
Proofs in the Wild

Mike Dodds - Galois, Inc. - December 2024
miked@galois.com - https://mikedodds.github.io

What’s done today?
What’s close?
What’s far?

mailto:miked@galois.com
https://mikedodds.github.io

Context: I was an academic, then I wasn’t
2004 → 2017: UK

● York / Cambridge / York - PhD, postdoc, lecturer (~ associate professor)
● Logic design, automated reasoning, hardware models

2017 → now: Portland OR

● Galois Inc, PI / principal scientist
● Proofs for lots of different things: parsers, crypto(graphy), crypto(currency),

protocols, cyber-physical systems …

Context: Galois does research for $$$
● A contract research shop / “R&D temp agency”
● 110 people, employee-owned
● Focus on security / reliability tech (PL, proof tech, static analysis)
● Clients: DARPA / DoD, some US Gov, some commercial

What’s done today?
What’s close?
What’s far?

Proofs in the Wild

https://mikedodds.github.io

https://mikedodds.github.io

Galois does proof technologies
DARPA HACMS - formally verified drone controllers

● Built on SeL4 verified microkernel & other proof technologies
● Cool demo: flew an unmanned helicopter, resisted red team attack

AWS LibCrypto - https://github.com/awslabs/aws-lc-verification

● Proofs for crypto code from OpenSSL
● (Candidate for) the most heavily used bit of verified code ever

PROVERS - current multi-$m DARPA project

● Aim: usability for testing and proof tools
● Verifying cyber-physical systems as built by DoD

https://github.com/awslabs/aws-lc-verification

Proof tech in industry is small
Low-confidence guess: <1000 proof-focused industry engineers in US

Anec-data:

● Galois is big - 60-70 technical staff
● Conferences (CAV, PLDI …) - mostly academic, 100s of attendees
● Large % engineers have PhDs, small slow-growing talent pool

Some significant teams
● AWS (biggest / most public)
● Meta / Facebook
● Hardware companies - Intel most famously
● Crypto / blockchain
● High assurance things for US Gov

What proof tech does industry actually deploy?
1. Fully-automated program analysis
2. Model checking
3. ‘White glove’ verification / interactive theorem proving

1. Fully-automated program analysis
Eliminate a particular bug category at scale, e.g:

● Memory safety issues - Infer (Facebook / Meta)
● Cloud misconfigurations - Tiros / Zelkova (AWS)

Typical tools: custom analysis tools backed by logical solvers

Trade-offs:

● (+) Scales to millions of loc, can be used by non-specialist engineers
● (-) Unsound & incomplete - false positives and false negatives. V limited

properties. Tools are heuristic and specialized to particular use-cases.

2. Model checking
A small / combinatorial [thing] must be correct, e.g:

● Hardware - arithmetic unit on a processor
● Cryptographic primitive - AES, SHA, ECDSA

Typical tools: encode the whole system as a logical formula, solve with SMT

Trade-offs:

● (+) Fully automated, exhaustive, less need for human-written internal
specifications / overrides

● (-) Scalability VERY limited, only works for small things (or things that can be
reduced to small models, such as protocols)

3. ‘White glove’ verification
A mid-scale complex self-contained [thing] must be correct, e.g:

● Operating system kernel - SeL4, CertiKOS, BlueRock
● Cryptographic library - HACL*, AWS LibCrypto

Typical tools: interactive theorem provers, eg. Coq, Lean, F*

Trade-offs:

● (+) Extremely high level of confidence; can prove very deep properties of the
system; scales to true mathematical reasoning

● (-) Required deep human effort from experts; extremely expensive per line of
code; changes to the verified system are equally expensive.

Barrier to increased adoption: cost/benefit
Writing proofs is very hard

● Proof scripts
● Internal function specifications / invariants
● Selection of abstractions

Writing specifications / world models is very hard

● Component-level specifications - pre/post conditions, reference code
● System models - language / compiler / hardware
● Environment models - threat models, user models, physics

Result: many possible projects don’t ‘pencil out’
Benefit

Cost

break-even line

Viable
projects

Unviable for
cost/benefit

reasons

Result: many possible projects don’t ‘pencil out’
Benefit

Cost

break-even line

Current proof
technologies

Success stories have solved this by careful scoping
Eg:

● Making properties very restricted
● Targeting very small systems
● Spending huge amounts of labor

Worth it for some very critical problems!

https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf

More on the cost/benefit landscape for proof tech:

https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf

What’s done today?
What’s close?
What’s far?

Proofs in the Wild

https://mikedodds.github.io

https://mikedodds.github.io

AI-driven proof

Writing proof scripts is arduous

Google DeepMind, IMO 2024 Problem 1.
https://storage.googleapis.com/deepmin
d-media/DeepMind.com/Blog/imo-2024-s
olutions/P1/index.html

https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html

Classic interactive theorem proving architecture

Proof
Script

Proof
Checker

PSMGS cluster
(Proof Search by Miserable

Graduate Students)

results:
- verified
- failed

Specification,
World model

TrustedUntrusted

This is just a search process!

Guess Check
- Expensive
- Stochastic
- Hard to audit

- Cheap
- Deterministic
- Easy to audit

(untrusted) (trusted)

Many proof tech problems are just search

Guess Check

Write a proof script → Check proof establishes the theorem

Add types to a program → Typecheck the program

Write program invariants → Check the program verification

Synthesize a program that
matches a specification

→ Check the program matches the
specification

[Heuristic generator] → [Trusted checker]

Almost all proof tools are ~structured this way

Proof
Script

Proof
Checker

results:
- verified
- failed

Specification,
World model

TrustedUntrusted

● SMT solver
● Heuristic search
● Human insight

+
● Gen AI + RL

✨✨

AI is a powerful new
untrusted search tool

It fits easily into most
proof tool architectures

Optimism: AI proofs get really cheap
Early indicators:

● AlphaProof IMO - automated proof search for v hard problems
● Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming,

Microsoft Research https://arxiv.org/abs/2405.01787

https://arxiv.org/abs/2405.01787

Optimism: AI proofs improve rapidly
Synthetic data / RL

● Proof tools are a totally reliable oracle of correct / incorrect proofs
● Oracle + LLM + RL - seems promising for synthetic proof data generation

Current proof datasets are small

● Making proof easier should result in more proof data written by users
● Virtuous cycle - increased datasets result in improved capabilities

Optimism: many more proof technologies get useful
Benefit

Cost

break-even line

Current proof
technologies

AI-assisted proof
technologies

Optimism: impossible things become possible
Eg:

● Auto-coders that ‘certify their work’, generating proofs alongside diffs
● Transpile 10s of millions of lines of C with memory safety guarantees
● Insert proved-correct security boundaries into legacy systems
● Retrofit a Linux-scale operating system with proofs

These are in a sense currently possible, just much too expensive

What’s done today?
What’s close?
What’s far?

Proofs in the Wild

https://mikedodds.github.io

https://mikedodds.github.io

Specifications and
world models

Current specification technologies
Mostly discrete, bounded, logical

● Logical formulas (+ various fancy extensions)
● State machines
● Domain specific languages

Eg. Cerberus: https://www.cl.cam.ac.uk/~pes20/cerberus/

● A highly accurate model of the C programming language
● Captured in a DSL called Lem which encodes logical states and updates
● Several person-years of iteration: building / testing / discussing

https://www.cl.cam.ac.uk/~pes20/cerberus/

Formal specifications, ideally:
Mathematically clean

Stable over time

Agreed by the users of the system

Easy to reason about

Big successes ALL fit this ideal model
● Cryptographic algorithms
● Operating systems / hypervisors
● Compilers / programming languages
● Cloud services
● Hardware

The reality:

● These systems are unusually easy to specify
● Even slightly harder-to-specify things are very hard to deal with

Most real-world specifications are not…
Mathematically clean

Stable over time

Agreed by all users of the system

Easy to reason about

Real-world specifications are very non-formalisable
● Prose standards / RFCs / papers
● Powerpoint decks (v common)
● The code itself
● Reference implementations
● Inline code comments
● Test cases
● User stories
● Requirements documents
● Regulatory rules
● Scribbled notes on coffee-shop napkins
● …

Anecdote: PDF, a spec that does not exist

standard

parser 1 parser 2We formalized PDF in our format definition language
Daedalus (https://github.com/GaloisInc/daedalus)

● Testing on millions of cases
● Worked closely with the PDF association

But…

● Non-descriptive: different from real parsers
● Non-normative: doesn’t characterize bugs
● Unclear how to get to a more rigorous &

accepted specification

https://github.com/GaloisInc/daedalus

We’ve only explored the easiest classes of spec

Cryptographic algorithm

Operating system

Document format

CPS system, eg nuclear reactor

Web browser

AI-driven chemical synthesis tool

Generic conversational AI

Increasingly:
● Complex
● Ambiguous
● Hard to reason about
● Contended by users
● ‘Open world’

We’ve only explored the easiest classes of spec

Cryptographic algorithm

Operating system

Document format

CPS system, eg nuclear reactor

Web browser

AI-driven chemical synthesis tool

Generic conversational AI

We only really have examples of
these two levels in industry use

Increasingly:
● Complex
● Ambiguous
● Hard to reason about
● Contended by users
● ‘Open world’

Eg. 1: operating system verification
Specification: “Data should not flow from high to low security domains”

Approach (similar to SeL4):

● Tag data with security levels
● Model operating system operations via logic
● Prove that each operation preserves security invariants

Challenges:

● Specification: what user-side behaviors are possible?
● World modelling: are hardware / physics behaviors in scope?

… vs Eg. 2: AI-driven chemical synthesis tool
Specification: “Do not generate chemicals that harm humans”

Approach:

● Write a model of ‘harmful chemicals’
● Prove some guard system correctly rejects all such chemicals

Challenges:

● Need a granular probabilistic model of chemistry and human biology
● “Harm” is a socio-technical term - need to capture social convention / law
● “Harm” may include combined chemicals, so we need a compositional theory

how chemicals could be used

Optimism: can probabilistic programming help?
Maybe? My sense is the tech is very early

Hard problems:

● How do we reason about probabilities at scale?
● How do we validate models vs the real world, esp. over time?
● Is probabilistic reasoning valid in the presence of adversarial actors?

Optimism: can AI help?
Plausible ideas:

● AI + human teaming on specification writing
● AI-driven science to develop accurate models of the world

A lot of work is needed on ‘spec tech’
We have a 50+ years of tools for easy-to-specify things

~Zero tools for hard-to-specify things

For GSAI:

● Big divide between plausible cases and ‘science fiction’
● Urgent need to experiment / grow the bench
● Unclear if / what progress is being made

What’s done today?
What’s close?
What’s far?

Proofs in the Wild

https://mikedodds.github.io

Summary

https://mikedodds.github.io

What’s done today:
● A small number of successful proof tech deployments
● Strong evidence of usefulness in some domains
● A deep bench of tools and ideas, though many are too expensive
● Key barrier is cost/benefit - proofs are hard and specs are hard

What’s close: proofs
● AI is great for proof search!
● Current tool architectures can integrate AI with very little modification
● Optimism: proofs get cheap, proof tech gets much more useful

What’s far: specifications / world models
● Current proof tech focuses on a tiny range of easy-to-specify things
● We have ~zero examples of success in more difficult-to-specify domains
● Spec tech needs rapid development if we expect to apply it soon (per GSAI)

Thanks!

miked@galois.com
https://mikedodds.github.io

 X: @miike
@m-dodds.bsky.social

https://mikedodds.github.io/files/talks/2
024-10-09-n-things-I-learned.pdf

N things I learned trying to do
formal methods in industry:

mailto:miked@galois.com
https://mikedodds.github.io
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf

