Proofs in the Wild

What’s done today?

What's close”?
What’s far?

Mike Dodds - Galois, Inc. - December 2024
miked@galois.com - https://mikedodds.qgithub.io

mailto:miked@galois.com
https://mikedodds.github.io

Context: | was an academic, then | wasn'’t

2004 — 2017: UK

e York / Cambridge / York - PhD, postdoc, lecturer (~ associate professor)
e Logic design, automated reasoning, hardware models

2017 — now: Portland OR

e Galois Inc, Pl / principal scientist
e Proofs for lots of different things: parsers, crypto(graphy), crypto(currency),
protocols, cyber-physical systems ...

Context: Galois does research for $$%

A contract research shop / “R&D temp agency”

110 people, employee-owned

Focus on security / reliability tech (PL, proof tech, static analysis)
Clients: DARPA/ DoD, some US Gov, some commercial

galois

Proofs in the Wild

What’s done today?

What’s close?
What’s far?

https://mikedodds.qithub.io

https://mikedodds.github.io

Galois does proof technologies

DARPA HACMS - formally verified drone controllers

e Built on SelL4 verified microkernel & other proof technologies
e Cool demo: flew an unmanned helicopter, resisted red team attack

AWS LibCrypto - https://github.com/awslabs/aws-Ic-verification

e Proofs for crypto code from OpenSSL
e (Candidate for) the most heavily used bit of verified code ever

PROVERS - current multi-$m DARPA project

e Aim: usability for testing and proof tools
e \Verifying cyber-physical systems as built by DoD

https://github.com/awslabs/aws-lc-verification

Proof tech in industry is small

Low-confidence guess: <1000 proof-focused industry engineers in US
Anec-data:

e Galois is big - 60-70 technical staff
e Conferences (CAV, PLDI ...) - mostly academic, 100s of attendees
e Large % engineers have PhDs, small slow-growing talent pool

Some significant teams

AWS (biggest / most public)

Meta / Facebook

Hardware companies - Intel most famously
Crypto / blockchain

High assurance things for US Gov

What proof tech does industry actually deploy?

1. Fully-automated program analysis
2. Model checking
3. ‘White glove’ verification / interactive theorem proving

1. Fully-automated program analysis

Eliminate a particular bug category at scale, e.g:

e Memory safety issues - Infer (Facebook / Meta)
e Cloud misconfigurations - Tiros / Zelkova (AWS)

Typical tools: custom analysis tools backed by logical solvers
Trade-offs:

e (+) Scales to millions of loc, can be used by non-specialist engineers
e (-) Unsound & incomplete - false positives and false negatives. V limited
properties. Tools are heuristic and specialized to particular use-cases.

2. Model checking

A small / combinatorial [thing] must be correct, e.g:

e Hardware - arithmetic unit on a processor
e Cryptographic primitive - AES, SHA, ECDSA

Typical tools: encode the whole system as a logical formula, solve with SMT

Trade-offs:

e (+) Fully automated, exhaustive, less need for human-written internal
specifications / overrides

e (-) Scalability VERY limited, only works for small things (or things that can be
reduced to small models, such as protocols)

3. ‘White glove’ verification

A mid-scale complex self-contained [thing] must be correct, e.g:

e Operating system kernel - SelL4, CertiKOS, BlueRock
e Cryptographic library - HACL*, AWS LibCrypto

Typical tools: interactive theorem provers, eg. Coq, Lean, F*

Trade-offs:

e (+) Extremely high level of confidence; can prove very deep properties of the
system; scales to true mathematical reasoning

e (-) Required deep human effort from experts; extremely expensive per line of
code; changes to the verified system are equally expensive.

Barrier to increased adoption: cost/benefit

Writing proofs is very hard

e Proof scripts
e Internal function specifications / invariants
e Selection of abstractions

Writing specifications / world models is very hard

e Component-level specifications - pre/post conditions, reference code
e System models - language / compiler / hardware
e Environment models - threat models, user models, physics

Result: many possible projects don'’t ‘pencil out’

Benefit

A

Viable
projects

e

break-even line

Unviable for
cost/benefit
reasons

» (Cost

Result: many possible projects don'’t ‘pencil out’

Benefit

A

break-even line

“"" Current proof

technologies

» (Cost

Success stories have solved this by careful scoping

Eg:

e Making properties very restricted
e TJargeting very small systems
e Spending huge amounts of labor

Worth it for some very critical problems!

More on the cost/benefit landscape for proof tech:
--"'r.l?
4.,,-«3.#-

Mike Dodds - Big Spec Workshop - Oct 2024 :. d.
,,II:.
galois Hirtka

https://mikedodds.qgithub.io/files/talks/2024-10-09-n-things-l-learned.pdf

N things | learned
trying to do formal methods
In industry

https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf

Proofs in the Wild

What’s done today?

What’s close?
What’s far?

https://mikedodds.qithub.io

https://mikedodds.github.io

Al-driven proof

Writing proof scripts is arduous

open scoped BigOperators

theorem imo 2024 pl :
{(@a :R) | V(n:N), 0<n->(n:Z) | (Yiin Finset.Icc 1 n, i * a])}
={a:R| 3 k:Z Even k A @ = k} := by
rw [(Set.Subset.antisymm iff), (Set.subset_def),]
/- We introduce a variable that will be used
in the second part of the proof (the hard direction),
namely the integer “1° such that “21 = |a] + [2a]"
(this comes from the given divisibility condition with "n = 2%). -/
existsAx L=>(L 2 two_pos).rec Al Y=>?_
usely . x=>y.rec AS p=>?_
o /- We start by showing that every “a° of the form “2k”~ works.
In this case, the sum simplifies to “kn(n+l)"),
which is clearly divisible by "n°. -/
simp_all[AL:N=>(by~ norm_num[Int.floor eq iff]o :|(L:R)*S]=L* s)]
rw[p.2,Int.dvd_iff emod eq zero,Nat.lt iff add one le,<-Finset.sum mul,«<Nat.cast_sum, S.even iff,
«Nat.Ico_succ_right,@ .(((Finset.sum Ico_eq sum range))),Finset.sum add distrib Jat*
simp_all[Finset.sum range_ id]
exact dvd_trans (2+((_:N)-1),byc linarith[((«N»:Int)*(«Nat>-1)).ediv_mul_cancel$ Int.prime two.dvd_mul.2<|by
+—omega—]) tt(mul_dvd mul_left @_ (p))
/- Now let's prove the converse, i.e. that every “® in the LHS
is an even integer. We claim for all such “a” and “n € N°, we have
“l(n+1)*a] = lal+2n(1-lal)". -/
suffices: Y (n : N),|(n+l)*x| =| x]+2 * ¢+ (n : N) * (1-(l(x)]))
o /- Let's assume for now that the claim is true,
and see how this is enough to finish our proof. -/

. ; ; Google DeepMind, IMO 2024 Problem 1.
zify[mul comm,Int.floor eq iff] at this

VA e e S0 o A e A Eeey e https://storage.googleapis.com/deepmin
use(1-|x])*2

norm num d-media/DeepMind.com/Blog/imo-2024-s

-- To do so, it suffices to show ~a = 2(l-|la])" and “a = 2(1-|la])". 0|ut|0nS/P1/|ndeXhtm|
apply@le_antisymm

2 WMm mrewan Pha £iradtr tnamsalisy. nntiome $*hat 1€ o > 2711 11 Y =han

https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/imo-2024-solutions/P1/index.html

Classic interactive theorem proving architecture

“ Specification,

World model
PSMGS cluster

proo | . [o e
Script : Checker ,
P : - failed
(Proof Search by Miserable

Graduate Students) Untrusted - Trusted

This is just a search process!

(untrusted) (trusted)
Guess /> Check

- Expensive - Cheap

- Stochastic - Deterministic

- Hard to audit - Easy to audit

Many proof tech problems are just search

Guess

Write a proof script

Add types to a program
Write program invariants

Synthesize a program that
matches a specification

[Heuristic generator]

Check

Check proof establishes the theorem
Typecheck the program

Check the program verification

Check the program matches the
specification

[Trusted checker]

Almost all proof tools are ~structured this way

Al is a powerful new

untrusted search tool Specification,

World model

It fits easily into most

proof tool architectures ‘

e SMT solver Broof : [Proof J results:
e Heuristic search ‘ roo ‘ - verified
e Human insight Script Checker - failed

+
e GenAl+RL

Untrusted - Trusted

Optimism: Al proofs get really cheap

Early indicators:

e AlphaProof IMO - automated proof search for v hard problems
e Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming,
Microsoft Research https://arxiv.org/abs/2405.01787

https://arxiv.org/abs/2405.01787

Optimism: Al proofs improve rapidly

Synthetic data / RL

e Proof tools are a totally reliable oracle of correct / incorrect proofs
e Oracle + LLM + RL - seems promising for synthetic proof data generation

Current proof datasets are small

e Making proof easier should result in more proof data written by users
e \irtuous cycle - increased datasets result in improved capabilities

Optimism: many more proof technologies get useful

Benefit

A

\

\
\

7

7’

,// Al-assisted proof

———
- -~ -~

1 e

technologies . 4

“"" Current proof
technologies

SS break-even line

» (Cost

Optimism: impossible things become possible
Eg:

Auto-coders that ‘certify their work’, generating proofs alongside diffs
Transpile 10s of millions of lines of C with memory safety guarantees
Insert proved-correct security boundaries into legacy systems
Retrofit a Linux-scale operating system with proofs

These are in a sense currently possible, just much too expensive

Proofs in the Wild

What’s done today?

What’s close?
What’s far?

https://mikedodds.qithub.io

https://mikedodds.github.io

Specifications and
world models

Current specification technologies

Mostly discrete, bounded, logical

e Logical formulas (+ various fancy extensions)
e State machines
e Domain specific languages

Eg. Cerberus: https://www.cl.cam.ac.uk/~pes20/cerberus/

e A highly accurate model of the C programming language
e Captured in a DSL called Lem which encodes logical states and updates
e Several person-years of iteration: building / testing / discussing

https://www.cl.cam.ac.uk/~pes20/cerberus/

Formal specifications, ideally:

Mathematically clean
Stable over time
Agreed by the users of the system

Easy to reason about

Big successes ALL fit this ideal model

e Cryptographic algorithms

e Operating systems / hypervisors

e Compilers / programming languages
e Cloud services

e Hardware

The reality:

e These systems are unusually easy to specify
e Even slightly harder-to-specify things are very hard to deal with

Most real-world specifications are not...

Mathematically clean
Stable over time
Agreed by all users of the system

Easy to reason about

Real-world specifications are very non-formalisable

Prose standards / RFCs / papers
Powerpoint decks (v common)

The code itself

Reference implementations

Inline code comments

Test cases

User stories

Requirements documents

Regulatory rules

Scribbled notes on coffee-shop napkins

Anecdote: PDF, a spec that does not exist

We formalized PDF in our format definition language
Daedalus (https://github.com/GaloisInc/daedalus

) ;

e Testing on millions of cases

e \Worked closely with the PDF association
But... |

standard

e Non-descriptive: different from real parsers

e Non-normative: doesn’t characterize bugs

e Unclear how to get to a more rigorous &

accepted specification =

parser 1 parser 2

https://github.com/GaloisInc/daedalus

We've only explored the easiest classes of spec

Cryptographic algorithm
Operating system

Document format

CPS system, eg nuclear reactor
Web browser

Al-driven chemical synthesis tool

Generic conversational Al

Increasingly:

Complex

Ambiguous

Hard to reason about
Contended by users
‘Open world’

Weave on Iy ex We only really have examples of

these two levels in industry use

Cryptographic algorithm
Operating system

Document format

CPS system, eg nuclear reactor
Web browser

Al-driven chemical synthesis tool

Generic conversational Al

classes of spec

Increasingly:

Complex

Ambiguous

Hard to reason about
Contended by users
‘Open world’

Eqg. 1: operating system verification

Specification: “Data should not flow from high to low security domains”
Approach (similar to SelL4):

e Tag data with security levels
e Model operating system operations via logic
e Prove that each operation preserves security invariants

Challenges:

e Specification: what user-side behaviors are possible?
e \World modelling: are hardware / physics behaviors in scope?

... v§s Eg. 2: Al-driven chemical synthesis tool

Specification: “Do not generate chemicals that harm humans”
Approach:

e \Write a model of ‘harmful chemicals’
e Prove some guard system correctly rejects all such chemicals

Challenges:

e Need a granular probabilistic model of chemistry and human biology

e “Harm”is a socio-technical term - need to capture social convention / law

e “Harm” may include combined chemicals, so we need a compositional theory
how chemicals could be used

Optimism: can probabilistic programming help?

Maybe? My sense is the tech is very early
Hard problems:

e How do we reason about probabilities at scale?
e How do we validate models vs the real world, esp. over time?
e Is probabilistic reasoning valid in the presence of adversarial actors?

Optimism: can Al help?

Plausible ideas:

e Al + human teaming on specification writing
e Al-driven science to develop accurate models of the world

A lot of work is needed on ‘spec tech’

We have a 50+ years of tools for easy-to-specify things

~Zero tools for hard-to-specify things

For GSAI:

e Big divide between plausible cases and ‘science fiction’
e Urgent need to experiment / grow the bench
e Unclear if / what progress is being made

Proofs in the Wild

What’s done today?

What’s close?
What’s far?

Summary

https://mikedodds.qithub.io

https://mikedodds.github.io

What's done today:

A small number of successful proof tech deployments

Strong evidence of usefulness in some domains

A deep bench of tools and ideas, though many are too expensive
Key barrier is cost/benefit - proofs are hard and specs are hard

What'’s close: proofs

e Al is great for proof search!
e Current tool architectures can integrate Al with very little modification
e Optimism: proofs get cheap, proof tech gets much more useful

What’s far: specifications / world models

e Current proof tech focuses on a tiny range of easy-to-specify things
e \We have ~zero examples of success in more difficult-to-specify domains
e Spec tech needs rapid development if we expect to apply it soon (per GSAI)

Thanks!

miked@qalois.com
https://mikedodds.qgithub.io

X: @miike
@m-dodds.bsky.social

galois

N things | learned trying to do
formal methods in industry:

s
;2*

E;.ﬁtl?ﬁe

https://mikedodds.qithub.io/files/talks/2
024-10-09-n-things-I-learned.pdf

mailto:miked@galois.com
https://mikedodds.github.io
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf

