.darpa.mil/work-with-us/heilmeier-catechism

https://www.darpa.mil/work-with-us/heilmeier-catechism

Wrap-up: Verified Cryptography for Everybody

© 2022 Galois, Inc.55

Wrap-up
● Galois has verified cryptographic libraries used by everybody

● Proofs are equivalences between executable specifications (written in
Cryptol) and implementation code (C / x86)

● Proofs are difficult thanks to extremely gnarly optimisations; we
control difficulty using composition and rewriting (& experience)

● Proofs are tools for engineers; cost/benefit tradeoffs matter in multiple
dimensions

© 2022 Galois, Inc.56

Further reading

● Verified Cryptographic Code for Everybody (CAV 2021)
Technical paper on the AWS-LC proof and tools.
https://doi.org/10.1007/978-3-030-81685-8_31

● Formally Verifying Industry Cryptography (S&P 2022)
Non-technical paper on our proof engineering process.
https://doi.org/10.1109/MSEC.2022.3153035

https://doi.org/10.1007/978-3-030-81685-8_31
https://doi.org/10.1109/MSEC.2022.3153035

